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Ideal Polymer Chain.
Ideal chain is a chain in which the links do not interact if they are 
not close long the chain. In other words, the so-called volume
interactions, i.e. interactions between distant links which come close
to each other due to the chain flexibility, are neglected.
Polymer chains behave as ideal ones at the so-called Θ-conditions,
(we will discuss this issue in more detail in one of the next
lectures).
Consider first a freely-jointed chain of N segments of length l:

From the symmetry considerations, it is obvious that the mean 
end-to-end distance of the chain R equals 0. The size of the coil is
therefore characterized by
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Freely-Jointed Chain.
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, where L is the contour length 
  of the chain
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Freely-Jointed Chain.

We see that:

- the conformation of the ideal chain is far from rectilinear;

- the ideal chain forms an entangled coil;

- the trajectory of the chain is equivalent to the trajectory of a 
  Brownian particle.

2 1/ 2 ,R R N l R L= 



Chain with a Fixed Valency Angle.

The aforementioned result for the typical coil size R ~ N   , 
is valid for an ideal chain with any flexibility mechanism.
Indeed, consider for example the model with fixed valency angle
γ between the segments of length b (assume for simplicity that 
u(ϕ) = 0):
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Chain with a Fixed Valency Angle. 
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Chain with a Fixed Valency Angle.  

The final result is, therefore:

Thus, within the model with a fixed valency angle we once again 
get an entangled coil: the typical size of the coil is once again 
proportional to the square root of the contour length of the chain. 
This result is a universal feature of the ideal chains regardless of
the particular flexibility model.

For                the value of R is larger than for the freely-jointed 
chain, while for              it is smaller.

o90γ <
o90γ >

2 1/ 2 1 cos
1 cos

R R N b γ
γ

+
=

−




Persistent Length of a Polymer Chain.

Consider once again the results we obtained for the model with 
a fixed valency angle. Let us rewrite the formula for the 
orientational correlations as follows:
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We introduced here the contour distance between two monomer
units of the chain s = kb. 
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In terms of the unit tangent vectors u this result can be rewritten 
as follows
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Persistent Length of a Polymer Chain.

( ) ( ) ( )0 expu u s s l= −
 

We derived the formula within a model
with a fixed valency angle. It is, however universal, i.e. valid
for any model of polymer flexibility: 
orientational correlations decay exponentially along the chain.

For s << l  the chain stays almost rectilinear, while at  s >> l 
the memory about the chain orientation is completely lost.
Therefore, one can divide an ideal chain into segments of length
l and assume them to be rectilinear and independent from each 
other. Thus,
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We get once again the same result: the size of the coil R is 
proportional to the square root of the chain length L.

~
The characteristic length of this decay l is called a persistent 
length of the chain.



Kuhn Segment of a Polymer Chain.

We know now that for idea chain 2R L
The Kuhn segment length l of a chain is defined as

2l R L= (for large L)

(i.e., the equality                  is valid by definition)2R Ll=

Both l and l are used in actual practice.
The Kuhn segment length l has an intrisic advantage of being 
easily measurable in the experiment, while 
an intrinsic advantage of the persistent length l is that it has a 
simple and transparent microscopic meaning.
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Kuhn Segment of a Polymer Chain.
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The ratio       is always close
to 2. In the limit of 
it exactly equals two.
This limit corresponds to
the persistent flexibility
mechanism.
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Indeed, let simultaneously 0, , 0N bγ → →∞ → in such a way that

We get in this way a filament whose flexibility is evenly distributed, 
i.e. a persistent chain. 
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Thus, for a persistent chain             . The meaning of the factor 2 is
quite simple: the correlations along the chain spread in two directions.
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Stiff Chains vs. Flexible Chains.

From the macroscopic point of view a polymer chain can be 
considered as a filament characterized by two lengths:
the typical chain diameter d and the Kuhn segment length l:

Thus, we have now a quantitative parameter that characterizes 
the chain stiffness: the length of the Kuhn segment l (or the 
persistent length l, which is proportional to l).~

Normally, the Kuhn segment length is larger than the typical size
of a monomer unit characterized either by d or by the contour 
length per one unit l .0



Stiff Chains vs. Flexible Chains.
The chains are called flexible if                , and stiff if                 .( )0l d l ( )0l d l

Most of the polymers with carbone backbone belong to the 
flexible class, e.g.:

0l l
Poly(ethylene oxide)       2.5  Poly(vinyl chloride)         4
Poly(ethylene)                 3.5    Poly(styrene)                    5
Poly(methyl metacrylate)  4    Poly(acrylamide)              6.5

0l l

To the stiff class belong double-stranded DNA, helical 
polypeptides, aromatic polyamides, etc. Here are several 
examples:

0l l
Cellulose diacetate        26  DNA (in double helix)         300
Poly(para-benzamide)  200          Poly(benzyl-L-glutamate)    500

0l l



Polymer Volume Fraction
inside an Ideal Coil. 

The typical size of an ideal coil is

( )1/ 2 ,R Ll

therefore, its volume V is of order
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Thus., the volume fraction of the polymer in a coil
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is extremely small for large L.



Gyration Radius of an Ideal Coil. 

Center of mass of a mechanical system (and polymer coil, in 
particular) is defined as

0
1 1

1 1N N

i i i
i i

r m r r
NM N= =

= =∑ ∑  

where the second equation is vaid for a homopolymer whose
monomer units all have a same mass.
Moreover, gyration radius of a coil is defined by
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The value of gyration radius can be measured directly in the light
scattering experiments, which will be discussed in one of the 
subsequent lections.
For an ideal coil one can show that
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Probability Distribution for the 
End-to-End Distance in the Ideal Coil.

The trajectory of a freely-jointed chain is analogous to that of a 
Brownian particle, the contribution of each segment is independent
of others. Therefore, according to the central limit theorem,
if N >> 1 the probability distribution              for the end-to-end
distance in the ideal chain takes the Gaussian form
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This is the reason why the ideal polymer coil is also often called
“Gaussian coil”.
Note, the normaliztion condition, and the fact that the dependences
of different coordinates are factorisable:
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Probability Distribution for the 
End-to-End Distance in the Ideal Coil.
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R undergoes extremely large 
fluctuations.

→

For other models with exponentially decaying orientational
correlations the Gaussian distribution remains valid, if one
rewrites it in the universal form:

( ) ( ) ( )
2 23/ 23/ 22 2
2 2

3 32 3 exp 2 3 exp
2 2N

R RP R Nl R
Nl R

π π
−−   

 = − ⇒ −      



This form does not depend of any microscopic details of a
model in question.


