

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА физики полимеров и кристаллов

Компьютерный дизайн высокоселективных экстрагентов для разделения редкоземельных элементов с помощью квантово-химических расчетов и моделей "структура-свойство"

магистр Карпов К.В., рук. ст.н.с., кхн Жохова Н.И.

Москва 2018

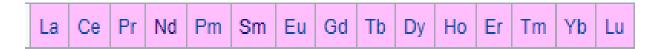
Краткое общее представление области исследований -XEMOИНФОРМАТИКА

"Хемоинформатика – это применение методов информатики для решения химических проблем" - *И. Гастайгер, 2003*

Основной сферой применения методов хемоинформатики является изучение общих закономерностей, связывающих микро- и макроскопические свойств химических объектов.

С этой целью в хемоинформатике используют методологию SAR/QSAR/QSPR, которая основана на построении с помощью методов машинного обучения статистических моделей, связывающих значения характеристик молекулярной структуры химических объектов со значениями их свойств.

Модели "структура-свойство" используют для расчета неизвестных свойств новых химических объектов и конструирования материалов с заданными свойствами.

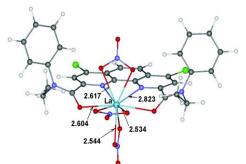

Моделирование "структура-свойство" проводят на основе баз данных, содержащих информацию о структурах и свойствах химических объектов.

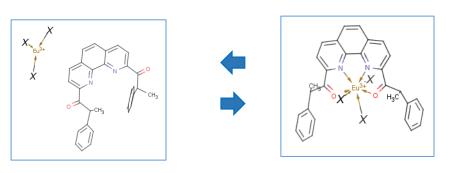
Актуальность изучаемой проблемы

Редкоземельные элементы (РЗЭ) и их препараты (с содержанием основного металла 99,999%) широко востребованы в различных областях современных инновационных технологий

Мировое производство РЗЭ в 2015 г - 200 тыс. тонн

Выделение индивидуальных РЗЭ из их смесей представляет сложную задачу по причине близости их химических свойств вследствие заполнения 4f внутренней электронной оболочки при движении от La^{3+} к $Lu^{3+} \triangleright 4f^{1-14}$, $5d^1$, $6s^2$


Фактор различия между РЗЭ - уменьшение R иона Ln^{3+} с ростом Z от 1,061Å (La^{3+}) до 0,85 Å (Lu^{3+})


Актуальность изучаемой проблемы

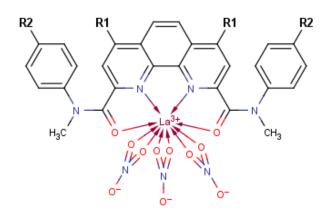
Известным промышленным способом получения индивидуальных РЗЭ из смесей их концентратов является жидкостная экстракция, которую проводят в системе водный раствор смеси солей РЗЭ - органический растворитель.

В процессе экстракции органический лиганд захватывает ион РЗЭ, образуя при этом координационный комплекс, и выводит его в органическую фазу. Селективность лиганда, характеризует фактор селективности.

$$LnX_3 + L \rightleftarrows LLnX_3$$
 где $X = NO_3^-$

$$K = \frac{[LLnX_3]}{[L][LnX_3]}$$

фактор селективности
$$SF_{\mathrm{Ln1}/_{\mathrm{La2}}} = \frac{K_1}{K_2}$$


Актуальность изучаемой проблемы.

Задача - создание высокоселективных экстрагентов для разделения РЗЭ, америция и кюрия

Использующиеся на сегодняшний день в промышленности экстрагенты не обладают высокой селективностью по отношению к РЗЭ, что приводит к необходимости использования последовательных экстракционных каскадов, состоящих из сотен экстракторов.

Важной стратегической задачей является создание высокоселективных экстрагентов для разделения РЗЭ.

Такие экстрагенты эффективны для разделения элементов, в том числе америция и кюрия, при переработке отходов замкнутого ядерного цикла,

1,10-фенантролин-2,9-дикарбоксиамиды

Из исследований известно, что одним из классов соединений, наиболее подходящих на роль экстрагентов, являются производные N-донорных гетероциклов, содержащие "жесткие" кислородные и "мягкие" азотные донорные центры - атомы кислорода и азота с неподеленными парами электронов, которые образуют координационные связи с катионами РЗЭ с образованием комплексов.

Актуальность проблемы.

Задача - создание высокоселективных экстрагентов для разделения РЗЭ, америция и кюрия

Поиск новых экстрагентов, основанный на экспериментальном синтезе и тестировании, требует дорогостоящих и времязатратных процедур. Для многих производных целевой группы соединений методы синтеза не разработаны.

Поэтому для расчета потенциальных свойств новых экстрагентов, которые влияют на образование комплексов, мы применили методологию, успешно развиваемую в мире в последние 5 лет для прогнозирования свойств новых материалов.

Она заключается в исследовании корреляций между микро- и макроскопическими свойствами химических объектов на основе построения статистических моделей "структура-свойство" (QSPR) с помощью методов машинного обучения.

Модели QSPR строят с использованием баз данных, содержащих наборы структур химических объектов и значений свойств, рассчитанных для этих объектов с помощью квантово-химических методов. При построении модели для представления структуры используют молекулярные дескрипторы.

Полученные QSPR модели используют для расчета неизвестных значений свойств для ранее не исследованных объектов.

Метод. Построение статистических моделей "структура – свойство" на основе данных квантово-химических расчетов

Метод. Построение консенсусных моделей "структура - свойство"

Программа ISIDA-QSPR (www.vpsolovev.ru)

1. Виды функциональной зависимости МЛР:

$$Y = \sum_{i} A_i X_i$$

$$Y = \sum_{i} A_i X_i \qquad Y = A_0 + \sum_{i} A_i X_i$$

Внутренний 5-кратный скользящий контроль

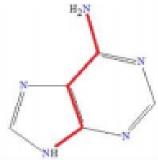
2. Дескрипторы молекулярной структуры – подструктурные 2D фрагменты

Тип фрагментных дескрипторов топологические пути в виде "атом - связь"

Длину топологического пути -2-3 мин., 6-15 макс.

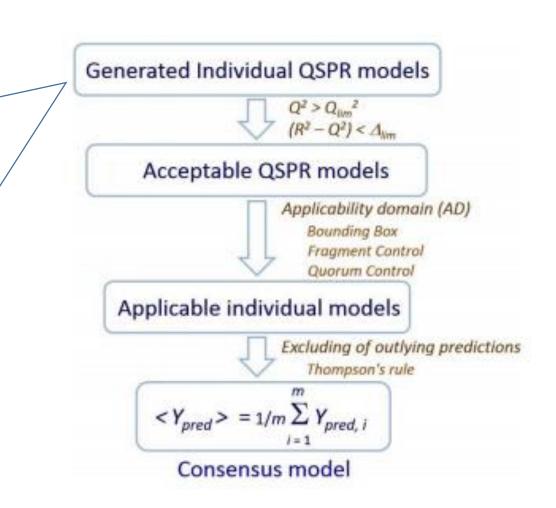
Параметры качества моделей:

$$RMSE = \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right]^{1/2}$$

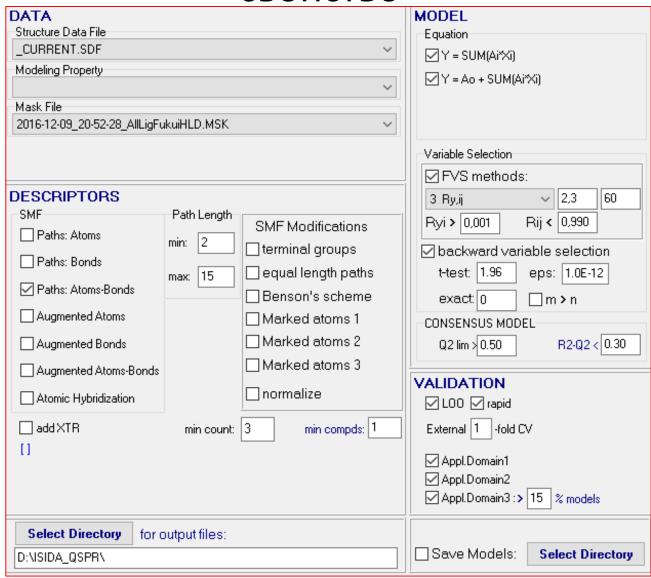

$$R_{det}^2 = 1 - \sum_{i=1}^n (y_i - \hat{y}_i)^2 / \sum_{i=1}^n (y_i - \langle y \rangle)^2$$

 y_i и \hat{y}_i - значения моделируемого свойства, рассчитанные квантово-химически и предсказанные по модели.

< y > - среднее значение величин рассчитанного свойства


Построение статистических моделей "структура - свойство" методом множественной линейной регрессии

1. Структурные молекулярные фрагменты



- 2. Процесс прямого и обратного отбора дескрипторов
- 3. Построение индивидуальных моделей

$$y = \sum_{i} a_{i} x_{i} + \Gamma \quad y = a_{o} + \sum_{i} a_{i} x_{i} + \Gamma$$

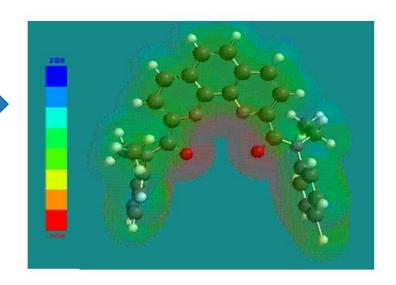
Построение консенсусных моделей "структура - свойство"

Объекты исследования — молекулярная структура и свойства перспективных экстрагентов класса N донорных гетероциклов и их комплексов с ионами La^{3+} , Nd^{3+} , Eu^{3+} и Lu^{3+} .

Сгенерированный набор виртуальных и экспериментальных структур потенциальных экстрагентов (Программа Chemaxon)

R1,R2 = -CH3, -C6H5, -CH2CH3, -CH2CH2OH **R3** = -H, -Cl, -F, -CH3, -NO2, -OCH3, -CH2OCH3, -OCH2CH3

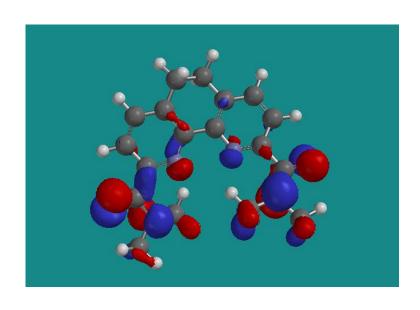
R3, **R5** = H, Cl, F, Me, NO₂, OMe, OEt, CH₂OMe **R6**, **R7** = CH₂OH, CMe₂OH, C(O)Me, C(O)CF₃, C(O)CHMe₂, C(O)CHMeEt, C(O)CHEt₂

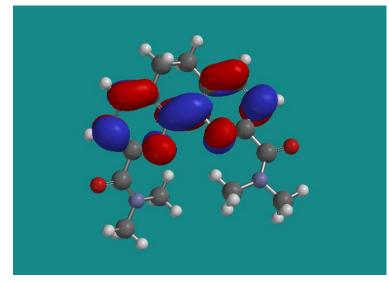

Моделируемые свойства перспективных экстрагентов

На селективность экстрагента оказывают влияние 2 фактора:

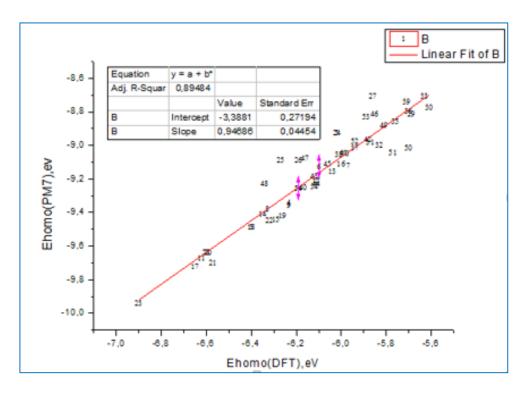
- 1. Основной вклад в связь между Ln и экстрагентом вносит электростатическая составляющая как это видно по карте распределения электростатического потенциала по молекуле.
- Введение электронодонорных и электроноакцептоных заместителей в гетероциклические ядра и к амидным атомам азота может в широких пределах менять распределение электронной плотности, и тем самым влиять на селективность экстрагента.
- 2. Варьируя заместители в положении **X** и изменяя размер координационной полости, можно менять степень переноса электронной плотности с экстрагента на металл и на селективность образования комплекса.

В качестве характеристик, определяющих свойства экстрагентов и комплексов, осуществляли расчет и моделирование:


- 1. энергии связывания экстрагента с катионом лантанида
- 2. Энергии граничных орбиталей (ВЗМО и НСМО) молекул экстрагентов.


X	Расстояние между атомами N-N, Å
-CH=CH-	2.763
-CH ₂ CH ₂ -	2.766
>C=O	3.083
>CLa ₂	3.070
-0-	3.222

Прогнозирование энергии граничных орбиталей

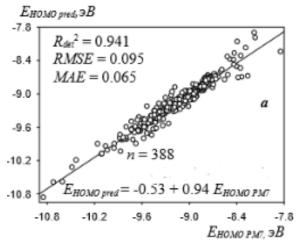

Сопоставление результатов расчета *ab initio* и метода **РМ7**

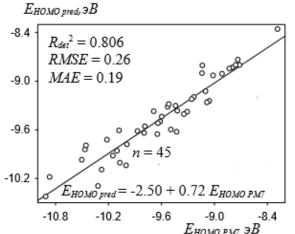
B3M0

HCMO

Зависимость $E_{\it взмо}$ (PM7)/ $E_{\it взмо}$ (DFT)

Квадрат коэффициента корреляции $R_{corr}=0.89$ N = 54 соединения


Консенсусные модели "структура-свойство" для прогнозирования энергий **B3MO**

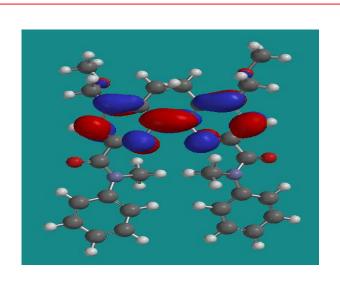

Построены QSPR модели с высокой прогнозирующей способностью.

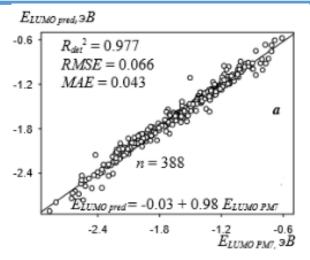
База данных:

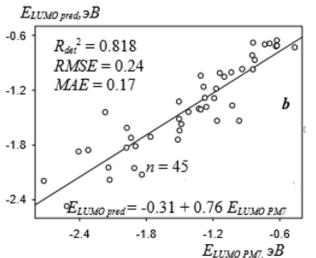
388 экстрагентов, результаты расчета E(B3MO) полуэмпирическим методом PM7

Сходство структур обучающей и контрольной выборок по **Индексу Танимото 0.48**

Обучающая выборка 388 экстрагентов, 5-кратный скользящий контроль, R^2_{det} 0.941, *RMSE* 0.095 эВ


Внешняя независимая контрольная выборка 45 экстрагентов, R_{det}^2 0.806, *RMSE* 0.26 эВ


Консенсусные модели "структура-свойство" для прогнозирования энергий **НСМО**


Построены QSPR модели с высокой прогнозирующей способностью

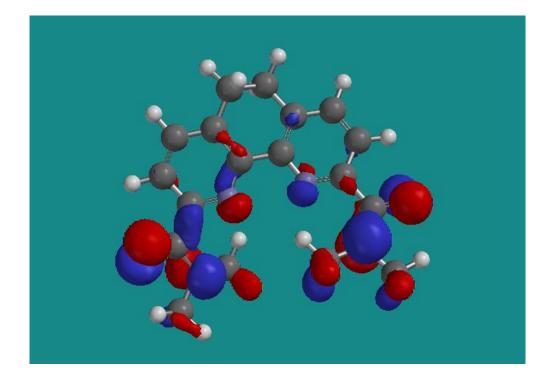
База данных:

388 экстрагентов, результаты расчета E(B3MO) полуэмпирическим методом PM7

Обучающая выборка 388 соединений

5-кратный скользящий контроль: R^2_{det} 0.977 *RMSE* 0.066 эВ

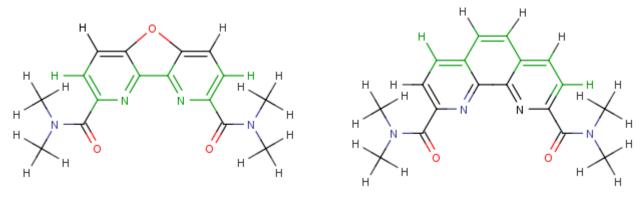
Внешняя независимая выборка 45 соединений

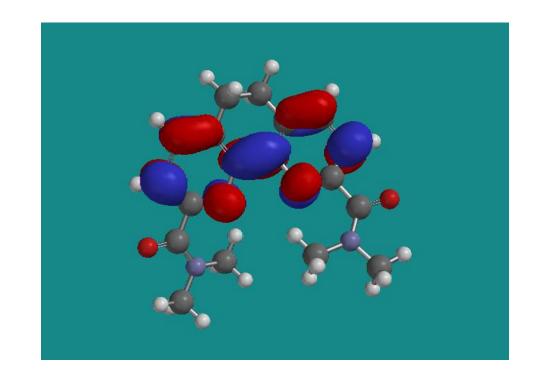

R²_{det} 0,818 RMSE 0.24 эВ

Роль структурных фрагментов.

1. Вклад в модели для расчета значение энергии ВЗМО

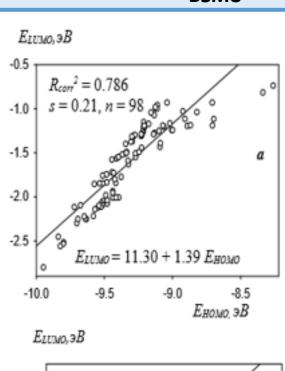
Фрагменты, вносящие наибольший вклад в значение энергии ВЗМО

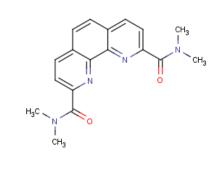

Вклад фрагмента, eV	Диапазон изменения, eV	Число индивидуаль- ных моделей	Число соединений
-3.03	2.0	277	388
-0.81	0.08	85	295

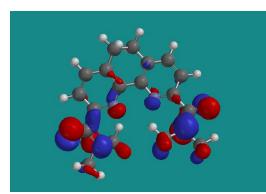

Роль структурных фрагментов.

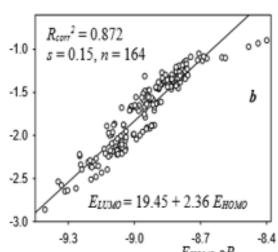
2. Вклад в модели для расчета энергии НСМО

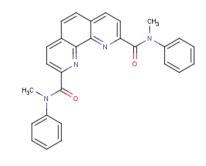
Фрагменты, вносящие наибольший вклад в значение энергии НСМО

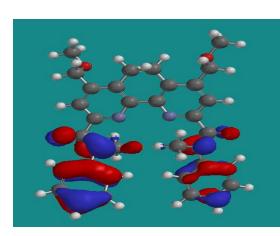

Вклад фрагмента, eV	Диапазон изменений, eV	Число индивидуаль- ных моделей	Число соединений
-0.42	0.09	40	145
-0.44	0.22	333	58

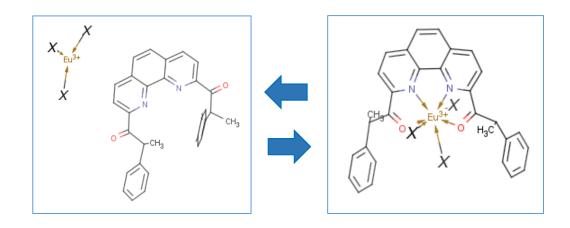



Роль структурных фрагментов. 3. Влияние на Е_{взмо} / Е_{нсмо}

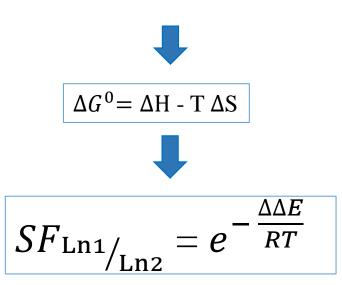



Общее *N* структур -388





Расчет энергии связывания при образовании комплексов Ln³⁺ с органическими экстрагентами


$$LnX_3 + L \rightleftarrows LLnX_3$$

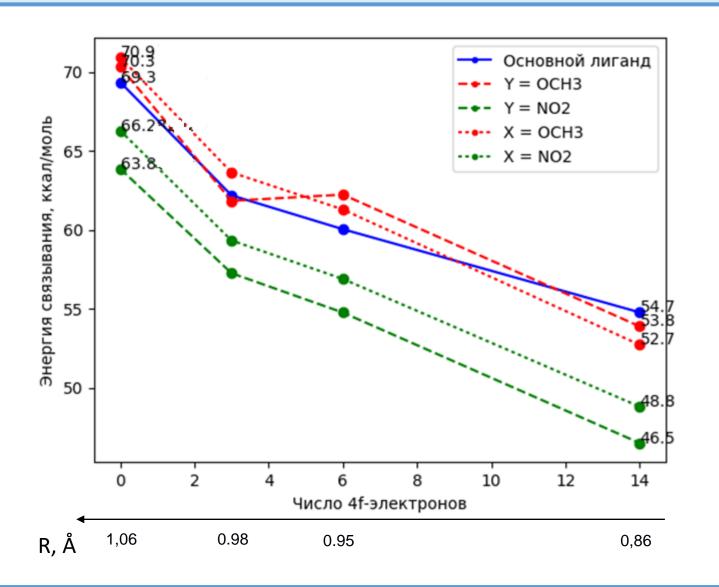
$$K = \frac{[LLnX_3]}{[L][LnX_3]}$$

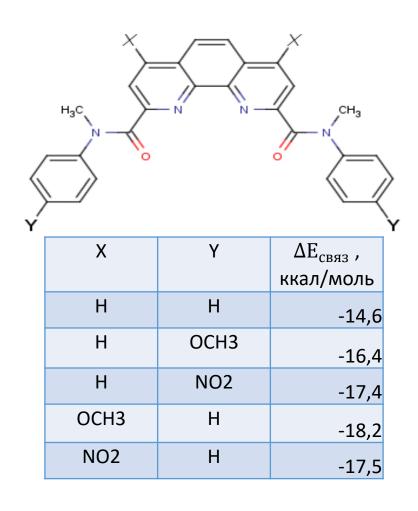
$$\Delta G_1^0 = -RT \ln K_1$$

$$\Delta G_2^0 = -RT \ln K_2$$

$$SF_{\text{Ln}_{1/\text{Ln}_{2}}} = \frac{K_{1}}{K_{2}} = e^{-\frac{\Delta\Delta G}{RT}}$$

$$E_{\text{CBH3}} = E_{LLnX_3} - E_L - E_{LnX_3}$$

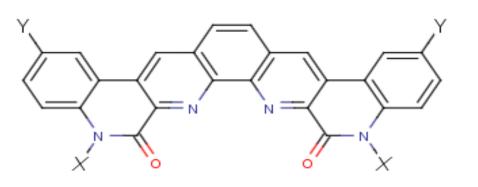

1. Yuri A. Ustynyuk et al. Solvent Extr. and Ion Exchange, DOI: 10.1080/07366299.2014.915666


Фрагмент комбинаторной библиотеки экстрагентов с результатами *ab initio* расчета энергий связывания и B3MO (B3LYP, 6-31G*)

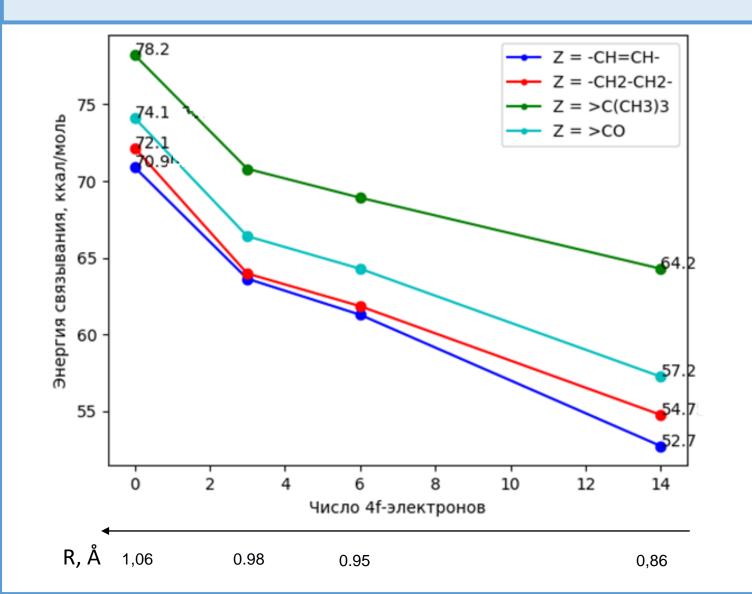
Структура экстрагента	Е _{связLa (Хартри)}	Е_{связNd} (Хартри)	Е _{связЕи (Хартри)}	Е _{связLu (Хартри)}	ВЗМО (эВ)
CI N N CH ₃	-0.10791	-0.09672	-0.09337	-0.08003	-0.21
H ₃ C N N CH ₃	-0.11035	-0.09922	-0.09557	-0.09629	-0.21
H ₃ C CH ₃	-0.11176	-0.10025	-0.09686	-0.0884	-0.20

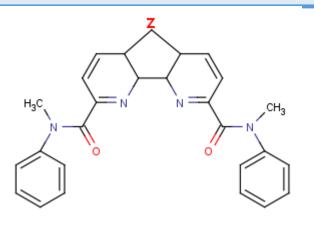
Влияние структуры лиганда на энергию связывания "металл - лиганд" в комплексах.


1. Зависимость $E_{
m CB93}$ комплексов производных фенантролинов от природы металла



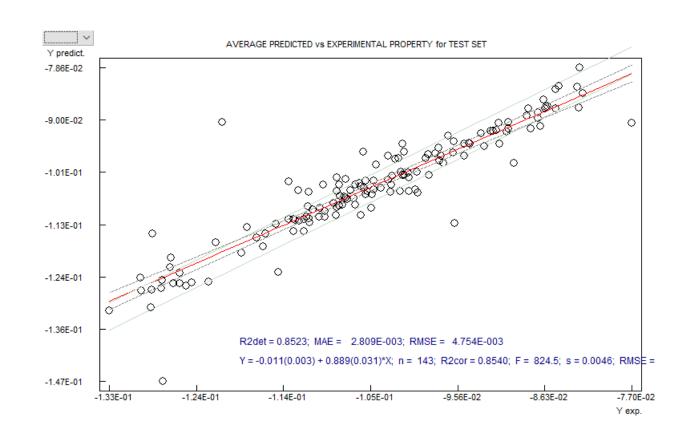
OCH3 — донорный заместитель NO2 — акцепторный заместитель


2. Зависимость $E_{{ m CB}{ m H3}}$ комплексов производных дилактамов фенантролинов от природы металла (для стабильных лигандов)



X	Y	ΔЕ _{связ} , ккал/моль
Н	Н	-17,8
Н	OCH3	-17,4
Н	NO2	-16,8
OCH3	Н	-18,4
NO2	Н	-17,8

3. Зависимость $E_{{
m CB}{
m H3}}$ комплексов производных N –гетероциклов от природы металла (наличие СО сопряжения)



Z	Расстояние между атомами N- N, Å	ΔЕ _{связ} , ккал/моль
-CH=CH-	2.763	-17.3
-CH2-CH2-	2.766	-17.4
>C(CH3)2	3.083	-13.9
>CO	3.070	-16.9

Прогнозирование $E_{\text{связ}}$ комплексов на основе консенсусных моделей "структура-свойство"

Базы данных — 149 экстрагентов и их комплексов с La^{3+} , Eu^{3+} , Lu^{3+} , результаты расчета методом функционала плотности , B3LYP, 6-31G*

катион	R^2	RMSE ккал/моль
La^{3+}	0.852	3.0
Eu ³⁺	0.847	3.2
Lu ³⁺	0.848	3.2

Выводы:

- 1. С помощью *ab initio* и полуэмпирических квантово-химических методов, а также метода статистического моделирования "структура-свойство" с использованием результатов этих расчетов исследованы закономерности влияния молекулярной структуры лиганда на энергию связывания металл-лиганд в комплексах и построены модели "структура-свойство" для прогнозирования свойств перспективных экстрагенов для разделения РЗЭ на основе полидентатных N-гетероциклических лигандов и их комплексов состава $LMe(NO_3)_3$ с катионами лантанидов.
- 2. На основании результатов расчетов предложены рекомендации синтетической группе ИНЭОС РАН по получению новых производных фенантролиновых лигандов. Ряд новых лигандов синтезированы и в настоящий момент проходят экспериментальное тестирование.

С благодарностью профессору Устынюку Ю.А. (химический факультет МГУ) за неоценимую помощь в работе.