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ABSTRACT: We develop a theory of microphase separation in a solution precipitate of flexible AB block
copolymers consisting of charged (A) and neutral (B) blocks which are complexed with oppositely charged
linear chains (C) via electrostatic interactions.We analyze regimes of selective solvents: the solvent isΘ for the
A blocks and the C chains, whereas it is poor for the B blocks. Despite the selectivity, stoichiometric
complexes precipitate because of fluctuations induced electrostatic attraction. Depending on composition of
the diblock copolymer, selectivity of the solvent and fraction of charged groups, direct and inverse spherical,
cylindrical and lamellar structures can be stable in the precipitant. Phase diagrams are constructed in the
strong segregation approximation. Morphological transitions induced by changes of solvent quality and
fraction of charged groups are predicted.

1. Introduction

Enhanced solubility of polyelectrolytes in dilute aqueous
solutions is usually attributed to the existence of long-range
electrostatic repulsion between charged groups on the chains
and to the presence of mobile counterions.1 That is why such
systems are very sensitive to variation of pH, salt concentration
and temperature. For example, adding low-molecular-weight salt
diminishes solubility of polyelectrolytes.2 The presence of
amphiphilicity in the primary structure of charged macromole-
cules, i.e., the existence of soluble and insoluble groups, enriches
behavior of the solutions. For example, diblock copolymers
comprising soluble ionic (hydrophilic) and insoluble nonionic
(hydrophobic) blocks form micelles in dilute aqueous solu-
tions.3-8 Dense core of themicelles is formed by insoluble blocks,
and swollen polyelectrolyte blocks in the corona provide stability
(solubility) of the micelles. The form of the micelles is primarily
controlled by chemical composition of the copolymer. Spherical
micelles are stable if the soluble block is long enough.4,7 Other-
wise, cylindrical micelles and vesicles (closed bilayers) are formed
(the so-called crew-cut regime).4,7One of perspective applications
of the micelles is to use them as nanocontainers for delivery of
either hydrophobic species incorporated in the cores or oppo-
sitely chargedmolecules forming stable interpolyelectrolyte com-
plexes with the coronae via electrostatic interactions.

Complexes of oppositely charged polyelectrolytes9-16 are
known to possess a unique peculiarity: the opposite tendencies,
such as intermolecular attraction and solubility of the complexes,
can have a common electrostatic origin.17-19 It is believed that
the short-range attraction of oppositely charged units ismediated
by thermodynamic fluctuations of the charges20,21 (relatively
weak electrostatic interactions similarlywith those of theDebye-
H€uckel plasma) or by strong multipole (dipole, quadrupole, etc.)
interactions of paired oppositely charged groups.22,23 On the
other hand, solubility of the complexes can be attributed to the
existence of the long-range electrostatic forces due to the local
violation of electric neutrality of the system.17-19 The most

efficient tool controlling solubility of the complexes is a relative
fraction of polycations and polyanions in the solutions.24-26

In asymmetric solutions (the total bare charges of poly-
cations and polyanions are not equal to each other), very stable
under-15,16,24,25 or overcharged24,25,27-32 complexes are formed.
On the contrary, in the symmetric solutions short-range attrac-
tion between charged groups prevails over long-range repulsion
and complexes usually precipitate.24,25,33 Therefore, if water-
soluble micelles having a charged corona are mixed with oppo-
sitely charged polyelectrolytes in stoichiometric ratio, the obtained
complexes have to precipitate forming dense structured phase with
stimuli (pH, salt, temperature) responsive morphology.

In the present paper, we develop a theory predicting various
microstructures in the dense phase formed by precipitation of
diblock copolymers with hydrophobic and charged blocks via
stoichiometric complexation with an oppositely charged linear
polyelectrolyte.

2. Model

Let us consider a solution of an AB diblock copolymer with a
neutral, moderately insoluble B block and a charged A block
which is fully neutralized via complexation with oppositely
charged linear chain of C type, Figure 1. We suppose that both
the diblock and the linear chain are flexible and consist of
identical statistical segments, each of the length a and of the
excluded volume v ≈ a3; NA, NB, and NC are the numbers of the
segments in the A, B, and C species, respectively. The oppositely
charged A block and the C chain are structurally equivalent: they
have equal numbers of the segments, NA = NC, and equal
fractions of charged units, jA = jC � j < 1, so that the A-C
complex is stoichiometric. Taking into account insolubility of
A-C complexes due to short-range fluctuations induced electro-
static attraction, macromolecules precipitate, forming dense
phase. Let us assume that the B blocks are strongly incompatible
with the A and/or C species and microdomains of a well-defined
shape with narrow interfaces (the strong segregation regime) are
formed: globular domains enriched by B or A þ C monomer
units contain some fraction of the solvent. A competition of the
interfacial interactions with the entropic elasticity of the blocks
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can lead to the formation of various microstructures. The type
of the structure depends on the relative lengths of the blocks,
f=NB/(NA þ NB), on the fraction of charged groups, j, and on
the interaction parameters. For the described system, we will
examine conditions for the stability of bcc-packed spherical
micelles with (i) nonionic (B) and (ii) ionic (A þ C) cores,
hexagonally packed cylindrical micelles with (iii) nonionic and
(iv) ionic cores, and (v) lamellar structure, Figure 2.

2.1. Spherical Micelles with Nonionic Core. It is assumed
that the core of the micelle formed by the B blocks contains
some fraction of the solvent. Such regime is realized if the
solvent is moderately poor, i.e., one deals with temperatures
which are relatively close to the Θ-temperature. Similar to
single chain globules,34 we expect that the core of the micelle
has homogeneous density and the space-filing condition
reads

4π

3
R3φ ¼ QNBv ð1Þ

whereR andQ are the radius of the core and the aggregation
number of the micelle, respectively; φ is the polymer volume
fraction in the core. Complexed A blocks and C chains form
a matrix in which the B spheres are ordered with the
symmetry of the bcc lattice.Within the spherical approxima-
tion for theWigner-Seitz cell, the A blocks and the C chains
in eachmicelle occupy a spherical layer of the outer radiusR0

(the radius of the cell). Taking into account attractive inter-
actions between the charged groups and restricting our
analysis by the Θ-regime for neutral species of both the A
block and the C chain, one can expect formation of weakly
fluctuating globular state of the corona with homogeneous
polymer density. Then the space-filling condition has a
simple form:

4π

3
ðR0

3 -R3Þψ ¼ 2QNAv ð2Þ

where ψ is the polymer (polycations þ polyanions) volume
fraction.

The total free energy of the spherical micelle per molecule
can be written as a sum of five terms:

Fn
sph ¼ FA

el þFB
el þFcore

vol þFcorona
vol þFint ð3Þ

The first two terms are the free energies of radial stretching
of the A and B blocks. In contrast to the A blocks, the
neutralizing C chains are not stretched because they are
not grafted to the AB interface and local neutrality of the
corona can be achieved via collective effect: each non-
stretched C chain compensates charges located on different
A blocks. Spatially inhomogeneous stretching of the A
blocks can be calculated in a standard way (kBT being the
thermal energy):

FA
el

kBT
¼ 3

2a2

Z R0

R

dr EðrÞ ð4Þ

where the local stretching of the block E(r) = dr/dn
(derivative of the radial coordinate, r, R < r < R0, over
the number of segments, n, 0 < n < NA) depends on the
coordinate. This dependence can be derived from the space-
filling condition ofAmonomer units: a thin spherical layer of
the thickness dr containsQ dnAsegments so that 4πr2 drψ/2
= Q dn v (the volume fraction of A units is equal to ψ/2).
Therefore,

FA
el

kBT
¼ 3

2a2

Z R0

R

dr
Qa3

2πψr2

¼ R2

a2NB

φ

ψ
1- 1þ 2NAφ

NBψ

� �-1=3
 !

ð5Þ

where the space filling conditions, eqs 1 and 2, are used.
By analogy with the strong segregation approximation for

flexible diblock copolymers in the melt,35 the free energy of
stretching of the B blocks takes the form:

FB
el

kBT
¼ 3π2

80

R2

NBa2
ð6Þ

The third term in eq 3 is the volume free energy of
the core, which describes interactions of monomer units
in poor solvent. Assuming relatively small polymer
volume fraction in the core, φ , 1, one can use the virial
approximation34

Fcore
vol

kBT
¼ NBðBφþCφ2 þ :::Þ ð7Þ

where B and C are dimensionless second and third virial
coefficients. In poor solvent, B < 0 and C > 0.

Figure 1. Sketch of diblock copolymer comprising nonionic and ionic
blocks. Oppositely charged linear chain forms complex with the ionic
block.

Figure 2. Bcc-packed spherical micelles with (i) nonionic (B) and (v)
ionic (A þ C) cores, hexagonally packed cylindrical micelles with (ii)
nonionic and (iv) ionic cores, and (iii) lamellar structure.
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The fourth term in eq 3 is the volume contribution
to the free energy of the complexed blocks and linear
chains

Fcorona
vol

kBT
¼ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5 ð8Þ

The formation of the complex can not be described
within the mean-field approximation: the Coulomb term
is equal to zero at this level. One has to include at least
fluctuations around the electroneutral state to describe the
complexation. The simplest way to do it is to use the
random phase approximation (RPA) formalism.19-21 The
first term in eq 8 describes hard core repulsive interactions
of monomer units in the Θ-solvent. The second term is the
RPA correction to the mean-field free energy.19-21 It is
responsible for the fluctuations induced attraction of
charged units. The Bjerrum length lB = e2/(εkBT) quanti-
fies the strength of the electrostatic interactions. For
monovalent ions (e is an elementary charge) in water
(dielectric constant ε ≈ 80), lB ≈ a and oppositely charged
ions do not form pairs. The latter can be stable only at
higher values of lB, lB > 5a,22 when the energy of electro-
static attraction dominates over the thermal energy. This
regime is realized in the case of multivalent ions or low
dielectric constant.

Finally, the last term in eq 3 is the energy of the
core-corona interface. It is responsible for minimi-
zation of the number of unfavorable contacts of monomer
units of different species with the solvent and with each
other:

Fint

kBT
¼ 4πR2γ

kBTQ
¼ 3γNBa

Rφ
ð9Þ

where γ is the surface tension coefficient. Relying on small
polymer concentrations in the core and the corona, one can
expect that the main contributions to γ come from the
A þ C polymer/solvent and the B polymer/solvent inter-
actions whereas interactions of the B and the A þ C
polymers are negligible. Then γ is a sum of two terms,
γ = γ1 þ γ2, calculated in the Appendix:

γ � γa2

kBT
¼ 0:11

C7=18

lBj2

a

 !2=3

þ
ffiffiffi
6

p
B2

48C3=2
ð10Þ

Collecting all contributions together, one gets the
following expression for the free energy of the spherical
structure:

Fn
sph

kBT
¼ R2

a2NB

3π2

80
þ φ

ψ
1- 1þ 2NAφ

NBψ

� �-1=3
 !8<

:
9=
;

þ 3γNBa

Rφ
þNBðBφþCφ2Þ

þ 2NA

"
Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
3
5 ð11Þ

The equilibrium value of Fsph
n is calculated via minimiza-

tion over parameters R, ψ and φ what can partially be done

analytically (over R):

Fn
sph

kBT
¼ 3

2

18NBγ2

φ2

3π2

80
þ φ

ψ
1- 1þ 2NAφ

NBψ

� �-1=3
 !8<

:
9=
;

0
B@

1
CA

1=3

þNBðBφþCφ2Þþ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5

ð12Þ

R ¼ a
3γNB

2

2φ
3π2

80
þ φ

ψ
1- 1þ 2NAφ

NBψ

� �-1=3
 !8<

:
9=
;

0
BBBBBBB@

1
CCCCCCCA

1=3

and numerically (over ψ and φ).
2.2. Spherical Micelles with Ionic Core. The total free

energy of the spherical micelle with ionic core has the same
structure as Fsph

n (eq 3) and calculations of each contribution
to the total free energy are straightforward. The free energy
as a function of the polymer volume fractions ψ and φ takes
the form:

Fi
sph

kBT
¼ 3

2

72NAγ
2

ψ2

3π2

80
þ ψ

4φ
1- 1þ NBψ

2NAφ

� �-1=3
 !8<

:
9=
;

0
B@

1
CA

1=3

þNBðBφþCφ2Þþ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5

ð13Þ

R ¼ a
3γNA

2

ψ
3π2

80
þ ψ

4φ
1- 1þ NBψ

2NAφ

� �-1=3
 !8<

:
9=
;

0
BBBBBBB@

1
CCCCCCCA

1=3

and the space-filling conditions

4π

3
ðR0

3 -R3Þφ ¼ QNBv

4π

3
R3ψ ¼ 2QNAv ð14Þ

determine the aggregation number, Q, and the radius of the
Wigner-Seitz sell (semidistance between the micelles), R0.

2.3. Cylindrical Micelles with Nonionic Core. The elastic
free energy of homogeneously “swollen” core (the core
containing a fraction of poor solvent) can be approximated
by that derived for the case of a dense micelle35:

FB
el

kBT
¼ π2

16

R2

NBa2
ð15Þ
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and the local stretching of the A blocks in the corona,
E(r) = dr/dn, is calculated from the space-filling condition
for thin cylindrical layer, 2πr dr ψ/2 = q dn v, E(r) =
qv/(πψr), where q=Q/L is the aggregation number per unit
length of the cylinder, whereas the total aggregation number,
Q, and the length of the cylinder, L, are infinite, L, Q = ¥.
The elastic free energy of the A block in the corona reads

FA
el

kBT
¼ 3

2a2

Z R0

R

dr EðrÞ ¼ R2

NBa2
3φ

4ψ
ln 1þ 2NAφ

NBψ

� �
ð16Þ

where the space-filling conditions

πR2φ ¼ NBqv

πðR0
2 -R2Þψ ¼ 2NAqv ð17Þ

are used. Taking the surface energy per chain in the form
2γhNBa/(Rφ), one gets the total free energy (see eq 3)

Fn
cyl

kBT
¼ 3

2

8NBγ
2

φ2

π2

16
þ 3φ

4ψ
ln 1þ 2NAφ

NBψ

� �( )0
@

1
A1=3

þNBðBφþCφ2Þþ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5

ð18Þ

R ¼ a
γNB

2

φ
π2

16
þ 3φ

4ψ
ln 1þ 2NAφ

NBψ

� �( )
0
BBBBB@

1
CCCCCA

1=3

after minimization over R.
2.4. Cylindrical Micelles with Ionic Core. The total free

energy of the cylindrical micelle with the ionic (AþC) core is
derived in a similar way as for the case of the micelles with
nonionic cylindrical core

Fi
cyl

kBT
¼ 3

2

32NAγ2

ψ2

π2

16
þ 3ψ

16φ
ln 1þ NBψ

2NAφ

� �( )0
@

1
A

1=3

þNBðBφþCφ2Þþ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5

ð19Þ

R ¼ a
2γNA

2

ψ
π2

16
þ 3ψ

16φ
ln 1þ NBψ

2NAφ

� �( )
0
BBBBB@

1
CCCCCA

1=3

and the space-filling conditions take the form:

πðR2
0 -R2Þφ ¼ qNBv

πR2ψ ¼ 2qNAv ð20Þ

2.5. Lamellar Structure. The elastic free energies of the A
and B blocks in lamellae have similar form35

FA
el þFB

el

kBT
¼ π2

8

R2

NAa2
þπ2

8

ðR0 -RÞ2
NBa2

¼ π2

8

R2

NAa2
1þ NBψ2

4NAφ
2

 !
ð21Þ

where semithicknesses of the ionic layer, R, and nonionic
layer,R0-R, are related through the space-filling conditions

2Rψ ¼ 2qNAv

2ðR0 -RÞφ ¼ qNBv ð22Þ
Here q is the aggregation number per unit area of the

lamella. The interfacial energy per molecule is 2γhNAa/(Rψ)
andminimization of the total free energy, eq 3, overR results
in the following expression:

Flam

kBT
¼ 3

2

NAπ2γ2

ψ2
1þ NBψ2

4NAφ
2

( )0
@

1
A1=3

þNBðBφþCφ2Þ

þ 2NA Cψ2 þ 64

3πψ

� �1=4
lBj2

a

 !3=4
2
4

3
5 ð23Þ

R ¼ a
8γNA

2

π2ψ 1þ NBψ2

4NAφ
2

( )
0
BBBBB@

1
CCCCCA

1=3

3. Results and Discussion

The phase diagrams of the AB diblock copolymers complexed
with the linearC chains in stoichiometric ratio are constructed via
numerical solution of the equations Fsph

n = Fcyl
n , Fcyl

n = Flam,
Flam = Fcyl

i , and Fcyl
i = Fsph

i after minimization of the corres-
ponding expressions, eqs 12, 13, 18, 19, 23 over the parameters φ
and ψ. The parameters controlling phase behavior are f, j, B, C,
lB, and N. In all our calculations we fix the values of the third
virial coefficient, C= 1, and of the Bjerrum length, lB = a. The
latter equality corresponds to aqueous solutionswhere oppositely
charged monovalent ions do not form pairs (relatively weak
electrostatic interactions). The absolute value of the second virial
coefficient has to be much smaller than unity, |B| , 1, to justify
the virial approximation. However, qualitatively correct result
can be obtained even at |B|∼ 1.

The f- j phase diagrams in Figure 3 are plotted at B=-0.1
and different values of the number of segments in the diblock,N:
100 (a), and 1000 (b), whereas the diagrams in Figure 4 are
plotted at a smaller value of the second virial coefficient, B =
-0.5. Similar to the conventional phase diagram of the melt of
diblock copolymers, alteration of microphases with increasing
relative length of the nonionic block, f = NB/(NA þ NB), looks
like: nonionic (B) spheres-nonionic (B) cylinders-lamellae-
ionic (A) cylinders-ionic (A) spheres, Figures 3 and 4. However,
transition values of f depend on the fraction of charged groups in
the ionic block: the higher is the fraction, the smaller are the
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values of f. This effect has a clear physical meaning. Stronger
charged polyelectrolyte blocks and linear chains form more
compact (denser) complexes because of enhanced electrostatic
interactions19 resulting in a smaller radial stretching of the A
blocks. Since the microstructure type depends on the relative
stretching of the A and B blocks, transitions between various
microphases shift to smaller NB (f) with an increase of j
(shrinkage of A blocks). In other words, variation of the fraction
of charged groups (pH-responsive weak polyelectrolytes) controls
stretching of the ionic block and can induce amorphology change,
this phenomenon is clearly seen in Figures 3 and 4. For example,
an asymmetric copolymer (with a longer hydrophobic block,
f ≈ 0.6-0.75, Figure 4) reveals the following transitions with the
increase of j: nonionic spheres f nonionic cylinders f lamellae.

Effect of the second virial coefficient on the phase diagrams is
demonstrated in Figures 3 and 4. Worsening of the solvent
quality for the B blocks (decrease of B) causes a shrinkage of
the B blocks, i.e., compaction of the hydrophobic domains. As a
result, all boundaries between microphases shift toward higher
values of fwith the increase of |B|. Therefore, inducing transition
from nonionic spheres to cylinders with shrunken B block, one
has to deal with shorter A blocks, i.e., higher f in comparison
with nonshrunken B block. The slope of the boundaries in B- f
diagrams, Figure 5, enables us to conclude that variation of the
solvent quality for hydrophobic blocks can also induce structural
transitions.

One can analyze the effect of the overall length of the diblock
on phase behavior comparing the a and b diagrams in Figures 3

and 4.Longermolecules exhibit all transitions at smaller values of
f as an onset of the coupling of the interfacial (elastic) and volume
contributions to the free energies of the corresponding structures
via parametersφ andψ.Minimization of eqs 12, 13, 18, 19, and 23
gives weak dependence of φ and ψ on N: ψ, φ ∼ const þ const/
N2/3, N. 1, if we use the perturbation theory assuming that the
volume contributions (∼NA and NB) are dominant. Thus, the
blocks’ stretching weakly depends on the overall length. In the
limit of infinitely long molecules, N f ¥, and NA ∼ NB (the
composition f tend to neither 0 nor 1), the polymer volume
fractions in ionic and nonionic domains do not depend on the
length of the molecules and can be calculated viaminimization of
the volume contributions, eqs 12, 13, 18, 19, and 23:

φ ¼ -
B

2C

ψ ¼ ðlB=aÞ1=3j2=3

ð12πÞ1=9ð2CÞ4=9
ð24Þ

These values are the same for all microstructures and corres-
pond to the polymer volume fraction φ of single globule in a poor
solvent34 and to the polymer volume fraction ψ of complexed
linear chains.19 The latter result, ψ ∼ (lB/a)

1/3j2/3, can also be
derived using the scaling approach, where the complex of

Figure 3. f-j phase diagrams at different values of the number of
segments in the copolymer: N = 100 (a) and 1000 (b). B = -0.1.
Relative positions of different phases in part b are the same as in part a.

Figure 4. f-j phase diagrams at different values of the number of
segments in the copolymer: N = 100 (a) and 1000 (b). B = -0.5.
Relative positions of different phases in Figure 4 are the same as in
Figure 3a.
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oppositely charged polyelectrolytes is described in terms of
electrostatic attraction blobs.18

In the limit N f ¥, the boundaries of stability of various
microphases can be calculated analytically. For symmetric co-
polymer,NA=NB, the transitions: nonionic spheresf nonionic
cylinders f lamellae f ionic cylinders f ionic spheres occur at

φ

ψ
¼ -

ð12πÞ1=9B
ð2CÞ5=9ðlB=aÞ1=3j2=3

≈1:25, 0:9, 0:28, 0:2 ð25Þ

respectively. The j-B phase diagram for symmetric AB copoly-
mer calculated with the use of eq 25 is plotted in Figure 6. The
microstructures with ionic spheres and cylinders are stable at
small absolute values of the second virial coefficient because only
in this case the nonionic blocks can have higher radial stretching
than the ionic blocks. It has to be reminded that if both ionic and
nonionic domains are even free of the solvent, the A blocks have
higher stretching than the B blocks because complexed C chains
play a role of a solvent. Therefore, inducing structures with ionic
cores, one has to “swell” (elongate) B block higher than the A
ones. That is why the areas of stability of the ionic spheres and
cylinders are relatively small, Figure 6. Also, Figure 6 demon-
strates that variation of the solvent quality (temperature) within a
narrow interval allows to observe all possible microstructures if
the fraction of charged groups in the ionic block is relatively small
(left side of the diagram). In other words, the smaller is the j, the
stronger is the response of the morphology to the temperature.

An obvious restriction on the minimum value of j is the thresh-
old of complexation. Analysis of the critical point of counterions-
free solution of oppositely charged linear chains in Θ-solvent36

and scaling analysis for diblock polyampholytes in Θ-solvent18

predict complexation at j > jc ∼ N-3/4 (lB/a)
-1/2. Thus, jc is

very small and tends to zero at N f ¥.
Phase diagram of the system does not depend on the surface

tension coefficient γh at N f ¥: in equalities of the free energies,
F sph

n =F cyl
n ,F cyl

n =Flam,Flam=F cyl
i , andF cyl

i =F sph
i , eqs 12, 13,

18, 19, and 23, the volume contributions (∼N) are canceled (ψ
and φ for all structures are done by eq 24) and each nonvolume
term (∼N1/3) contains multiplier γh

2/3. The only restriction im-
posed on the value of the surface tension coefficient is that it has
to provide the strong segregation condition. The lattermeans that
the surface energy per chain, which is on the order of magnitude
of the elastic free energy (minimization over R establishes such
interrelation), must be much larger than the energy of transla-
tional motion of the molecule. The surface and the elastic free
energies are given by first terms in eqs 12, 13, 18, 19, and23.At the
transition point,φ/ψ= const (B∼-C5/9(lB/a)

1/3j2/3), eq 25, and
the strong segregation condition takes the form:

Nγ2

φ2
.1, or

NB2

C
.1 ð26Þ

what is always fulfilled at 1 > |B| . N-1/2. In the diagrams
presented, we do not depict spatially homogeneous phases. Such
phases are formed if the length of A (or B) block is exponentially
small.35 They occupy very narrow regions in close vicinity to
f = 0 and 1.

4. Conclusion

We have developed a strong segregation theory of microphase
separation in solution of AB block copolymers and linear chains.
One of the blocks of the copolymer (A) is charged and neutral
block (B) is moderately insoluble (the globular domains formed
by the B blocks can contain some fraction of the solvent).
Oppositely charged linear chains (C) form stoichiometric com-
plexes with the A blocks. In semidilute solution, complexed
diblock copolymers and linear chains precipitate due to attractive
fluctuations induced electrostatic interactions. Incompatibility of
B with Aþ C species results in structuring of the precipitant. We
predicted thermodynamic stability of bcc-packed spherical mi-
celles with (i) nonionic (B) and (ii) ionic (A þ C) cores,
hexagonally packed cylindrical micelles with (iii) nonionic and

Figure 5. f-B phase diagrams at different values of the fraction of
charged units in the ionic block: j = 0.1 (a) and 0.7 (b). N = 100.
Relative positions of different phases in part a are the same as in part b.

Figure 6. j-B phase diagram of the symmetric copolymer ( f = 1/2)
obtained at N f ¥.
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(iv) ionic cores, and (v) lamellar structure. Phase diagrams of
microphase separation are constructed. In the case of weak
polyelectrolytes, morphological transitions can be induced by
variation of both pH and solvent quality.

Optimum conditions for the stability of the mentioned mor-
phologies can be summarized as follows.

1 Nonionic Spheres: short hydrophobic (B) block;
relatively small fraction of charged groups in the
A block and the C chain; high insolubility of the B
block.

2 Nonionic Cylinders: short hydrophobic block (but
longer than in case 1) whose length is related to
the solvent quality: the poorer the solvent, the
longer the B block; relatively high fraction of charged
groups.

3 Lamellae: symmetric and weakly asymmetric copoly-
mer; high fraction of charged groups.

4 Ionic Cylinders: relatively short charged block whose
length is related to the solvent quality: the poorer the
solvent, the shorter the A block.

5 Ionic Spheres: short charged block; high fraction
of charged units; moderate insolubility of the B
block.
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Appendix

Within our approach, γ1 is equivalent to the surface tension
coefficient of the interface between complexed linear chains and
pure Θ-solvent (the grafting of the A chains to the interface is
negligible). For the latter system, γ1 is calculated via minimiza-
tion of one-dimensional functional:

γ1
kBT

¼
Z þ¥

-¥

dx

v

a2

24

ðψ0ðxÞÞ2
ψðxÞ þCψðxÞ3

"

þ 64

3π

� �1=4 ψðxÞlBj2

a

 !3=4

þ μψðxÞ
3
5 ð27Þ

over the polymer volume fraction, ψ(x), that depends on the
normal coordinate x in vicinity of the interface (x = 0). It is
assumed thatψ(x) monotonously grows from 0 in pure solvent
(at x = -¥) to some constant value ψ0 inside the complex far
from the interface (at x = þ¥). Therefore, obvious boundary
conditions imposed on ψ(x) are ψ(-¥) = 0, ψ(þ¥) = ψ0, and
all derivatives (first, second, etc.) ofψ(x) over x at x=(¥ are
equal to zero, ψ0((¥) = ψ0 0((¥) = ... = 0 (ψ(x) is a step-like
function in the shape). The first term of eq 27 is the conven-
tional gradient term34 that describes entropic losses of the
chains because of inhomogeneous density near the interface.
The next two terms are the coordinate-dependent contribu-
tions to the volume free energy, eq 8, and the last term is
introduced to take into account normalization of ψ(x); μ is the
Lagrange multiplier.

Minimization of the functional 27 can be done in a standard
way using substitution ψ(x) = y(x)2:

-
a2

3
y00 þ 6Cy5 þ 64

3π

� �1=4
lBj2

a

 !3=4
3

2
y1=2 þ 2μy ¼ 0 ð28Þ

where the boundary conditions are

yð-¥Þ ¼ 0, yðþ¥Þ ¼ y0 ¼ ffiffiffiffiffiffi
ψ0

p

y0ð(¥Þ ¼ y00ð(¥Þ ¼ ::: ¼ 0 ð29Þ
Equation 28 can be integrated after multiplying by y0:

-
a2

6
ðy0Þ2 þCy6 þ 64

3π

� �1=4
lBj2

a

 !3=4

y3=2 þ μy2 ¼ 0 ð30Þ

where the constant of integration is set equal to zero due to the
boundary conditions at x=- ¥. Applying the boundary condi-
tions at x =þ ¥ to eqs 28 and 30, we get

y0 ¼ 1

ð3πÞ1=4C
lBj2

4a

 !3=4
0
@

1
A

2=9

, μ ¼ -9Cy0
4 ð31Þ

Using eq 30, one can present the surface tension coefficient as
follows:

γ1
kBT

¼
Z þ¥

-¥

dx

v

a2ðy0Þ2
3

¼ a2

3v

Z y0

0

dy y0

¼ a
ffiffiffi
6

p

3v

Z y0

0

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cy6 þ 64

3π

� �1=4
lBj2

a

 !3=4

y3=2 þ μy2

vuut

¼ a
ffiffiffiffiffiffi
6C

p
y40

3v

Z 1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t6 þ 8t3=2 -9t2

p
≈ 0:11

C7=18a2
lBj2

a

 !2=3

ð32Þ
Similar calculations are valid for derivation of the second

contribution, γ2, coming from interactions of B polymer with the
solvent. In this case, the third term in eq 27 has to be substituted
by that responsible for pairwise attraction of monomer units in
the neutral globule, Bψ2(x) (see eq 7). The result can be written
as37

γ2
kBT

¼
ffiffiffi
6

p
B2

48C3=2a2
ð33Þ
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