
High Elasticity
of Polymer Networks.



Polymer Networks.

All polymer networks except those who are in the glassy or 
partially crystalline states exhibit the property of  high elasticity,
 i.e., the ability to undergo large reversible deformations at 
relatively small applied stress.

Polymer network consists of long polymer
chains which are crosslinked with each 
other to form a giant three-dimensional
macromolecule.

High elasticity is the most specific property of polymer materials,
it is connected with the most fundamental features of ideal chains
considered in the previous lecture. In everyday life, highly
elastic polymer materials are called rubbers.



Molecular Nature of the 
High Elasticity.

Elasticity of rubbers is composed from the elastic responses of the 
chains crosslinked in the network sample. External stress changes 
the equilibrium end-to-end distance of a chain, and it thus adopts 
a less probable conformation. Therefore, the elasticity of rubbers
is of purely entropic nature.

Elastic response of the crystalline solids
is due to the change of the equilibrium 
interatomic distances under stress and 
therefore, the change in the internal
energy of the crystal. 



Typical Stress-Strain Curves.
for steel for rubbers

- the typical values of deformations         are much larger for rubber;
- the typical values of strain σ are much larger for steel;
- the typical values of the Young modulus is enormously larger 
for steel than for rubber (             Pa and               Pa, 
respectively);
- for steel linearity and reversibility are lost practically 
simultaneously, while for rubbers there is a very wide region of 
nonlinear reversible deformations;
- for steel there is a wide region of plastic deformations (between 
points B and C) which is all but absent for rubbers.
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А - the upper limit for 
stress-strain linearity,
В - the upper limit for 
the reversibility of 
deformations,
С - the fracture point.



Elasticity of a Single Ideal Chain.

The energy of an ideal chain equals zero.
Under the external stress an ideal chain elongates and adopts a less
probable conformation, its entropy therefore decreases.
Thus, the elasticity is of purely entropic nature.

According to Boltzmann the entropy takes form
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where k is the Boltzmann constant,               is the number of chain
conformtions compatible with the end-to-end distance   . Obviously, 
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Elasticity of a Single Ideal Chain.
Thus,
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Elasticity of a Single Polymer Chain.
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The chain elongates in the direction of the force and the elongation
is proportional to the force:            (the Hook law).f R
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The elastic modulus              is inversely proportional to the chain
length L, and is, therefore, small for long chains.
Long polymer chains are very susceptible to external actions.
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The elastic modulus is proportional to kT and, thus, increases with
the increase of temperature. This indicates the entropic nature of
high elasticity.

Limitations: the elongation should be small enough                for
             to remain Gaussian.
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Elasticity of Polymer Networks.

Consider a densely packed system of crosslinked chains. Assume
chains to be freely-jointed, with the segment length l, and total
contour length L. 
Let deformation along the three main axes x, y, z be     ,    ,    , 
respectively, i.e. the sample dimensions along the axes to be

xλ yλ zλ
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Affinity assumption: assume that the crosslink points are deformed
affinely, i.e., for any chain, if the initial coordinates of the end-to-
end vector are                         then these cordinates in the deformed 
state are                                                           .
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The Flory Theorem.

Until now, we have discussed only ideal chains where the links 
which are far from each other along the chain do not interact with 
each other. In the real chains it is, obviously, not the case. Therefore
a natural question arises: is it reasonable to employ the results 
obtained for ideal chains when calculating the elastic response of
a  real network? The answer to this question is given by the so-called

Flory theorem: the statistical properties of a polymer chain in the
melt are equivalent to those of ideal chains.

The explanation of this statement, which seems conterintuitive 
on the first glance, is as follows. In the melt each link of every chain
is always in a dense surrounding of the other links, and thus all 
directions around the link are completely equivalent. Indeed, for 
example, any approach to a link of the same chain is completely 
compensated by a withdrawal from the links of the foreign chains. 



Elasticity of Polymer Networks.
Thus, the change of the free energy of a chain between two 
crosslink points upon extension is
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For the whole sample the change of the free energy equals
F V fν∆ = ∆

where ν is the number of chains per unit volume, and V is the 
volume of the sample:
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and since 2 2 2 2
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Elasticity of Polymer Networks.

( )2 2 21 3
2 x y zF kT Vν λ λ λ∆ = + + −

Note that this result does not depend on the parameters L and l, which
describe the individual subchains. This indicates that the theory is
universal: it is not sensitive neither to the microscopic details of the
chain flexibility, nor to the values of their contour lengths and Kuhn
segments, nor to the particular form of the molecular mass distribution.

Therefore, we get the limits of applicaility of the theory: we consider 
polymer melts (i.e., there is no solvent in the system), the network is
loosely crosslinked and the extensions are not too large (i.e., even the
shortest subchains remain Gaussian). Moreover, we have neglected 
the topological restrictions due to the chain entanglements.

If we have another look at our calculations, we will see that the only
fact we needed to draw the main conclusion is the fact that the 
subchains are ideal and the Gaussian distribution              is valid
for them.
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The Uniaxial Extension.
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For rubbers the incompressibility condition is valid with high 
accuracy: their compression modulus is of the same order of 
magnitude as the compression modulus of the low-molecular 
materials (the all-around compression inevitably leads to the reduce
of the distance between the molecules), while the Young modulus 
is 5-6 orders of magnitude lower. 
Therefore, we can assume that
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And thus, taking the symmetry considerations into account
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Consider now the application of this formula to the case of uniaxial
extension (λ  = λ > 1) and compression (λ  = λ > 1) along the 
axis x.
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The Uniaxial Extension.
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Therefore, for the stress σ we get:
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Analogous formulae can be obtained for other kinds of deformation 
(shear, twist, etc).
Let us remind once again that the result obtained is universal, it
does not depend on the microscopic details of the chain structure.
The reason is that the entropic elasticity is caused by the large-scale
properties of polymer coils.

The Young modulus, thus, equals                .
For the loosely crosslinked networks it is small since
where υ is a volume of one monomer unit. This is exactly the 
reason of the high elasticity of rubbers.
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The Uniaxial Expansion.
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Other important conclusions:
The stress-strain curve is substantially non-linear:

If                        and temperature T increases, the value of λ 
should decrease. Thus, rubbers shrink upon heating, contrary to 
gases and crystalline materials. This property is connected to the 
entropic nature of rubber elasticity. Consequently, rubbers heat up 
under adiabatic extension. 

0constσ = >



Comparison with the Experiment.

0.4 1.2λ< < excelent agreement

1.2 5λ< < theory slightly overestimates stress at a given strain.
Reason: neglect of chain entanglemens.

5λ > theory significantly underestimates stress at a given 
strain.
Reason: finite extensibility of the chains.


