МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Физический Факультет

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

имени Д.В.Скобельцына

Фотоядерные реакции на естественной смеси изотопов рутения

Курсовая работа студента 2 курса 208 группы Чухнова К.Р.

Научный руководитель: старший научный сотрудник А.А.Кузнецов

Оглавление.

1.Введение	3
2. Методика проведения эксперимента	5
3.Методика обработки данных	7
4.Методика определения выходов10	
5.Результаты эксперимента	13
6.Заключение	15
7.Список используемой литературы	15

Введение :

Гигантский дипольный резонанс

Характерной особенностью сечения взаимодействия γ-квантов с атомными ядрами в области энергий выше порога отделения нуклонов является интенсивный максимум в сечении порога отделения нуклонов ,является интенсивный максимум в сечении поглощения– Гигантский Дипольный Резонанс,расположенный в области энергий Ем~15-20 МэВ. В области более высоких энергий γ-квантов , за Гигантским Дипольным Резонансом сечение гораздо меньше , чем в резонансной области и практически монотонно спадает до мезоного порога (Е_γ ~ 140 МэВ).

Рис. 1. Сечение поглощения у-квантов в области энергий 1-10³ МэВ

Основными величинами, характеризующими сечение фоторасщепления атомных ядер в области гигантского дипольного резонанса являются (рис.2) :

- положение максимума гигантского резонанса Ем
- ширина резонанса Г (ширина сечения поглощения на половине высоты) ~ 5 15МэВ
- Величина сечения в максимуме резонанса $\sim \sigma_m$
- интегральное сечение $\sigma_{int} = \int \sigma(E) dE$

2

Форма полного сечения поглощения в области энергий гигантского резонанса

хорошо описывается Лоренцианом : $\sigma(E) = \frac{\sigma_m}{1 + [(E^2 - E_m^2)^2 / E^2 \Gamma^2]}$

Положение максимума резонанса Ем зависит от массового числа ядра A и при увеличении массового числа уменьшается от 25МэВ для A ~12 до 10 МэВ для A ~ 200

Рис 2.1 Зависимость положения максимума ГДР от массового числа А

При энергия возбуждения в области гигантского резонанса ядро испускает один или два нуклона.Полное сечение поглощения может быть представлено в виде суммы сечений реакций:

$$\sigma_{tot} = \sigma(\gamma, n) + \sigma(\gamma, 2n) + \sigma(\gamma, p) + \sigma(\gamma, np)$$

Под фотонейтронным каналом (ү,хп) обычно подразумевают канал :

$$\sigma(\gamma, xn) = \sigma(\gamma, n) + \sigma(\gamma, 2n) + \sigma(\gamma, pn)$$

):
$$\sigma(\gamma, xp) = \sigma(\gamma, p) + \sigma(\gamma, np)$$

а под фотопротонным (ү,хр) :

Посколько при энергиях в области гигантского дипольного резонанса длина волны λ фотона существенно больше размера ядра, то используя длинноволновое приближение легко показать ,что вероятность поглощения электрических дипольных фотонов Е1 больше вероятности поглощения фотонов другой мультипольности.

Методика проведения эксперимента :

Эксперимент выполнен на пучке тормозных γ-квантов разрезного микротрона RTM-70 НИИЯФ МГУ (рис 3). Ускоритель позволяет ускорять электроны да максимальной энергии 70 МэВ и используется в качестве эффективного источника тормозного излучения с максимальной энергией γ-квантов в диапазоне энергий от 15 МэВ до 70 МэВ.

Рис 3. Разрезной микротрон импульсного действия с максимальной энергией пучка 70 МэВ

Рис 4. Схема экспериментальной установки : 1 — ускоритель,2- пучок электронов диаметром d_{el} = 5мм, тормозная мишень из вольфрама толщиной d_w = 2,5мм , 4- исследуемый образец

Расстояние между окном вывода электронного пучка и тормозной мишенью r=5мм

После облучения образец переносился на измерительную установку (гамма-спектрометр), на котором проводились измерения спектров *γ*-квантов продуктов фотоядерных реакций (рис.6)

Данный метод позволяет определить радиоактивные ядра с периодами полураспада от нескольких минут до нескольких лет.

Установка:

После облучения образец переносился на измерительную установку (гамма — спектрометр), на котором проводились измерения спектров *γ*-квантов продуктов фотоядерных реакций.

Рис.5 установка измерения у-спектров

Рис.6 НРGе детектор у-квантов в свинцовой защите

В эксперименте мишенью служил раствор в стеклянной кювете.После облучения Ru и Tc были химически разделены.

После облучения образец переносился на измерительную установку (гамма-спектрометр), на которой проводились измерения продуктов фотоядерных реакций. Данный метод позволяет изучать ядра с периодами полураспада от нескольких минут до нескольких лет.

Падая на вольфрамовую мишень, ускоренные электроны испускают тормозное излучение.

Энергия верхней границы спектра тормозных γ -квантов: $T = E_0 - m_e \cdot c^2$

*E*₀ – полная энергия электронов до взаимодействия с мишенью.

Рис 7. Тормозной спектр у-квантов для максимальной энергии электронов 67,7 МэВ

Методика обработки данных :

7

Диаграмма протекания реакции ^{104}Ru (γ ,n) ^{103}Ru

На рис. 5 показана диаграмма протекания реакции ⁹⁶ Ru (γ ,n) ⁹⁵ Ru. Реакция (γ , n), как и любая фотоядерная реакция на среднем и тяжёлом ядре происходит за характерное время . $\approx 10^{-19}c$. Конечное ядро может оказаться как в основном, так и в возбуждённых состояниях. Возбуждение обычно снимается путём испускания электрических дипольных (E1), электрических квадрупольных (E2) или магнитных дипольных (M1) γ -квантов за время $(10^{-9}-10^{-17})c$. И далее ядро ¹⁰³ Ru, находясь уже в основном состоянии, испытывает β -распад или е-захват. Этот распад происходит уже в различные состояния и характеризуется периодом полураспада 1,643 часа.

В эксперименте мишенью служил раствор в стеклянной кювете.После облучения Ru и Tc были химически разделены.В настоящей работе изучаются спектры *γ*-квантов Ru.

Образование каждого изотопа идентифицировалось по нескольким *γ*-линиям в спектрах *γ*-квантов.Отдельные *γ*-переходы совпадают по энергии или частично перекрываются.Поэтому идентификация образующихся продуктов реакции проводилась по двум характеристикам :

- по энергии ү-переходов;
- по периоду полураспада изотопа.

Большое количество измеренных спектров и широкий временной интервал измерений позволили для каждой реакции выбрать временной диапазон, в котором расчет период полураспада наиболее оптимален.

Нахождение периодов полураспада для каждого состояния проводилось путём сравнения площадей пиков в различные моменты времени.

Ниже показано сравнение экспериментально полученных периодов полураспада T_{1/2} (экс.) с приведенными для них погрешностями ∆T_{1/2} (экс.) и теоретических значений T_{1/2} (табл.)

Таблица 1

Сравнение экспериментальных T_{1/2} (экс.) и табличных T_{1/2} (табл.) значений периодов полураспада полученных в работе *γ*-пиков

E _γ (эκс.)	Е _γ (табл.)	Реакция	T _{1/2} (экс.)	ΔТ _{1/2} (экс.)	Т _{1/2} (табл.)
кэВ	кэВ		S	S	S
216.1	215.718	Ru98(γ,n)Ru97 Ru99(γ,2n)Ru97	250560	29376	250560
290.9	290.48	Ru96(y,n)Ru95	4320	360	5915
324.9	324.48	Ru98(γ,n)Ru97 Ru99(γ,2n)Ru97	224640	110592	250560
336.94	336.43	Ru96(y,n)Ru95	5760	180	5915
367.5	366.94	Ru96(y,2n)Ru94	3426	180	3108
497.5	497.08	Ru104(y,n)Ru103	406080	17280	3392064
627.3	626.77	Ru96(y,n)Ru95	5040	180	5915
662.1	662.2	Ru96(y,n)Ru95	5760	180	5915
766.2	765.79	Ru95(β+)Tc95	59400	1300	72000
806.8	806.32	Ru96(y,n)Ru95	5040	324	5915
871.6	888.86	Ru96(y,n)Ru95	6840	0	5915
1097.3	1096.76	Ru96(y,n)Ru95	7560	468	5915
1178.1	1178.66	Ru96(y,n)Ru95	7480	1548	5915
1765.2	1765.6	Ru94(β+)Tc94	15984	16	17568

Как видно из Таблицы 1 полученные экспериментальные данные согласуются с теоретическими в пределах погрешностей.

Определение выхода реакции. Один канал образования ядра.

Основной целью настоящей работы был подсчет выходов для различных изотопов Ru

 $Y(T, \varepsilon) = \alpha \int_0^T \sigma(E*, \varepsilon) W(E_{\gamma}, T) dE_{\gamma}$ - выход фотонуклона с энергией ε для тормозного спектра с верхней границей Т.

(число реакций данного типа, происходящих в образце в единицу времени)

 $\sigma(E^*, \varepsilon)$ — форма энергетического спектра; W(E_γ, T) — спектр тормозных γ-квантов

Ниже представлена методика их вычисления :

уравнения для описания изменения количества радиоактивных ядер во время и после облучения :

$$\frac{dNI}{dt} = -\lambda_1 \cdot N_1 + y_1$$

ИЛИ

$$dN_1 = -\lambda_1 \cdot N_1 \cdot dt + y_1 dt$$

. λ - постоянная распада

. у1 -выход реакции

График изменения количества радиоактивных ядер в процессе облучения и после него .t = 0 – начало облучения

- .t1 окончание облучения
- .t2 время начала измерения спектров
- .t3 время окончания измерения спектров

Выход реакции будет рассчитываться по формуле

$$y_1 = \frac{N_{10} \cdot \lambda_1}{e^{-\lambda_1 t_1} \cdot (e^{\lambda_1 t_1} - 1)} = \frac{N_{10} \cdot \lambda_1}{(1 - e^{-\lambda_1 t_1})}$$

Где

$$N_{10} = \frac{S}{k_1 \cdot (e^{-\lambda_1(t_2 - t_1)} - e^{-\lambda_1(t_3 - t_1)})}$$

- число ядер на момент окончания облучения ,где

- S площадь пика : $S = k_1 \int_{t_2-t_1}^{t_3-t_1} \lambda_1 N_1(t) dt = k_1 N_{10} (e^{-\lambda_1 \cdot (t_2-t_1)} e^{-\lambda_1 (t_3-t_1)})$
- $k_1 = E_{\gamma} * I_{\gamma}$ нормировочный коэффициент
- 1. Е_γ эффективность регистрации γ-кванта с определенной энергией детектором
- І_γ квантовый выход для данной γ-линии(вероятность испускания γ-кванта с данной энергией

Результаты :

В ходе работы были получены и обработаны экспериментальные данные,согласующиеся с теорией в пределах погрешности.

Были рассчитаны выходы различных изотопов по различным линиям энергии :

 $\blacksquare Ru96(\gamma, 2n)Ru94$

Реакция	T _{1/2}	y1	Δy_1
Ru96(y,2n)Ru94	3426	30,3	2

<u>Ru96(γ,n)Ru95</u>

В данной работе эта реакция наблюдалсь при в ү-пиках :

 E_{γ} = 290,9 кэВ ; 336,94 кэВ ; 627,3 кэВ ; 662,1 кэВ ; 806,8 кэВ ; 871,6 кэВ ; 1097,3 кэВ ; 1178,1 кэв

Реакция	T _{1/2}	y1	Δy_1
Ru96(y,n)Ru95	4320	1202,5	94
Ru96(y,n)Ru95	5760	1418,7	37,2
Ru96(y,n)Ru95	5040	1272,4	23,5
Ru96(y,n)Ru95	5760	2452	284
Ru96(y,n)Ru95	5040	1144,7	61,2
Ru96(y,n)Ru95	6840	1973,8	103,4
Ru96(y,n)Ru95	7560	727,9	16,5
Ru96(y,n)Ru95	7480	2173,8	80,4

Ru 98 (γ,n) Ru 97

В данной работе эта реакция наблюдалась при двух ү-пиках : $E_{\gamma} = 216,1 \, \kappa_{3} B \, u \, 324,9 \, \kappa_{3} B$

Реакция	T _{1/2}	y1	Δy_1
Ru98(γ,n)Ru97	250560	1092,3	11,2
Ru98(γ,n)Ru97	226640	918,1	43,1

Ru $104(\gamma,n)$ Ru 103

В данной работе эта реакция наблюдалась при $E_{\gamma} = 497,5 \kappa 3B$ Ввиду малого времени измерения γ -спектров и большого периода полураспада изотопа $T_{1/2}(^{103}Ru) \approx 39,35d$ полученное значение выхода разница с теоретическим и получить выход по данной линии не представляется возможным.

■ <u>Tc</u>

при обработке данных были обнаружены некоторые пики ,соответствующие изотопам Тс

Данные изотопы получаются путем β^+ - распада соответствующих изотопов Ru

Eγ	Реакция
766,2	$Ru95(\beta^+)$ Tc95
1765	Ru94(β ⁺)Tc94

Накопление и распад ${}^{95}Tc$,полученного путем β^+ - распада ${}^{95}Ru$

В таблице 2 приведены усредненные значения выходов реакции для каждого изотопа Ru,полученных в работе.

Таблица 2

Реакция	Образовавшийся изотоп	Выход реакции	Погрешность выходов	Выход реакции, нормированный на процентное содержание
Ru96 (y,2n)Ru95	Ru 94	30,3	2	5,5
Ru96(y,n)Ru95	Ru 95	1484,6	87,5	269
Ru98(y,n)Ru97	Ru 97	1005,2	27,2	534,7

Таблица выходов для различных изотопов

Заключение:

В результате работы были обработаны спектры остаточной активности при облучении естественной смеси изотопов рутения. Расшифрованы пики в спектрах остаточной активности. Получены новые экспериментальные данные по выходам изотопов

 ^{94}Ru , ^{95}Ru , ^{97}Ru , образующихся в результате фотоядерных реакций на естественной смеси изотопов рутения при энергии ускорителя электронов 67,7 МэВ. Проведено сравнение с результатами тех работ, где такие данные тоже имеются.

Список использованной литературы

- 1. В.В. Варламов, Б.С. Ишханов, И.М. Капитонов // Фотоядерные реакции. Современный статус экспериментальных данных, НИИЯФ МГУ, 2008.
- 2. Б.С. Ишханов, Б.М. Капитонов, А.А. Кузнецов, В.Н. Орлин, Хан Дон Ен // Фоторасщепление изотопов молибдена, ВМУ. Серия 3. Физика. Астрономия. 2014.
- 3. Чжо Чжо Тун, Диссертация на соискание учёной степени кандидата физикоматематических наук, МГУ, Москва, 2007.
- 4. The Lund/LBNL Nuclear data search: <u>http://nucleardata.nuclear.lu.se/toi/</u>
- 5. CDFE homepage: <u>http://cdfe.sinp.msu.ru/</u>
- 6. Б.С. Ишханов, И.М. Капитонов // Гигантский дипольный резонанс атомных ядер // Москва, 2008.
- J.Tickner, R.Bencardino, G.Roach // Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with endpoint energies in the range 11-14 MeV., Nucl. Instrum. Methods B 268, 2010
- 8. N.Beljinnyam,A.G.Belov,G.Ganbold,Yu.P.Gangrsky, Sh.Gerbish,O.D.Maslov,V.N.Shvetsov // Application of an electron linac of the IREN facility for multielemental photon activation analysis and production of radionuclides. JINR-E3-2008-26,203,2008