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Abstract. A simple model of ballistic aggregation and fragmentation is
proposed. The model is characterized by two energy thresholds, Eagg and Efrag,
which demarcate different types of impacts: if the kinetic energy of the relative
motion of a colliding pair is smaller than Eagg or larger than Efrag, particles
respectively merge or break; otherwise they rebound. We assume that particles
are formed from monomers which cannot split any further and that in a collision-
induced fragmentation the larger particle splits into two fragments. We start from
the Boltzmann equation for the mass–velocity distribution function and derive
Smoluchowski-like equations for concentrations of particles of different mass. We
analyze these equations analytically, solve them numerically and perform Monte
Carlo simulations. When aggregation and fragmentation energy thresholds do not
depend on the masses of the colliding particles, the model becomes analytically
tractable. In this case we show the emergence of the two types of behavior: the
regime of unlimited cluster growth arises when fragmentation is (relatively) weak
and the relaxation towards a steady state occurs when fragmentation prevails. In
a model with mass-dependent Eagg and Efrag the evolution with a crossover from
one of the regimes to another has been detected.
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1. Introduction

Collision-induced aggregation and fragmentation are ubiquitous processes underlying
numerous natural phenomena. For a gentle collision with a small relative velocity,
colliding particles can merge; a violent collision with a large relative velocity can cause
fragmentation. For intermediate relative velocities, particles usually rebound. These
collisions may still be irreversible—the kinetic energy could be lost in inelastic collisions.
Important examples of such systems are dust agglomerates in the Earth atmosphere or
in interstellar dust clouds and proto-planetary discs [1]–[4]. Another example is dynamic
ephemeral bodies in planetary rings; see e.g. [5]–[7]. A comprehensive description of the
aggregation and fragmentation kinetics in such systems is very complicated. Therefore
it is desirable to develop idealized models that involve three kinds of collisions in the
simplest possible way.

The understanding of the ballistic-controlled reactions is still quite incomplete [8].
Ballistic aggregation has attracted most attention (see [3, 4], [9]–[14] and references
therein) and a few studies were also devoted to ballistic fragmentation (see [15]–[18]). The
situation with aggregation and fragmentation operating simultaneously has been analyzed
only for a very special case in which all particles have the same relative velocity and the
after-collision fragment mass distribution obeys a power law [7]. Moreover, studies of pure
ballistic fragmentation are usually based on the assumption that all particles may split
independently of their mass and relative velocity between the colliding grains [16, 17]. In
reality, the type of an impact strongly depends on the relative velocity [4]; furthermore, the
agglomerates are comprised of primary particles (‘grains’) that cannot split into smaller
fragments [5, 6]. The fragmentation model with the splitting probability depending on
energy has been studied in [19]; this model, however, does not consider ballistic impacts
of many particles, but rather an abstract process of a successive fragmentation of one
body with a random distribution of the bulk energy between fragments.
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In this paper we propose a model of ballistic aggregation and fragmentation which
accounts for three kinds of collisions depending on masses and relative velocity of a
colliding pair. In section 2 we introduce the model, write the Boltzmann equation for
the joint mass–velocity distribution function, and deduce from the Boltzmann equation
the rate equations for concentrations of various mass species. Section 3 is devoted to the
theoretical analysis of rate equations. Numerical verification of theoretical results and
simulation results in situations intractable theoretically is given in section 4. Section 5
concludes the paper.

2. The model

Consider a system comprised of primary particles (monomers) of mass m1 and radius r1,
which aggregate to form clusters of 2, 3, . . . , k, . . . monomers with masses mk = km1. In
some applications (e.g. in modeling of dynamic ephemeral bodies [5, 6]) it is appropriate
to consider clusters as objects with fractal dimension D; for compact clusters D = 3.
The characteristic radius of an agglomerate containing k monomers scales with mass as
rk ∼ r1k

1/D. We assume that when the kinetic energy of two colliding clusters in the
center-of-mass reference frame (the ‘relative kinetic energy’ in short) is less than Eagg,
they merge. In this case a particle of mass (i + j)m1 is formed. If the relative kinetic
energy is larger than Eagg, but smaller than Efrag, the colliding particles rebound without
any change of their properties. Finally, if the relative kinetic energy exceeds Efrag, one
of the particles (we assume that the larger one) splits into two fragments. We denote as
pi,k−i the probability that a particle of mass k splits into particles of masses i and k − i.
Obviously,

∑
i pi,k−i = 1 and pi,k−i = 0 if k ≤ i.

We restrict ourselves to dilute and spatially uniform systems. Let fi ≡ f(�vi, t) be the
mass–velocity distribution function which gives the concentration of particles of mass mi

with the velocity �vi at time t. The mass–velocity distribution function evolves according
to the Boltzmann equation

∂

∂t
fk (�vk, t) = Iagg

k + Ireb
k + I frag

k , (1)

where Iagg
k , Ireb

k and I frag
k are respectively the collision integrals describing collisions leading

to aggregation, rebound, and fragmentation. The first integral reads

Iagg
k (�vk) = 1

2

∑

i+j=k

σ2
ij

∫

d�vi

∫

d�vj

∫

d�e Θ (−�vij · �e ) |�vij · �e|

× fi (�vi) fj (�vj)Θ (Eagg − Eij) δ(mk�vk − mi�vi − mj�vj)

−
∑

j

σ2
kj

∫

d�vj

∫

d�e Θ (−�vkj · �e) |�vkj · �e| fk (�vk) fj (�vj)Θ (Eagg − Ekj) . (2)

Here σij = r1(i
1/D + j1/D) is the sum of radii of the two clusters, while mk = mi +mj and

mk�vk = �vimi + mj�vj , due to the conservation of mass and momentum. We also introduce
the relative velocity, �vij = �vi − �vj , the reduced mass, μij = mimj/(mi + mj), and the
relative kinetic energy, Eij = 1

2
μijv

2
ij . The unit vector �e specifies the direction of the

inter-center vector at the collision instant. The factors in the integrand in equation (2)
have their usual meaning (see e.g. [20]): σ2

ij |�vij · �e| defines the volume of the collision
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cylinder, Θ(−�vij ·�e) selects only approaching particles and Θ(Eagg −Eij) guarantees that
the relative kinetic energy does not exceed Eagg to cause the aggregation. The first sum in
the right-hand side of equation (2) refers to collisions where a cluster of mass k is formed
from smaller clusters of masses i and j, while the second sum describes the collisions of
k-clusters with all other aggregates.

For collisions leading to fragmentation we have

I frag
k (�vk) =

∑

j

∑

i≤j

pk,j−k

(
1 − 1

2
δi,j

)
σ2

ij

∫

d�vj

∫

d�vi

∫

d�e Θ (−�vij · �e)

× |�vij · �e| fj (�vj) fi (�vi) Θ (Eij − Efrag)Δ(�vi, �vj, �vk)

−
∑

i≤k

(
1 − 1

2
δi,k

)
σ2

ki

∫

d�vi

∫

d�e Θ (−�vki · �e) |�vki · �e|

× fk (�vk) fi (�vi)Θ (Eki − Efrag) , (3)

where mj = mk + mj−k and we use the abbreviation, Δ(�vi, �vj, �vk) = δ(mj�vj + mi�vi −
mk�vk −mk−j�v

′
k−j + mi�v

′
i ) for the factor which guarantees the momentum conservation at

the collision. The after-collisional velocities �v ′
k−j and �v ′

i are determined by a particular
fragmentation model. The first sum in equation (3) describes the collision of particles
of mass i and j (j ≥ k, j ≥ i) with the relative kinetic energy above the fragmentation
threshold Efrag. The larger particle, i.e. the particle of mass j, splits with the probability
pk,j−k into two particles of mass k and j−k, thereby giving rise to a particle of mass k. The
second sum describes the opposite process, when particles of mass k break in collisions
with smaller particles. In the present study we do not need an explicit expression for
the velocities �v ′

k−j and �v ′
i of the fragments. We also do not need an expression for the

collision integral Ireb
k ; it has the usual form (see e.g. [20]) with a slight modification to

account for the requirement that the relative kinetic energy Eij belongs to the interval
(Eagg < Eij < Efrag).

Thus we have a mixture of particles of different masses and each species generally has
its own temperature. For this (granular) mixture we write

ni =

∫

d�vi fi(�vi), N =
∑

i

ni, (4)

where ni is the number density (concentration) of particles of mass i and N is the total
number density. Using the mean kinetic energy of different species one can also define
the partial granular temperatures Ti for clusters of mass i and effective temperature T
of the mixture [21]. We assume that the distribution function fi(�vi, t) may be written
as [4, 14, 21]

fi(�vi, t) =
ni(t)

v3
0,i(t)

φi(�ci), �ci ≡
�vi

v0,i

, (5)

where v2
0,i(t) = 2Ti(t)/mi is the thermal velocity and φ(ci) the reduced distribution

function. For the force-free granular mixtures the velocity distribution functions of the
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components are not far from the Maxwellian distribution [21], which reads, in terms of
the reduced velocity �c = �v/v0,

φM(�c) = π−3/2 exp(−c2). (6)

The equipartition between different components may, however, break down, in the sense
that the partial temperatures Ti are not equal and differ from the effective temperature
T [21]. Here we ignore the deviation from the Maxwellian distribution4 and possible
violation of the equipartition and use the approximation φi(ci) ≈ φM(ci) and Ti ≈ T for
all i. We also assume that the temperature of the system does not depend on time. This
is formally inconsistent within the Boltzmann equation (1), yet in many applications the
temperature is approximately constant on an astronomical timescale, e.g. this happens
in planetary rings where the viscous heating due to the shearing mode of the particle
orbital motion keeps the granular temperature constant [22, 4]. The consistent approach
would be to modify the Boltzmann equation to take into account gradients of the local
hydrodynamic velocity, which will result in additional terms in the velocity distributions
fi, proportional to these gradients. If we assume that such gradients are very small but
still sufficient to support constant temperature due to viscous heating, we can neglect the
small corrections to the distribution functions and approximate them with a gradient-free
form (5).

Integrating equation (1) over �vk we obtain the equations for the zero-order moments
of the velocity distribution functions fk, that is, for the concentrations nk. Taking into
account that collisions resulting in rebounds do not change the concentrations of different
species and using (2)–(3) together with (4)–(6) we arrive at rate equations

d

dt
nk =

1

2

∑

i+j=k

Ci,jninj − nk

∞∑

i=1

Ck,ini +

∞∑

j=k+1

j∑

i=1

Ai,jninj

(

1 − 1

2
δi,j

)

pk,j−k

− nk(1 − δ1k)

k∑

i=1

Ak,ini

(
1 − 1

2
δi,k

)
, (7)

with rates given by

Ci,j = 2σ2
ij

(
2Tπ

μij

)1/2 (

1 −
(

1 +
Eagg

T

)

e−Eagg/T

)

Ai,j = 2σ2
ij

(
2Tπ

μij

)1/2

e−Efrag/T .

(8)

It is useful to verify that the above kinetic equation (7) fulfills the condition of mass
conservation,

∑
k km1nk = M = const, where M is the total mass density.

The probability of splitting pik depends on geometric and mechanical properties of the
aggregates and generally it is quite complicated. For concreteness we focus on splitting
into (almost) equal fragments. Namely, we assume that a particle of mass 2km1 splits

4 Note that for a slightly modified model, where only in a small fraction of collisions that fulfill the aggregation
criterion, particles merge and only in a small fraction of collisions that fulfill the fragmentation criterion, particles
split, the velocity distribution is close to the Maxwellian, like in a granular mixture. At the same time this
modified model would lead to the same kinetic equation (9), but with the renormalized timescale.
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into two equal halves, while a particle of mass (2k+1)m1 splits into particles of mass km1

and (k + 1)m1. For this choice of the splitting probability, the kinetic equation reads

d

dt
nk =

1

2

∑

i+j=k

Ci,jninj − nk

∞∑

i=1

Ck,ini − nk

k∑

i=1

Ak,ini (1 − δk,i/2)

+ 2
2k∑

i=1

A2k,in2kni (1 − δ2k,i/2) +
2k+1∑

i=1

A2k+1,in2k+1ni (1 − δ2k+1,i/2)

+
2k−1∑

i=1

A2k−1,in2k−1ni (1 − δ2k−1,i/2) . (9)

In the following sections we study this model theoretically and numerically.

3. Theoretical analysis

To understand the qualitative behavior it is instructive to start with the simplest model
which allows an analytical treatment.

3.1. Constant rates

Consider first the model with constant rates Ai,j and Ci,j. Without loss of generality we
can choose these rates to be

Ci,j = 2, Ai,j = 2λ. (10)

The parameter λ quantifies the relative intensity of fragmentation with respect to
aggregation. Fragmentation prevails when λ > 1 while aggregation wins in the opposite
case of λ < 1. If λ = 1 two processes are in a balance.

Even in this simple case we still ought to analyze a cumbersome system of infinitely
many equations. To gain insight it is useful to consider the evolution of the total density
N =

∑
nk. (In many problems involving aggregation and fragmentation this quantity

satisfies a simple equation that does not contain other densities.) Summing up all of
equation (9) we obtain

Ṅ = −(1 − λ)N2 − λn2
1 (11)

which does indeed have a neat form, although it additionally involves the density of
monomers. This density evolves according to

ṅ1 = −2n1N + 2λ
[
n2(2n1 + n2) + n3(n1 + n2) + 1

2
n2

3

]
. (12)

Although we do not have a closed system we can already reach some qualitative
conclusions. Equation (11) indicates that two regimes are possible. If λ < 1, i.e. when
aggregation prevails, the system continues to evolve leading to formation of larger and
larger clusters; when λ > 1, one expects the system to reach a steady state. We now
analyze these situations in more detail.

doi:10.1088/1742-5468/2009/06/P06011 6

http://dx.doi.org/10.1088/1742-5468/2009/06/P06011


J.S
tat.M

ech.
(2009)

P
06011

A model of ballistic aggregation and fragmentation

3.1.1. Unlimited cluster growth, λ < 1. In this case larger and larger clusters will arise.
Since the total mass is conserved, one expects the concentration of small clusters to rapidly
decrease. Therefore, n1 � N when t � 1 and therefore one can omit the second term on
the right-hand side of (11). Similarly one can keep only the first term on the right-hand
side of (12). This leads to the simplified equations

Ṅ 	 −(1 − λ)N2, ṅ1 	 −2n1N (13)

which are solved to yield the large time behavior:

N 	 1

(1 − λ)t
, (14)

n1 ∼ t−2/(1−λ). (15)

Further, one anticipates that the density distribution approaches the scaling form

nk 	 t−2zΦ(x), x =
k

tz
(16)

in the scaling limit t → ∞, k → ∞, with the scaled mass x = k/tz kept finite.
(Here z is the dynamic exponent characterizing the average mass: 〈k〉 ∼ tz.) The
scaling form agrees with mass conservation:

∑
knk 	

∫
dx xΦ(x) is manifestly time

independent.
The exponent z can be found from the known asymptotic behavior of N(t). Indeed,

writing

N =
∑

k≥1

nk 	 t−z

∫ ∞

0

dx Φ(x) ∼ t−z

and matching this with already known asymptotic behavior (14) we conclude that z = 1. If
we further assume that Φ(x) ∼ xμ for x � 1 and combine this asymptotic with z = 1 and
the scaling ansatz (16) we obtain n1 ∼ t−2 t−μ. Matching with (15) we get μ = 2λ/(1−λ).
Therefore

nk ∼ 1

t2

(
k

t

)2λ/(1−λ)

(17)

when k � t. Obviously, the above equation implies the asymptotic time dependence
nk ∼ t−2/(1−λ) and the mass dependence nk ∼ k2λ/(1−λ) for x = k/t � 1.

3.1.2. Relaxation to a steady state, λ > 1. For λ > 1 the system evolves to a steady state
with constant concentration of clusters. In this case ṅk = Ṅ = 0 and equation (11) yields

n1 = N
√

1 − λ−1. (18)

The densities nk rapidly decay with k. Therefore n2k � nk for k � 1 and the governing
equation (9) for the stationary concentrations simplifies to

k−1∑

i=1

nink−i − 2(1 + λ)nkN = 0, (19)

doi:10.1088/1742-5468/2009/06/P06011 7
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where we have approximated a finite sum up to k � 1 by an infinite sum and ignore the
terms containing n2k, n2k±1. The above equation is supposed to be valid for large k; it is
certainly invalid for k = 1 when the right-hand side does not vanish. The qualitative form
of the large k asymptotic behavior is determined by the mathematical structure of (19).
To extract this asymptotic let us consider the simplest version when equation (19) is valid
for all k ≥ 2. Specifically, let us probe the model

k−1∑

i=1

nink−i − 2(1 + λ)nkN = −(1 + 2λ)Nδk,1, (20)

where the amplitude (1 + 2λ) was chosen to set N = 1. (For model (20), this choice
merely sets the overall amplitude.)

The infinite system (20) forms a recurrence and therefore it is solvable. Introducing
the generating function

N (z) =
∑

k≥1

nk zk (21)

we recast (20) into a quadratic equation

N 2 − 2(1 + λ)N + (1 + 2λ)z = 0 (22)

which is solved to yield

N = (1 + λ) −
√

(1 + λ)2 − (1 + 2λ)z. (23)

Expanding N (z) we arrive at

nk =
1 + λ√

4π

[

1 − 1

(1 + λ)2

]k
Γ(k − 1/2)

Γ(k + 1)
. (24)

From this solution one gets n1 = (λ + 1/2)/(λ + 1), which of course directly follows from
equation (20) as well. For large k, equation (24) simplifies to

nk 	 1 + λ√
4π

k−3/2

[

1 − 1

(1 + λ)2

]k

. (25)

We consider other tractable versions where equation (19) is exact above a certain
threshold, k ≥ κ+1, while for k = 1, . . . , κ we use the same modification as in equation (20)
for k = 1. In this case instead of (22) one gets N 2 − 2(1 + λ)N + P (z) = 0 with
P (z) = A1z + · · ·+Aκz

κ. The root of P (z) = (1+λ)2 closest to the origin is positive (one
can show that it exceeds unity, z∗ > 1) and non-degenerate. Expanding the generating

function N = 1 + λ −
√

(1 + λ)2 − P (z) leads to the asymptotic nk ∼ k−3/2z−k
∗ . The

above argument favors the asymptotic behavior

nk 	 Ak−3/2e−γk. (26)

This asymptotic form is universal and only the parameters A, γ depend on the specificity
of the model, that is on the parameter λ.

It is impossible to determine A, γ since models like (20) are uncontrolled
approximations. Let us still use such models and choose the simplest one which obeys the
exact relation of equation (18). The model (20) is inappropriate as it fails to satisfy (18):

doi:10.1088/1742-5468/2009/06/P06011 8
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Figure 1. Evolution of cluster concentrations nk in the case of constant rates
with λ = 0.5. The lines correspond to the numerical solution of 1000 differential
equations; symbols are the results of MC simulation with 100 000 monomers for
the monodisperse initial conditions. Note that while n1(t) always decays, the
nk(t) initially increase and then decay to zero.

(λ + 1/2)/(λ + 1) >
√

1 − λ−1. Modifying equation (19) at k = 1, 2 yields (we still set
N = 1)

∑

i+j=k

ninj − 2(1 + λ)nk = −qδk,1 − (2λ + 1 − q)δk,2, (27)

with

q = 2(1 + λ)
√

1 − λ−1

ensuring the validity of (18). The same approach as before gives (26) with A and γ. In
particular,

γ = ln

[

(1 + λ)

√
1 − λ−1 + Λ −

√
1 − λ−1

Λ

]

, (28)

where we have used the shorthand notation Λ = 1 + 2λ − 2(1 + λ)
√

1 − λ−1. For λ = 2
(which we have studied numerically) one gets

γ = 0.495 156 . . . . (29)

This is an uncontrolled approximation, of course. Interestingly, the result is rather close
to the numerically obtained value γ ≈ 0.465.

3.2. Mass-independent energy thresholds

We now turn to the analysis of the situation when aggregation and fragmentation energy
thresholds Eagg and Efrag are constant. In this case the total density of clusters evolves
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Figure 2. Evolution of the total number of clusters N for the same system as in
figure 1. The solid line corresponds to the numerical solution of the differential
equations, symbols to the MC simulation and the dotted line shows the theoretical
prediction, equation (14), N(t) ∼ t−1 for t � 1.

Figure 3. The long time limit behavior of cluster concentrations nk for the
same system as in figure 1. In accordance with the theoretical predictions,
equations (15) and (17), the cluster concentrations nk(t) decay for t � 1 with
the same slope t−2/(1−λ) ∼ t−4, shown by the solid line.

according to

Ṅ = −1
2
(1 − λ)

∞∑

i=1

∞∑

j=1

Ci,jninj − 1
2
λC1,1n

2
1, (30)

where λ−1 = eEfrag/T (1 − (1 + Eagg/T )e−Eagg/T ). This again implies the existence of the
two opposite evolution regimes: for λ > 1 the relaxation to a steady state is expected,
while for λ < 1 we have the regime of the unlimited cluster growth.
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Figure 4. The cluster mass distribution at different time instants for the same
system as in figure 1. The initial cluster distribution at t = 10 (long-dashed line)
drastically differs from that in the scaling regime, t � 1. The dotted–dashed
and dashed lines show respectively the cluster mass distribution for t = 500 and
t = 1000. The solid line shows the theoretical prediction, equation (17), nk ∼ kμ,
with μ = 2λ/(1 − λ) = 2.

The rates Cij = C(i, j) and Aij = A(i, j) differ by a constant factor λ; moreover, they
are homogeneous functions of their arguments:

A(ai, aj) = aνA(i, j), C(ai, aj) = aνC(i, j), (31)

with the exponent

ν =
2

D
− 1

2
, (32)

which follows from the relation for a particle’s mass mi = im1, the cross-section of the
collision cylinder, σ2

ij ∼ (i1/D + i1/D)2, and equations (8). Plugging the scaling ansatz (16)
into equation (9), taking into account that for k � 1 the summation may be approximated
by integration, and exploiting the homogeneity of the rate kernels, equation (31), we obtain
(see e.g. [23, 25, 24] for analysis of similar integro-differential equations for the re-scaled
mass distribution)

z

t2z+1
(2Φ(x) + xΦ ′(x)) =

1

t(3−ν)z

∫ ∞

0

dy Φ(y)[(Cx,y + Ax,y)Φ(x)

− 1
2
Cy,x−yΦ(x − y) − 4A2x,yΦ(2x)]. (33)

From equation (33) we find the scaling exponent

z =
1

1 − ν
=

(
3

2
− 2

D

)−1

. (34)

Although the scaling theory does not allow one to determine the scaling function Φ(x),
one can find the total concentration of clusters from equation (34):

N(t) ∼ t−z ∼ t−2D/(3D−4). (35)

Correspondingly, the average clusters mass grows as 〈k〉 = M/N ∼ tz.
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Figure 5. Evolution of cluster concentrations nk(t) for the case of constant kinetic
coefficients with λ = 2. After a certain period of time the system relaxes to a
steady state. Lines correspond to the numerical solution of 1000 differential
equations, symbols to the results of MC simulation (100 000 monomers) for the
monodisperse initial conditions.

3.3. Dependence of the energy thresholds on masses of colliding particles

In the preceding analysis we have assumed that Eagg and Efrag do not depend on the
mass of colliding particles so that λij = Aij/Cij = λ is constant. In reality, however,
such dependence does exist, implying that λij is a function of i and j. Still, if λij > 1
or λij < 1 for all i and j, the qualitative behavior of a system is similar to that for the
case of constant Eagg and Efrag: for λij > 1 a relaxation to a steady state is expected,
while for λij < 1 an unlimited cluster growth is observed. The most interesting behavior
is expected when λij − 1 changes its sign with increasing cluster masses i and j. In this
case one anticipates a crossover from one type of evolution to another.

To choose a realistic dependence of Eagg and Efrag on the masses of colliding particles,
one needs more details of the collision process. We shall use the threshold energy for
ballistic aggregation that takes into account surface adhesion [26]. In this case

Eagg(i, j) = E0
agg

(
ij

i + j

)4/3

, (36)

where E0
agg is expressed in terms of the monomer radius, particle surface tension, the

Young modulus and the Poisson ratio of the particle material (see [26] for the explicit
expression for E0

agg).

For the energy of fragmentation we assume that it is equal to the energy required
to create an additional surface, which may be roughly estimated as twice the area of
the equatorial cross-section of the larger particle (recall that the model assumes, that
the larger particle in a collision pair breaks down). Hence we adopt the following mass
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Figure 6. The steady state distribution of cluster mass for the same system as
in figure 5. The solid line corresponds to the numerical solution, the dotted line
to the theoretical prediction, equation (26), nk = Ak−3/2e−γk. The constant
γ = 0.465, obtained by fitting, is very close to the theoretical value of γ = 0.495,
equation (29).

Figure 7. Evolution of cluster concentrations nk(t) for the case of ballistic kinetic
coefficients with constant aggregation and fragmentation energies Eagg/T = 0.9,
Efrag/T = 3 and λ < 1. The cluster dimension is D = 3.

dependence for Efrag:

Efrag(ij) = E0
frag (θiji + θjij)

2 , (37)

where θij = 1 if i > j, θij = 0 if i < j and θii = 1/2; E0
frag = 2πγsr

2
1, with γs being the

surface tension.
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Figure 8. Evolution of cluster concentrations nk(t) in the case of ballistic kinetic
coefficients with constant aggregation and fragmentation energies Eagg/T = 0.3,
Efrag/T = 3 and λ > 1. The cluster dimension is D = 3. Like for the case
of constant kinetic coefficients, the system relaxes to a steady state. Lines
correspond to the numerical solution of 1000 equations, symbols to the results of
MC simulation (100 000 monomers) for the monodisperse initial conditions.

4. Numerical simulations

In our numerical studies we apply two different approaches—the solutions of the system of
differential equations and the direct modeling of random aggregation and fragmentation
processes (with the corresponding rates Ci,j and Ai,j) by means of a Monte Carlo (MC)
method. In the former case we use 1000 equations and in the later one 100 000 monomers
(we always used the monodisperse initial conditions). The approach based on the solution
of differential equation has an obvious deficiency as one must approximate an infinite
system of equations with a finite one. The MC approach is more time-consuming, but
it has an advantage of directly imitating the physical processes in which particles are
involved. To model the fragmentation and aggregation kinetics with MC we use the
standard Gillespie algorithm [27, 28] (see [29] for the application of this algorithm to the
aggregation and fragmentation processes).

The results presented in figures 1–11 confirm our theoretical predictions qualitatively
and quantitatively. For constant rates two opposite types of evolution have indeed been
observed: the relaxation to a steady state for dominating fragmentation (λ > 1) and
the unlimited cluster growth when aggregation prevails (λ < 1). The two numerical
approaches (the solution of the differential equations and MC) yield very close results.

In figure 1 the evolution of the concentration of clusters of different mass is shown
for the λ < 1 regime when the cluster growth continues ad infinitum. Note that all
concentrations nk(t), except for n1(t) which always decays, initially increase and then
decay to zero. Figure 2 shows that the decay of cluster density N(t) agrees well with
the theoretical prediction (14). Figures 3, 4 show respectively the asymptotic evolution
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Figure 9. Steady state cluster mass distribution of nk for the same system as
in figure 8. Like for the case of constant kinetic coefficients with λ > 1, the
distribution nk has a nearly exponential form, equation (26), nk = Ak−3/2e−γk.
The constant γ = 0.315 is obtained by fitting.

of cluster concentrations and the distribution of the cluster mass for x = k/t � 1.
The theoretical predictions, equations (15) and (17), are in a good agreement with the
simulations. Relaxation to a steady state in the case when fragmentation dominates
(λ > 1) is illustrated in figure 5, while figure 6 demonstrates the corresponding stationary
cluster mass distribution.

Note that the numerical simulations confirm the theoretical form of the steady
state cluster mass distribution. Qualitatively similar behavior is observed for the case
of the ballistic kinetic coefficients, equations (8), with the constant aggregation and
fragmentation energies. Again, for λ < 1, as for constant kinetic coefficients, clusters
grow unlimitedly, figure 7, while for λ > 1 the system relaxes to a steady state, figure 8.
The cluster mass distribution in the steady state may be anew very well fitted with the
nearly exponential form, equation (26); see figure 9.

In figure 10 the prediction (35) of the scaling theory is compared with the numerical
data. Again we see that the agreement between the theory and simulations is rather
satisfactory. Finally figure 11 illustrates evolution of the system with the ballistic
coefficients that depend on the cluster mass in accordance with equations (36) and (37). It
is interesting to note that the system tends initially to a quasi-steady state, as previously
for the case of λ > 1, but then a crossover to a different evolution regime corresponding
to λ < 1 takes place. In the latter regime all cluster concentrations decay with a similar
slope, close to t−1, still to be explained theoretically.

5. Conclusion

We analyzed the dynamics of a system where particles move ballistically and undergo
collisions which can lead to decrease or increase of the number of particles. The precise
outcome depends on the kinetic energy Ekin in the center-of-mass reference frame. We
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Figure 10. Evolution of total number of clusters N(t) for the case of
ballistic kinetic coefficients with constant aggregation and fragmentation energies
Eagg/T = 0.9, Efrag/T = 3 and λ < 1 for different cluster dimensions D. Solid
lines correspond to the numerical solution of 1000 differential equations; dotted
lines show the prediction of the scaling theory, equation (35).

Figure 11. Evolution of the cluster concentrations nk(t) for the case of ballistic
coefficients Cij , Aij with the mass-dependent aggregation and fragmentation
energies Eagg(i, j) and Efrag(i, j), given by equations (36) and (37) with E0

agg/T =
0.1, E0

frag/T = 0.6. Lines correspond to the numerical solution of 1000 differential
equations, symbols to the results of MC simulation (100 000 monomers) for the
monodisperse initial conditions. The cluster dimension is D = 3. Note that
the system tends initially to a steady state, clearly seen for the first few cluster
masses. Later its evolution alters to the regime corresponding to the unlimited
cluster growth. In this regime the cluster concentrations decay with a slope close
to ∼t−1, shown in the figure by the dotted line.
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proposed a simple model with two threshold energies, Eagg and Efrag, which define the
type of an impact: for Ekin < Eagg the colliding particles merge, for Eagg < Ekin < Efrag

they rebound, and for Efrag < Ekin one of the particles (the larger one) splits upon the
collision. We assume that the aggregates are composed of 1, 2, . . . , k, . . . monomers and
split into two equal (for an even number of monomers in the cluster) or almost equal
(for an odd number of monomers) pieces. The monomers are assumed to be stable, that
is, they do not split further. For this model we wrote the Boltzmann kinetic equation
for the mass–velocity distribution function of the aggregates and derived rate equations
for the time evolution of the cluster concentrations. The ballistic rates were obtained
in terms of the aggregation and fragmentation energy thresholds Eagg and Efrag, masses
of the colliding particles and the temperature of the system (which was assumed to be
constant). The Maxwellian velocity distribution for all species in the system was also
assumed.

We analyzed theoretically and studied numerically the rate equations. In the
numerical studies we used two different methods—the solution of the system of differential
equations and Monte Carlo modeling. The two numerical methods yielded very close
results. We started with the simplest case of constant rates and observed two opposite
evolution regimes—the regime of unlimited cluster growth and of the relaxation to a steady
state; we described both these cases analytically. For the regime of the unlimited cluster
growth we obtained the asymptotic time dependence for the cluster concentrations and
for their mass distribution. For the relaxation regime, which corresponds to the prevailing
fragmentation, we derived the asymptotic behavior of the stationary mass distribution.
In the evolving regime, the cluster concentrations decay as a power law in time; the
stationary mass distribution has a nearly exponential form. Theoretical predictions are
in a good agreement with numerical results.

We also studied the case of mass-dependent rates arising in the situation when
aggregation and fragmentation energy thresholds are constant. We observed that the
behavior of the system is qualitatively similar to that of the system with the constant
rates. Surprisingly, we detected that the steady state cluster mass distribution has also
a nearly exponential form. We developed a scaling theory for the asymptotic large time
behavior of the cluster concentrations and checked it numerically for different fractal
dimensions of the aggregates. The numerical data agree well with the results of our
theory.

Finally, we explored numerically the case of the ballistic kinetic coefficients with the
aggregation and fragmentation energies depending on the mass of colliding particles. For
the aggregation energy threshold we use the result available in the literature for a collision
of particles with surface adhesion. For the fragmentation energy threshold we adopted a
model where Efrag is proportional to the surface energy of the maximal cross-section of
the larger particle in the colliding pair. For this model the dependence on mass of Efrag

is much stronger than that of Eagg. As the result, the evolution of the system, where the
fragmentation initially prevails and drives it to a steady state, alters at later time when
the unlimited cluster growth eventually wins and then it continues ad infinitum.
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[20] Brilliantov N V and Pöschel T, 2004 Kinetic Theory of Granular Gases (Oxford: Oxford University Press)
[21] Garzo V and Dufty J W, 1999 Phys. Rev. E 59 5895
[22] Greenberg R and Brahic A (ed), 1984 Planetary Rings (Tucson, AZ: Arizona University Press)
[23] van Dongen P G J and Ernst M H, 1985 Phys. Rev. Lett. 54 1396
[24] Leyvraz F, 2003 Phys. Rep. 383 95
[25] Cheng Z and Redner S, 1988 Phys. Rev. Lett. 60 2450
[26] Brilliantov N V, Albers N, Spahn F and Poeschel T, 2007 Phys. Rev. E 76 051302
[27] Gillespie D T, 1976 J. Comput. Phys. 22 403
[28] Feistel R, 1977 Wiss. Z. Univ. Rostock 26 663
[29] Poeschel T, Brilliantov N and Frommel C, 2003 Biophys. J. 85 3460

doi:10.1088/1742-5468/2009/06/P06011 18

http://dx.doi.org/10.1209/epl/i2003-10301-2
http://dx.doi.org/10.1016/0019-1035(89)90125-5
http://dx.doi.org/10.1021/j100081a009
http://dx.doi.org/10.1103/PhysRevLett.64.2913
http://dx.doi.org/10.1103/PhysRevLett.74.4114
http://dx.doi.org/10.1103/PhysRevLett.82.1502
http://dx.doi.org/10.1103/PhysRevLett.91.218302
http://dx.doi.org/10.1016/j.matcom.2006.05.031
http://dx.doi.org/10.1088/0305-4470/23/7/028
http://dx.doi.org/10.1103/PhysRevE.68.021102
http://dx.doi.org/10.1103/PhysRevE.77.061305
http://dx.doi.org/10.1103/PhysRevLett.77.3577
http://dx.doi.org/10.1103/PhysRevE.59.5895
http://dx.doi.org/10.1103/PhysRevLett.54.1396
http://dx.doi.org/10.1016/S0370-1573(03)00241-2
http://dx.doi.org/10.1103/PhysRevLett.60.2450
http://dx.doi.org/10.1103/PhysRevE.76.051302
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/S0006-3495(03)74767-5
http://dx.doi.org/10.1088/1742-5468/2009/06/P06011

	1. Introduction
	2. The model
	3. Theoretical analysis
	3.1. Constant rates
	3.1.1. Unlimited cluster growth, λ <1 .
	3.1.2. Relaxation to a steady state, λ >1 .

	3.2. Mass-independent energy thresholds
	3.3. Dependence of the energy thresholds on masses of colliding particles

	4. Numerical simulations
	5. Conclusion
	References

