Laboratory of Theoretical Physics Amphiphilic Polymer Systems

 

Many polymer systems possess specific properties due to the self-assembly of macromolecules and surrounding molecules. Diverse types of macromolecules and macromolecular structures are necessary for the applications in different areas, such as coating, lithography, fuel cells, car industry, construction materials, and medicine. Amphiphilic molecules have got chemical groups of two types, which can differ markedly in the interaction energy with surrounding molecules. A simple example of an amphiphilic molecule is a surfactant molecule composed of hydrophobic (H) and polar (P) parts. At an interface of the oil-water type, such molecules are concentrated and oriented that leads to the surface tension decrease (Fig.1). This effect can be used, for example, for emulsion stabilization.

 

              

 

Fig. 1                                                                               Fig. 2

 

Self-assembly of macromolecules and their physical and chemical properties are also related to hydrophobic and polar groups. In particular, the solubility of globular proteins in water and their ability to collapse rapidly from an expanded (coil) state are due to the specific distribution of hydrophobic and polar amino acid residues along macromolecules that permit polar groups to be located mostly at the globule surface (Fig. 2) [Dill, 1985].

For the theoretical investigation of polymer systems, various methods of statistical physics of macromolecules are used: the mean-field approaches for systems with small fluctuations of component concentrations and scaling approaches for polymer solutions. For example, a globular state of macromolecules can be described in terms of the mean-field theory assuming that the globule is large and its density is almost constant (Fig. 3).

 

Coil                                             Globule

 

Expanded macromolecule               Collapsed macromolecule

 

                                                                                      Fig. 3

 

 

The main research field is the theoretical investigation of self-assembly in polymer systems using the models of Van der Waals interactions of monomer units and imdividual chemical groups. The research can be carried out in collaboration with the laboratory of computer simulations of polymer systems (MSU) and laboratory of computer simulations of complex polymer and biopolymer systems (INEOS RAS).

 

Supervisor

Associate Professor, Dr. Elena N. Govorun

E-mail: govorun@polly.phys.msu.ru

r. 2-70, tel. 8(495)9394013

IMG_0003

 

Topics

I. Self-assembly in polymer systems in the presence of surfactants

II. Self-assembly of macromolecules with composed (hydrophobic-polar) monomer units

III. Hydrophobic-polar polymer globules (a biomimetic approach)

IV. Self-assembly in block copolymer systems

V. Structure of charged dendrimers

VI. Diffusion and reaction processes in polymer mixtures

 

Publications

I. Self-assembly in polymer systems in the presence of surfactants

 

1. E. N. Govorun and D. E. Larin “Self-Assembly of Polymer Brushes in the Presence of a Surfactant: A System of Strands” // Polymer Science, Ser. A, 2014, 56(6), pp. 770–780.

2. Govorun E.N., Ushakova A.S., Khokhlov A.R. “Microstructuring of a polymer globule in solution in the presence of an amphiphilic substance” // Polymer Science, Ser. A, 2012, 54(5), pp. 414–425.

3. Govorun E.N., Ushakova A.S., Khokhlov A.R. “Microphase separation in polymer solutions containing surfactants” // Eur. Phys. J. E, 2010, 032(3), pp. 229–242.  DOI: 10.1140/epje/i2010-10639-6

4. Ushakova A.S., Govorun E.N., Khokhlov A.R. “Macromolecules in a Blend of Poor and Amphiphilic Solvents” // Polymer Science, Ser. A, 2008, 50(8), pp. 854–864.

II. Self-assembly of macromolecules with composed (hydrophobic-polar) monomer units

1. Larin D. E., Lazutin A. A., Govorun E. N., Vasilevskaya V. V. Self-Assembly into Strands in Amphiphilic Polymer Brushes” // Langmuir, 2016, 32(27), pp. 7000-7008. DOI: 10.1021/acs.langmuir.6b01208

2. Lazutin À.À., Govorun E.N., Vasilevskaya V.V., Khokhlov A.R. “New strategy to create ultra-thin surface layer of grafted macromolecules” // J. Chem. Phys., 2015, 142(18), p. 184904.  DOI: 10.1063/1.4920973

transit2

3. Ushakova A.S., Govorun E.N., Khokhlov A.R. “Globules of amphiphilic macromolecules” // J. Phys. Cond. Mat. 2006, 18(3), pp. 915-930.

 

III. Hydrophobic-polar polymer globules (a biomimetic approach)

1. A.V. Chertovich, E.N. Govorun, V.A. Ivanov, P.G. Khalatur, A.R. Khokhlov
Conformation-dependent sequence design: evolutionary approach” // Eur. Phys. J. E, 2004, 13, pp. 15-25.

2. Govorun E.N., Khokhlov A.R., Semenov A.N. “Stability of dense hydrophobic-polar copolymer globules: Regular, random and designed sequences// Eur. Phys. J. E, 2003, 12(2), pp. 255-264.

3. Govorun E.N., Ivanov V.A., Khokhlov A.R., Khalatur P.G., Borovinsky A.L.,
 
Grosberg A.Yu. “Primary sequences of proteinlike copolymers: Levy-flight-type long-range correlations” // Physical Review E, 2001, 64, R40903.

4. Khokhlov A.R., Grosberg A., Khalatur P.G., Ivanov V.A., Govorun E.N., Chertovich A.V., Lazutin A.A. “Conformation-dependent sequence design of protein-like AB-copolymers” // In Protein Folding, Evolution and Design. Italian Physical Society. Proceedings of the International school of physics "Enrico Fermi". Course CXLV. Publisher IOS PRESS, Amsterdam, 2001, 313-330.

 

IV. Self-assembly in block copolymer systems

 

1. Govorun E. N., Chertovich A. V. “Microphase Separation in Random Multiblock Copolymers” // J. Chem. Phys., 2017, 146(3), p. 034903.  DOI: 10.1063/1.4921685

2. Govorun E.N., Gavrilov A.A., Chertovich A.V. “Multiblock copolymers prepared by patterned modification: Analytical theory and computer simulations” // J. Chem. Phys, 2015, 142(20), p. 204903.  DOI: 10.1063/1.4921685.

3. Erukhimovich I.Y., Belousov M.V., Govorun E.N., Abetz V., Tamm M.V. “Non-Centrosymmetric Lamellar Structures in the Associating Blends of Tri- and Diblock Copolymers” // Macromolecules, 2010, 43(7), pp. 3465-3478. http://pubs.acs.org/doi/abs/10.1021/ma9023735

4. Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D., Fischer H.R. ”Polymer Melt Intercalation in Clay Modified by Diblock Copolymers” // Macromol. Theory Simul., 2004, 13(5), p. 392-399.

5. Govorun E.N., Erukhimovich I.Y. “Emulsion stabilization by diblock copolymers: droplet curvature effect” // Langmuir, 1999, 15(24), pp. 8392-8398.

6. Govorun E.N., Litmanovich A.D. “Stabilization of a Disperse Homopolymer Blend by Diblock Copolymers: the Effect of Macromolecular Length” // Polymer Science: Ser. A, 1999, 41(11), pp. 1111-1120.

7. Erukhimovich I.Y., Govorun E.N., Litmanovich A.D. “Stabilization of polymer blend structure by diblock-copolymers” // Macromol. Theory Simul., 1998, 7(2), pp. 233-239.

 

V. Structure of charged dendrimers

dendrimer

 

E.N. Govorun, K.B. Zeldovich, A.R. KhokhlovStructure of Charged Poly(propylene imine) Dendrimers: Theoretical Investigation” // Macromol. Theory Simul., 2003, 12(9), p. 705. DOI: 10.1002/mats.200350030

 

VI. Diffusion and reaction processes in polymer mixtures

 

1. Govorun E.N., Kudryavtsev Y.V. "Phase separation in a polymer blend in the course of interchain exchange reaction" // Polymer Science: Ser A, 2004, 46(5), pp. 553-564.

2. Krentsel L.B., Makarova V.V., Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D., Markova G.D., Vasnev V.A., Kulichikhin V.G. "Interchain exchange and interdiffusion in blends of poly(ethylene terephthalate) and poly(ethylene naphthalate)” // Polymer Science, Ser. A, 2009, 51(11-12), pp. 1241-1248.

3. Chertovich A.V., Guseva D.V., Govorun E.N., Kudryavtsev Y.V., Litmanovich A.D. "Monte Carlo Simulation of the Polymer-Analogous Reaction in Polymer Blend" // Polymer Science, Ser. A, 2009, 51(8), pp. 957-964.

4. Kudryavtsev Y.V., Govorun E.N. ”Diffusion-induced growth of compositional heterogeneity in polymer blends containing random copolymers” // Eur. Phys. J. E, 2006, 21(3), pp. 263-276.  DOI 10.1140/epje/i2006-10067-3

5. Litmanovich A.D., Plate N.A., Kudryavtsev Ya.V., Govorun E.N. "Macromolecular Reaction in Polymer Blends: Interchain Effects" // Comptes rendus Chimie, Academie des Sciences, Paris 2006, 9(11-12), 1345-1350.

6. Kudryavtsev Y.V., Govorun E.N. "End-group interchain exchange reaction in polymer blends: evolution of the block weight distribution" // e-Polymers, 2003, no. 063.

7. Kudryavtsev Y.V., Govorun E.N. "Direct interchain exchange reaction in a polymer blend: evolution of the block weight distribution" // e-Polymers, 2002, no. 033.

8. Plate N.A., Litmanovich A.D., Kudryavtsev Y.V., Govorun E.N. "Interplay of chemical and physical factors in reacting polymer blends. Theoretical considerations" // Macromol. Symp., 2003, 191, pp. 11-20.

9. Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D. “A New Approach to the Description of a Polymer-Analogous Reaction and Interdiffusion in a Blend of Compartible Polymers” // Polymer Science: Ser. A., 2001, 43(11), pp. 1085-1089.

10. Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D. “Phase Separation in Polymer Blends: Growth of a Single Particle” // Polymer Science: Ser. A, 2000, 42(4), pp. 412-416.

11. Platé N.A., Litmanovich A.D., Yashin V.V., Kudryavtsev Y.V., Govorun E.N. "Modern problems of the theory of macromolecular reactions in polymer blends" // Macromol. Symp., 1997, 118, pp. 347-362.

12. Yashin V., Kudryavtsev Y., Govorun E., Litmanovich A. "Macromolecular reaction and interdiffusion in compatible polymer blend" // Macromol. Theory Simul., 1997, 6(1), pp. 247-269.