Микрофазное расслоение в расплаве двойных гребнеобразных полимеров

Студент 5 курса Палюлин В.В. Научный руководитель: д.ф.-м.н. Потемкин И.И.

Микрофазное расслоение

Микрофазное расслоение: Классические устойчивые морфологии ламеллярная цилиндрическая

гироид

Микрофазное расслоение: Метастабильные и нестабильные морфологии

Перфорированная ламеллярная

"Двойной алмаз" (double diamond)

Основные подходы в изучении микрофазного расслоения: *режимы слабой и сильной*

сегрегации

Профиль плотности звеньев А:

Теория самосогласованного поля

M.W. Matsen, M. Schick, Phys. Rev. Lett., 72, 2660 (1994)

Экспериментальные данные

A.K. Khandpur, S. Foster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Amdal, K. Mortensen, *Macromolecules*, **28**,8796 (1995)

Создание массивов нанопроводов

Двойной гребнеобразный полимер

Основные предположения при теоретическом анализе задачи Слабая сегрегация Одинаковые размеры звеньев Взаимодействия звеньев описываются параметрами Хіі

Описание системы

После минимизации

$$Z = const \cdot \exp\left(-\frac{1}{2}\int \frac{d^3q}{(2\pi)^3} G(q)\rho_A(q)\rho_A(-q)\right)$$

 $\rho_A(q) = \int \rho(x) e^{-iqx} dx$

Проверка результата была проведена при помощи исследования частных случаев

Предельные случаи

При *n*=0 (диблок-сополимер) результат совпадает с результатом Лейблера, Leibler L., Theory of Microphase Separation in Block copolymers, *Macromolecules*, 13, 1602 (1980)
При *n*=1 (H-образная молекула) результат полученный отдельно для

частного случая и из общей формулы совпадают

■ G⁻¹ \rightarrow 0 при $N \rightarrow$ 0 (расплав гомополимера)

Учет объемных взаимодействий

Свободная энергия объемных взаимодействий

 $H = \chi_{AB}\rho_A(q)\rho_B(-q) + \chi_{AC}\rho_A(q)c(-q) + \chi_{BC}\rho_B(q)c(-q)$

Минимизированная энергия с учетом взаимодействий

$$Z = const \cdot \exp\left(-\frac{1}{2}\int \frac{d^3 q}{(2\pi)^3} G_{int}(q)\rho_A(q)\rho_A(-q)\right)$$

Точка спинодали: $(G_{int}(q^*))^{-1} = \frac{1}{G_{int}(q^*)} = \infty$

=> Можем найти $\chi_{c.} q^*$

Зависимость ₂ от количества пришитых диблок-сополимеров при *f=0.5*

Зависимость волнового вектора в точке спинодали от состава

Зависимость волнового вектора в точке спинодали от п

Кривая зависимости волнового вектора в однородной фазе при постоянных χ от n, f=0.25

Кривые спинодали при разных п

Выводы

расплава диблок-сополимеров

Выводы

• Исследование зависимости положения критической точки от п показало, что х уменьшается с ростом *n*, причем при больших $n (n \rightarrow \infty) \chi_c \sim 1/n$, а при $n, N \rightarrow \infty \chi_c \sim 1/nN$, что позволяет предполагать возможность возникновения микрофазового расслоения при росте числа сшитых диблок-сополимеров (сшивке химическими связими или физическими взаимодействиями)

Выводы

 Зависимость критического волнового вектора в точке спинодали от состава и кривые спинодали при разных *п* выглядят схожим образом

При малых *n* и несимметричном составе *f* ≠ 0.5 при постоянном χ волновой вектор в максимуме растет (т.е. период уменьшается), стремясь при больших *n* к константе