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Brownian motion in a granular gas in a homogeneous cooling state is studied theoretically and by

means of molecular dynamics. We use the simplest first-principles model for the impact-velocity

dependent restitution coefficient, as it follows for the model of viscoelastic spheres. We reveal that for

a wide range of initial conditions the ratio of granular temperatures of Brownian and bath particles

demonstrates complicated nonmonotonic behavior, which results in a transition between different regimes

of Brownian dynamics: It starts from the ballistic motion, switches later to a superballistic one, and turns

at still later times into subdiffusion; eventually normal diffusion is achieved. Our theory agrees very well

with the molecular dynamics results, although extreme computational costs prevented us from detecting

the final diffusion regime. Qualitatively, the reported intermediate diffusion regimes are generic for

granular gases with any realistic dependence of the restitution coefficient on the impact velocity.

DOI: 10.1103/PhysRevLett.109.178001 PACS numbers: 81.05.Rm, 05.20.Dd, 05.40.-a

Introduction.—Brownianmotion is a fundamental process
in nature which takes place on very different time and length
scales [1]. In its classical formulation it implies a random
motion of a big (Brownian) particle drivenby thermalmotion
of much smaller bath particles. The mean-square displace-
ment of Brownian particles grows with time as hR2

Bi � t�,
with � ¼ 1 for normal diffusion. Anomalous diffusion with
�> 1 (superdiffusion) and �< 1 (subdiffusion) has been
found in a variety of systems [2] ranging from supercooled
and glass forming liquids, e.g., [3], to surfaces [4], biological
[5] and granular [6] systems; usually a few diffusion regimes
with a crossover between them are observed. Mechanisms
of anomalous diffusion are seemingly very different—
macromolecular crowding in solutions and cells [5], caging
in glassy liquids [3], trapping in a random potential [4], etc.
Nevertheless, one can possibly infer an important common
feature—anomalous diffusion always arises due to interplay
of different basic dynamics in a system: For instance, a (fast)
hopping dynamics in glass forming liquids interferes with a
(slow) dynamics of structural rearrangements, resulting in
subdiffusion. Moreover, anomalous diffusion in most of the
systems manifests as an intermediate regime, which trans-
forms asymptotically into normal diffusion, e.g., Refs. [2–4].

In the present Letter we report intermediate anomalous
diffusion in granular systems, where particles interact with
dissipative forces. Although the microscopic mechanism
of this phenomenon is novel and related to inelastic colli-
sions, it again results, as it is shown below, from the inter-
play of different dynamics represented by evolution of two
granular temperatures.

Granular Brownian motion demonstrates a large variety
of new surprising phenomena, among which is the violation
of energy equipartition in a mixture of massive and light

particles [7–9]: Both granular temperatures of Brownian
(TB) and bath (T) particles decrease in a force-free granular
gas, while their ratio rapidly relaxes to a steady-state value
ðTB=TÞs:s: > 1. Moreover, ðTB=TÞs:s: increases with increas-
ing inelasticity and the mass ratio mB=m of Brownian (mB)
and bath (m) particles [7,8]. It has been also shown that
Brownian motion in these systems may change qualita-
tively—from diffusive to a ballistic one, depending on the
steady state value of ’ ¼ ðTBmÞ=ðTmBÞ [10]. Surprisingly,
one can treat this phenomena as a phase transition with the
order parameter ’ [10], which, however, is not observed as
a real process, since the steady state ’ is constant.
To date, most theoretical studies of Brownian motion are

done with the assumption of a constant restitution coeffi-
cient " ¼ g0=g [7], where g and g0 are, respectively, the
normal components of the relative interparticle velocities
before and after a collision. The simplifying hypothesis of
constant ", however, contradicts experimental results, which
indicate that " does depend on g and that "ðgÞ is a decreas-
ing function of the impact velocity [11]; it is not also
consistent with a rigorous theoretical analysis [7]. The
impact-velocity dependence of the restitution coefficient
may, however, crucially change the behavior of a granular
system, e.g., Ref. [12]. In particular, it has been shown that
in a gas of viscoelastic particles, where the impact-velocity
dependence of " stems from the simplest first-principles
model [13], clusters and vortices manifest as transient phe-
nomena [14], in sharp contrast with the case of a constant "
[15]. Furthermore, in a mixture of massive and light parti-
cles, the temperature ratio TB=T, as well as ’, evolve with
time in a homogeneous cooling state (HCS) [16], again in a
contrast with the case of " ¼ const. Therefore, one can
expect that in a granular gas of viscoelastic particles, where
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’ varies with time, the phase transition between different
regimes of Brownian motion may occur during the gas
evolution as a real physical process.

We analyze granular Brownian motion in a gas of visco-
elastic particles in a HCS—the basic state of a force-free
granular gas by means of molecular dynamics (MD), and
theoretically. We have revealed a sequence of new diffusive
regimes for a Brownian particle—superballistic motion
(superdiffusion), which follows after the ballistic one and
transforms then to subdiffusion. Eventually, normal diffusion
is observed.

MD simulations.—We perform event-driven simulations
[17] for a force-free system, usingN ¼ 64 000 bath particles
of mass m and diameter � and one Brownian particle of
mass mB � m and diameter �B (for simplicity we take
�B ¼ �) in a cube of lengthL ¼ 130�with periodic bound-
ary conditions. The number density of the bath particles was
n ¼ N��3=ð6L3Þ ’ 0:015. The reported results correspond
to averages over 20 or 50 independent runs, depending on the
initial conditions.

In our simulations we use the restitution coefficient, as it
follows for the model of viscoelastic particles [13,18]:

" ¼ 1þ X1
k¼1

Ck�
k=2ð2uÞk=20wk=10: (1)

Here, Ck’s are numerical coefficients, which have been
computed up to k ¼ 20 [18] and � quantifies the dissipa-
tive interactions. Equation (1) describes both types of
collisions—between the Brownian particle and a bath
particle and between the bath particles themselves. In the
former case, w ¼ jð ~cBi � ~eÞj, where ~cBi ¼ ~vBi=vT , with
~vBi ¼ ~vB � ~vi being the relative velocity of the

Brownian ( ~vB) and the ith bath ( ~vi) particle, vT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
is the thermal velocity of the bath particles, and

~e is the unit vector, joining the particles’ centers at the
collision instant. In the latter case w ¼ jð ~cij � ~eÞj, where
~cij ¼ ~vij=vT , with ~vij ¼ ~vi � ~vj being the relative veloc-

ity of the colliding ith and jth bath particles. For both types
of collisions we use for simplicity the same � ¼ 0:1. The
quantity uðtÞ ¼ TðtÞ=Tð0Þ is the dimensionless tempera-
ture of the bath at time t, and granular temperatures
are defined as usual, 3T=2 ¼ hm ~v2=2i and 3TB=2 ¼
hmB ~v

2
B=2i. The results of the MD simulation are presented

in Fig. 1.
Theory.—Since the concentration of Brownian particles

is much smaller than that of the bath particles, we assume
that Brownian particles do not affect evolution of the bath
[7]: In a force-free gas T gradually decreases, due to
dissipative collisions, with the cooling coefficient �ðtÞ ¼
�ðdT=dtÞ=TðtÞ. As temperature T tends to zero, " tends to
unity, and all collisions tend to be elastic [7].

The evolution of Brownian particles may be described

using the Boltzmann equation, _fBð ~vB; tÞ ¼ IðfB; fÞ, for the
velocity distribution function, fBð ~vB; tÞ, e.g., Ref. [7]; the

collision integral IðfB; fÞ accounts for the alteration of
fBð ~vB; tÞ in pairwise collisions with the collision rule,

~v0
B ¼ ~vB � ð1þ "Þ�ð ~vBi � ~eÞ ~e: (2)

Here, ~v0
B is the velocity of a Brownian particle after a

collision and � � m
mBþm . Solving the Boltzmann equation

with the standard technique, e.g., Ref. [7], one obtains
the distribution function fB. Brownian dynamics may be
described with very compact notations if the pseudo-

Liouville operator L̂ is used [7]:

_~vB ¼ L̂ ~vB ¼ L̂0 ~vB þX
i

T̂Bi ~vB; (3)

where L̂0 ¼ ~vB � ~r~rB describes the free streaming and

T̂Bi ¼�2
0

Z
d~e�ð�ð ~vBi � ~eÞÞj ~vBi � ~ej�ð ~rBi� ~e�0Þðb̂Bi� 1Þ

FIG. 1 (color online). (a) Time dependence of the temperature
ratio of Brownian (TB) and bath (T) particles. (b) The mean-
square displacement of Brownian particles hR2

Bi as the function
of the re-scaled time �u and the laboratory time t (inset). Lines—
theory, symbols—MD data. Numbers indicate different regimes:
1—ballistic motion, hR2

Bi � �2u; 2—superballistic regime (super-

diffusion), hR2
Bi � ��u with �> 2; 3—subdiffusion, hR2

Bi � ��u
with �< 1; 4—normal diffusion hR2

Bi � �u.
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the binary collisions of particles. The radius vector ~rBi in
the above equation joins centers of Brownian and bath

particle, �0 ¼ ð�B þ �Þ=2 and the operator b̂Bi acts on

the velocities, as b̂Bi ~vB ¼ ~v0
B with the collision rule (2).

Taking into account that ~RBðtÞ ¼
R
t
0 ~vBðt1Þdt1, the

mean-square displacement of Brownian particles reads in
terms of the velocity autocorrelation function: hR2

BðtÞi ¼R
t
0 dt1

R
t
0 dt2h ~vBðt1Þ ~vBðt2Þi. We introduce the reduced time

�B, defined as d�B ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TBðtÞ=TBð0Þ

p
=�cð0Þ, where

��1
c ðtÞ ¼ 4

ffiffiffiffi
�

p
�2g2ð�Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðtÞ=mp

is the mean collision
time of bath particles, with g2ð�Þ being the contact value
of the pair correlation function [7]. In this time scale one

deals with the reduced velocities, ~cB ¼ ~vB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TB=mB

p
, and

the granular temperature of the Brownian particles remains
constant. Hence, the decay of the (reduced) velocity cor-
relation function occurs similarly, as in equilibrium gases:
A particle loses memory of its initial velocity in random
collisions; in dilute gases the velocity correlation function
is exponential [19]; therefore, we approximate

h ~cB½�Bðt1Þ� ~cB½�Bðt2Þ�i ¼ hc2Bi exp
"
� �Bðt2Þ � �Bðt1Þ

�̂vBðt1Þ
#
;

(4)

where hc2Bi ¼ 3=2 and �̂vB is the (reduced) velocity relaxa-
tion time. Exploiting the above form of the correlation
function, we obtain the mean-square displacement

hR2
BðtÞi ¼ 6

Z t

0
dt1DBðt1Þ

"
1� exp

 
� �BðtÞ � �Bðt1Þ

�̂vBðt1Þ
!#

:

Here,DB ¼ TBðtÞ�vBðtÞ=mB is the time-dependent diffusion
coefficient of a Brownian particle, expressed in terms of

�vBðtÞ ¼ �̂vBðtÞ�cð0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TBðtÞ=TBð0Þ

p
—the velocity relaxa-

tion time in laboratory time units. The reduced relaxation
time �̂vBðtÞ in the exponential function in Eq. (4) may
be easily found from its time derivative at t1 ! t2,
yielding [7,20]

��1
vB ¼ �ðN � 1Þ h ~vbT̂Bi ~vbi

h ~v2
bi

� 1

2
�B; (5)

with the cooling coefficient of Brownian particles

�B ¼ � 1

TB

dTB

dt
¼ �ðN � 1Þ hT̂Biv

2
Bi

hv2
Bi

: (6)

Performing the averaging in Eqs. (5) and (6), we ignore, for
simplicity, deviations of the velocity distribution function
from the Maxwellian [12]; it may be, however, shown that
their impact on the calculated quantities is negligible. Hence,
we obtain the velocity relaxation time

��1
vB ðtÞ

��1
c ð0Þ ¼

ffiffiffiffiffiffi
8u

9

s
�2ð1þ ’Þ3=2

’

�2
0g2ð�0Þ

�2g2ð�Þ
"
1þ 1

2

X1
i¼2

AiBi

#

and the cooling coefficient of Brownian particles:

�BðtÞ ¼ 2��1
c ð0Þ

ffiffiffiffiffiffi
8u

9

s
ð1þ ’Þ1=2��2

0g2ð�0Þ
�2g2ð�Þ

�
"
1��

1þ ’

’
þX1

i¼2

Bi

 
Ci � 1

2
�
1þ ’

’
Ai

!#
;

where Ai ¼ 4Ci þ
P

jþk¼iCjCk are pure numbers and

BiðtÞ ¼ �i=2½2uðtÞ�i=20½1þ ’ðtÞ�i=20
 
20iþ i2

800

!
�

�
i

20

�

with �ðxÞ being the Gamma function.
The temperature of the Brownian particles TB can be

found from the equation dTBðtÞ=dt ¼ ��BðtÞTBðtÞ, while
the temperature TðtÞ and the mean-squared displacement
hR2ðtÞi of the bath particles—from the above results using
the substitute mB ! m and �B ! �.
Results and discussion.—The theoretical predictions are

compared with the simulation data in Fig. 1. First we con-
sider the case of the initial energy equipartition, TBð0Þ ¼
Tð0Þ ¼ 400=3. The time dependence of the ratio TB=T
demonstrates here a complicated nonmonotonic behavior:
It initially increases, reaches a maximum, and then de-
creases, tending eventually to unity, Fig. 1(a). This is in
sharp contrast with the case of a constant ", where TB=T
rapidly relaxes to a steady-state value. One can explain this
effect as follows. From the collision rules [see, e.g., Eq. (2)],
the ratio of energy losses of Brownian (�EB) and bath (�E)

particles at a collision scales as �EB=�E� vB=vi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTBmÞ=ðTmBÞ
p

. Initially, �EB � �E, since TB ¼ T and
mB � m; therefore Brownian particles cool down signifi-
cantly slower than the bath particles and the temperature
ratio TB=T increases. One can call this effect as a retarded
cooling, which may be also understood as a tendency of a
system to reach the ratio of TB=T > 1, corresponding to the
steady-state value ðTB=TÞs:s: > 1 of a gas with the respective
constant ". The larger the mass ratio the more pronounced
the effect [Fig. 1(a)]. In the course of time the temperature
ratio TB=T gets so large that �EB and �E become compa-
rable; the granular temperatures start then to equilibrate. At
this stage TB=T decreases—Brownian particles cool faster
than the bath particles and one can call this regime as
accelerated cooling. Again, this effect may be understood,
noticing that the ratio of ðTB=TÞs:s: > 1 is smaller for larger
" and that the effective restitution coefficient grows as the
gas cools down; see Eq. (1). For very large times " tends to
unity, the system becomes elastic and the energy equiparti-
tion is achieved. This complicated temperature dependence
results in transition between different diffusion regimes,
which may be most clearly seen using the rescaled time

�u, defined as d�u ¼ dt
ffiffiffiffiffiffiffiffi
uðtÞp

=�cð0Þ. In this time scale the
average velocity of the bath particles is constant and they
move, as in an equilibrium molecular gas, that is, ballisti-
cally, hR2i � �2u, for �u � 1 and diffusively, hR2i � �u, for
�u � 1 [7,20]. Brownian motion demonstrates, however,
four different regimes—ballistic [regime 1 in Fig. 1(b)],
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superballistic motion or superdiffusion (regime 2), subdiffu-
sion (regime 3), and normal diffusion (regime 4). Physically,
the superballistic motion, which starts after a short ballistic
regime corresponds to the retarded cooling, while the sub-
sequent subdiffusion—to the accelerated cooling. In the
former case Brownian particles get hotter and hotter with
respect to the surrounding gas and hR2

Bi grows with time
faster than for normal diffusion; in the latter case, Brownian
particles cool more rapidly than the gas, so that hR2

Bi grows
with time slower. The duration of the subdiffusion regime
increases with the mass ratio mB=m and may be very long.
Asymptotically, at �u ! 1, the system returns to the equi-
partition, demonstrating the normal diffusion, hR2

Bi � �u.
The respective transition between diffusion regimes is

also seen for the laboratory time t [Fig. 1(b), inset], where

the normal diffusion is described by hR2
Bi � t1=6, as it

follows for the gas of viscoelastic particles [7,20]. If we
consider the time scale �B, where TB keeps constant, the
superballistic motion does not appear; all three other dif-
fusion regimes are, nevertheless, present.

Since superballistic motion is caused by the retarded
cooling, it is not observed if TB=T does not increase. This
happens for initial conditions, when the ratio TB=T is al-
ready large, or more precisely, when TB=T exceeds some
threshold, estimated as the ratio ðTB=TÞs:s: for a gas with a
constant ", equal to the effective restitution coefficient "eff
for a gas of viscoelastic particles at t ¼ 0. In our case,

Eq. (1) with uð0Þ ¼ 1 and hwi ¼ 4=
ffiffiffiffiffiffiffi
2�

p
yields "effð0Þ ¼

0:876 and TBð0Þ=Tð0Þ ¼ ðTB=TÞs:s: ¼ 213:5. Hence, this
initial temperature ratio delimits two incipient diffusion
regimes: For TBð0Þ=Tð0Þ< 213:5 the ballistic and then
superballistic motion takes place, while otherwise only
ballistic regime is observed, Fig. 1(b). Interestingly, the
ballistic motion in the latter case lasts for significantly
longer time, than for normal diffusion; this follows from
the fact that trajectories of heavy Brownian particles are
almost not affected by the much colder bath of light parti-
cles. The subsequent subdiffusion and normal diffusion
persist independently on initial conditions; see Fig. 1(b).
This is the universal feature of Brownian motion in a gas of
viscoelastic particles. As it follows from Fig. 1, a very good
agreement between our theory and simulation data are
observed for evolution of temperature and mean-square
displacement for intermediate ballistic, superballistic, and
the onset of subdiffusive regimes; due to extreme computa-
tional costs we failed to detect numerically the final regime
of normal diffusion.

Conclusion.—We have studied Brownian motion in a
force-free granular gas, composed of particles interacting
with an impact-velocity dependent restitution coefficient
"ðgÞ, as it follows from the model of viscoelastic spheres.
We have revealed that for a wide range of initial conditions
the ratio of granular temperatures of massive and light
particles TB=T demonstrates complicated nonmonotonic
dependence on time as the system evolves in the HCS.

Somewhat similar to other systems with anomalous diffu-
sion, this interplay of different dynamics of Brownian and
bath particles, quantified by their temperatures, gives rise
to a sequence of intermediate diffusive regimes in granular
Brownian motion: At early times the ballistic motion is
observed, which alters then to the superballistic one (for
nonmonotonic evolution of TB=T). At still later times the
opposite regime of subdiffusion—motion, slower than nor-
mal diffusion, always takes place; it lasts for a relatively
long time and tends asymptotically to normal diffusion.
Qualitatively, these features of granular Brownian motion
are not specific to a particular model of "ðgÞ, but generic
for granular systems with any realistic restitution coeffi-
cient that increases with decreasing impact velocity.
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Phys. Rev. Lett. 93, 134301 (2004).

[15] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619
(1993); R. Brito and M.H. Ernst, Europhys. Lett. 43, 497
(1998); S. K. Das and S. Puri, Europhys. Lett. 61, 749
(2003); Phys. Rev. E 68, 011302 (2003); S. R. Ahmad and
S. Puri, Europhys. Lett. 75, 56 (2006); Phys. Rev. E 75,
031302 (2007).

[16] A. S. Bodrova, N. V. Brilliantov, and A.Y. Loskutov,
J. Exp. Theor. Phys. 109, 946 (2009).
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