Fundamentals of Geometry

Oleg A. Belyaev
belyaev@polly.phys.msu.ru

February 28, 2007

Contents

I Classical Geometry 1
1 Absolute (Neutral) Geometry 3
1.1 Incidence 3
Hilbert's Axioms of Incidence 3
Consequences of Incidence Axioms 4
1.2 Betweenness and Order 7
Hilbert's Axioms of Betweenness and Order 7
Basic Properties of Betweenness Relation 8
Betweenness Properties for n Collinear Points 14
Every Open Interval Contains Infinitely Many Points 15
Further Properties of Open Intervals 15
Open Sets and Fundamental Topological Properties 18
Basic Properties of Rays 18
Linear Ordering on Rays 21
Ordering on Lines 22
Complementary Rays 25
Point Sets on Rays 26
Basic Properties of Half-Planes 27
Point Sets on Half-Planes 29
Complementary Half-Planes 30
Basic Properties of Angles 35
Definition and Basic Properties of Generalized Betweenness Relations 46
Further Properties of Generalized Betweenness Relations 52
Generalized Betweenness Relation for n Geometric Objects 53
Some Properties of Generalized Open Intervals 55
Basic Properties of Generalized Rays 56
Linear Ordering on Generalized Rays 58
Linear Ordering on Sets With Generalized Betweenness Relation 59
Complementary Generalized Rays 61
Sets of Geometric Objects on Generalized Rays 61
Betweenness Relation for Rays 63
Betweenness Relation For n Rays With Common Initial Point 64
Basic Properties of Angular Rays 65
Line Ordering on Angular Rays 66
Line Ordering on Pencils of Rays 67
Complementary Angular Rays 68
Sets of (Traditional) Rays on Angular Rays 68
Paths and Polygons: Basic Concepts 69
Simplicity and Related Properties 72
Some Properties of Triangles and Quadrilaterals 73
Basic Properties of Trapezoids and Parallelograms 78
Basic Properties of Half-Spaces 80
Point Sets in Half-Spaces 81
Complementary Half-Spaces 82
Basic Properties of Dihedral Angles 87
Betweenness Relation for Half-Planes 98
Betweenness Relation for n Half-Planes with Common Edge 102
Basic Properties of Dihedral Angular Rays 104
Linear Ordering on Dihedral Angular Rays 105
Line Ordering on Pencils of Half-Planes 106
Complementary Dihedral Angular Rays 107
Sets of Half-Planes on Dihedral Angular Rays 107
Properties of Convex Polygons 108
1.3 Congruence 110
Hilbert's Axioms of Congruence 110
Basic Properties of Congruence 111
Congruence of Triangles: SAS \& ASA 113
Congruence of Adjacent Supplementary and Vertical Angles 114
Right Angles and Orthogonality 117
Congruence and Betweenness for Intervals 118
Congruence and Betweenness for Angles 119
Congruence of Triangles:SSS 121
Congruence of Angles and Congruence of Paths as Equivalence Relations 121
Comparison of Intervals 123
Generalized Congruence 126
Comparison of Generalized Intervals 129
Comparison of Angles 131
Acute, Obtuse and Right Angles 133
Interior and Exterior Angles 134
Relations Between Intervals and Angles 136
SAA 141
Relations Between Intervals Divided into Congruent Parts 144
Midpoints 148
Triangle Medians, Bisectors, and Altitudes 151
Congruence and Parallelism 153
Right Bisectors of Intervals 157
Isometries on the Line 162
Isometries of Collinear Figures 166
General Notion of Symmetry 167
Comparison of Dihedral Angles 187
Acute, Obtuse and Right Dihedral Angles 189
1.4 Continuity, Measurement, and Coordinates 208
Axioms of Continuity 208
2 Elementary Euclidean Geometry 229
2.1 229
3 Elementary Hyperbolic (Lobachevskian) Geometry 235
3.1 235
4 Elementary Projective Geometry 249

Notation

Symbol Meaning

$\rightleftharpoons \quad$ The symbol on the left of \rightleftharpoons equals by definition the expression on the right of \rightleftharpoons.
$\stackrel{\text { def }}{\Longleftrightarrow} \quad$ The expression on the left of $\stackrel{\text { def }}{\Longleftrightarrow}$ equals by definition the expression on the right of $\stackrel{\text { def }}{\Longleftrightarrow}$.
$\mathbb{N} \quad$ The set of natural numbers (positive integers).
$\mathbb{N}^{0} \quad$ The set $\mathbb{N}^{0} \rightleftharpoons\{0\} \cup \mathbb{N}$ of nonnegative integers.
$\mathbb{N}_{n} \quad$ The set $\{1,2, \ldots, n\}$, where $n \in \mathbb{N}$.

Symbol	Meaning	Page	
A, B, C, \ldots	Capital Latin letters usually denote points.	3	
a, b, c, \ldots	Small Latin letters usually denote lines.	3	
$\alpha, \beta, \gamma, \ldots$	Small Greek letters usually denote planes.	3	
$\mathcal{C}^{P t}$	The class of all points.	3	
\mathcal{C}^{L}	The class of all lines.	3	
$\mathcal{C}^{\text {Pl }}$	The class of all planes.	3	
$a_{A B}$	Line drawn through A, B.	3	
$\alpha_{A B C}$	Plane incident with the non-collinear points A, B, C	3	
$\mathcal{P}_{a} \rightleftharpoons\{A \mid A \in a\}$	The set of all points ("contour") of the line a	3	
$\mathcal{P}_{\alpha} \rightleftharpoons\{A \mid A \in \alpha\}$	The set of all points ("contour") of the plane α	3	
$a \subset \alpha$	Line a lies on plane α, plane α goes through line a.	3	
$\mathcal{X} \subset \mathcal{P}_{a}$	The figure (geometric object) \mathcal{X} lies on line a.	3	
$\mathcal{X} \subset \mathcal{P}_{\alpha}$	The figure (geometric object) \mathcal{X} lies on plane α.	3	
$A \in a \cap b$	Line a meets line b in a point A	4	
$A \in a \cap \beta$	Line a meets plane β in a point A.	4	
$A \in a \cap \mathcal{B}$	Line a meets figure \mathcal{B} in a point A.	4	
$\mathcal{A} \in a \cap \mathcal{B}$	Figure \mathcal{A} meets figure \mathcal{B} in a point A.	4	
$\alpha_{a A}$	Plane drawn through line a and point A.	5	
$a \\| b$	line a is parallel to line b, i.e. a, b coplane and do not meet.	6	
$a b$	an abstract strip $a b$ is a pair of parallel lines a, b.	6	
$a \\| \alpha$	line a is parallel to plane α, i.e. a, α do not meet.	6	
$\alpha \\| \beta$	plane α is parallel to plane β, i.e. α, β do not meet.	6	
$\alpha_{a b}$	Plane containing lines a, b, whether parallel or having a common point.	7	
[$A B C$]	Point B lies between points A, C.	7	
$A B$	(Abstract) interval with ends A, B, i.e. the set $\{A, B\}$.	7	
($A B$)	Open interval with ends A, B, i.e. the set $\{C \mid[A C B]\}$.	7	
$[A B)$	Half-open interval with ends A, B, i.e. the set $(A B) \cup\{A, B\}$.	7	
($A B$]	Half-closed interval with ends A, B, i.e. the set $(A B) \cup\{B\}$.	7	
[AB]	Closed interval with ends A, B, i.e. the set $(A B) \cup\{A, B\}$.	7	
Int \mathcal{X}	Interior of the figure (point set) \mathcal{X}.	7	
ExtX	Exterior of the figure (point set) \mathcal{X}.	7	
$\left[A_{1} A_{2} \ldots A_{n} \ldots\right]$	Points $A_{1}, A_{2}, \ldots, A_{n}, \ldots$, where $n \in \mathbb{N}, n \geq 3$ are in order $\left[A_{1} A_{2} \ldots A_{n} \ldots\right]$.	15	
O_{A}	Ray through O emanating from A, i.e. $O_{A} \rightleftharpoons\left\{B \mid B \in a_{O A} \& B \neq O \& \neg[A O B]\right\}$.	18	
\bar{h}	The line containing the ray h.	18	
$O=\partial h$	The initial point of the ray h.	18	
$(A \prec B))_{O_{D}}, A \prec B$	Point A precedes the point B on the ray O_{D}, i.e. $(A \prec B)_{O_{D}} \stackrel{\text { def }}{\Longleftrightarrow}[O A B]$.	21	
$A \preceq B$	A either precedes B or coincides with it, i.e. $A \preceq B \stackrel{\text { def }}{\Longleftrightarrow}(A \prec B) \vee(A=B)$.	21	
$(A \prec B)_{a}, A \prec B$	Point A precedes point B on line a.	22	
$\left(A \prec{ }_{1} B\right)_{a}$	A precedes B in direct order on line a.	22	
$\left(A \prec{ }_{2} B\right)_{a}$	A precedes B in inverse order on line a.	22	
O_{A}^{c}	Ray, complementary to the ray O_{A}.	25	
$(A B a)_{\alpha}, A B a$	Points A, B lie (in plane α) on the same side of the line a.	27	
$(A a B)_{\alpha}, A a B$	Points A, B lie (in plane α) on opposite sides of the line a.	27	
a_{A}	Half-plane with the edge a and containing the point A.	27	
$(\mathcal{A B} a)_{\alpha}, \mathcal{A B} a$	Point sets (figures) \mathcal{A}, \mathcal{B} lie (in plane α) on the same side of the line a.	29	
$(\mathcal{A} a \mathcal{B})_{\alpha}, \mathcal{A} a \mathcal{B}$	Point sets (figures) \mathcal{A}, \mathcal{B} lie (in plane α) on opposite sides of the line a.	29	
$a_{\mathcal{A}}$	Half-plane with the edge a and containing the figure \mathcal{A}.	29	
a_{A}^{c}	Half-plane, complementary to the half-plane a_{A}.	30	
$\bar{\chi}$	the plane containing the half-plane χ.	32	
$\angle(h, k)_{O}, \angle(h, k)$	Angle with vertex O (usually written simply as $\angle(h, k)$).	35	
$\mathcal{P}_{\angle(h, k)}$	Set of points, or contour, of the angle $\angle(h, k)_{O}$, i.e. the set $h \cup\{O\} \cup k$.	36	
Int $\angle(h, k)$	Interior of the angle $\angle(h, k)$.	36	
$\operatorname{adj} \angle(h, k)$	Any angle, adjacent to $\angle(h, k)$.	38	
adjsp $\angle(h, k)$	Any of the two angles, adjacent supplementary to the angle . $\angle(h, k)$	39	
vert $\angle(h, k)$	Angle $\angle\left(h^{c}, k^{c}\right)$, vertical to the angle $\angle(h, k)$.	40	
[$\mathcal{A B C}$]	Geometric object \mathcal{B} lies between geometric objects \mathcal{A}, \mathcal{C}.	46	
$\mathcal{A B}$	Generalized (abstract) interval with ends \mathcal{A}, \mathcal{B}, i.e. the set $\{\mathcal{A}, \mathcal{B}\}$.	48	
$(\mathcal{A B})$	Generalized open interval with ends \mathcal{A}, \mathcal{B}, i.e. the set $\{\mathcal{C} \mid[\mathcal{A C B}]\}$.	48	
$[\mathcal{A B})$	Generalized half-open interval with ends \mathcal{A}, \mathcal{B}, i.e. the set $(\mathcal{A B}) \cup\{\mathcal{A}, \mathcal{B}\}$.	48	
($A B$]	Generalized half-closed interval with ends \mathcal{A}, \mathcal{B}, i.e. the set $(\mathcal{A B}) \cup\{\mathcal{B}\}$.	48	
$[\mathcal{A B}]$.	Generalized closed interval with ends \mathcal{A}, \mathcal{B}, i.e. the set $(\mathcal{A B}) \cup\{\mathcal{A}, \mathcal{B}\}$.	48	
$\mathcal{P}^{(O)}$	A ray pencil, i.e. a collection of rays emanating from the point O.	48	

Meaning

Ray k lies between rays h, l.
A straight angle (with sides h, h^{c}).
Geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}(, \ldots)$ are in order $\left[\mathcal{A}_{1} \mathcal{A}_{2} \ldots \mathcal{A}_{n}(\ldots)\right]$
Generalized ray drawn from \mathcal{O} through \mathcal{A}.
The geometric object \mathcal{A} precedes the geometric object \mathcal{B} on $\mathcal{O}_{\mathcal{D}}$.
For \mathcal{A}, \mathcal{B} on $\mathcal{O}_{\mathcal{D}}$ we let $\mathcal{A} \preceq \mathcal{B} \stackrel{\text { def }}{\Longleftrightarrow}(\mathcal{A} \prec \mathcal{B}) \vee(\mathcal{A}=\mathcal{B})$
\mathcal{A} precedes \mathcal{B} in \mathfrak{J} in the direct $(i=1)$ or inverse $(i=2)$ order.
For \mathcal{A}, \mathcal{B} in \mathfrak{J} we let $\mathcal{A} \preceq_{i} \mathcal{B} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \prec_{i} \mathcal{B}\right) \vee(\mathcal{A}=\mathcal{B})$
The generalized ray $\mathcal{O}_{\mathcal{A}}^{c}$, complementary in \mathfrak{J} to the generalized ray $\mathcal{O}_{\mathcal{A}}$.
Open angular interval.
Half-open angular interval.
Half-closed angular interval.
Closed angular interval.
The rays $h_{1}, h_{2}, \ldots, h_{n}(, \ldots)$ are in order $\left[h_{1} h_{2} \ldots h_{n}(\ldots)\right]$.
Angular ray emanating from the ray o and containing the ray h
The ray h precedes the ray k on the angular ray o_{m}.
For rays h, k on an angular ray o_{m} we let $h \preceq k \stackrel{\text { def }}{\Longleftrightarrow}(h \prec k) \vee(h=k)$
The ray h precedes the ray k in the direct $(i=1)$ or inverse $(i=2)$ order.
The ray, complementary to the angular ray o_{h}.
An ordered interval.
A (rectilinear) path $A_{0} A_{1} \ldots A_{n}$.
A polygon, i.e. the (rectilinear) path $A_{0} A_{1} \ldots A_{n} A_{n+1}$ with $A_{n+1}=A_{0}$.
A triangle with the vertices A, B, C.
A precedes B on the path $A_{1} A_{2} \ldots A_{n}$.
Angle between sides $A_{i-1} A_{i}, A_{i} A_{i+1}$ of the path/polygon $A_{0} A_{1} \ldots A_{n} A_{n+1}$.
Points A, B lie on the same side of the plane α.
Points A, B lie on opposite sides of the plane α.
Half-space, containing the point A, i.e. $\alpha_{A} \rightleftharpoons\{B \mid A B \alpha\}$.
Figures (point sets) \mathcal{A}, \mathcal{B} lie on the same side of the plane α.
Figures (point sets) \mathcal{A}, \mathcal{B} lie on opposite sides of the plane α.
Half-space, complementary to the half-space α_{A}.
A dihedral formed by the half-planes χ, κ with the common edge a.
The set of points of the dihedral angle $(\widehat{\chi \kappa})_{a}$, i.e. $\mathcal{P}_{(\widehat{\chi \kappa})} \rightleftharpoons \chi \cup \mathcal{P}_{a} \cup \kappa$.
Any dihedral angle, adjacent to the given dihedral angle $\widehat{\chi \kappa}$
Any of the two dihedral angles, adjacent supplementary to $\widehat{\chi \kappa}$.
The dihedral angle, vertical to $\widehat{\chi \kappa}$, i.e. $\operatorname{vert}(\widehat{\chi \kappa}) \rightleftharpoons \widehat{\chi^{c} \kappa^{c}}$.
A pencil of half-planes with the same edge a.
Half-plane a_{B} lies between the half-planes a_{A}, a_{C}.
Open dihedral angular interval formed by the half-planes a_{A}, a_{C}.
Half-open dihedral angular interval formed by the half-planes a_{A}, a_{C}.
Half-closed dihedral angular interval formed by the half-planes a_{A}, a_{C}.
Closed dihedral angular interval formed by the half-planes a_{A}, a_{C}.
The half-planes $\chi_{1}, \chi_{2}, \ldots, \chi_{n}(, \ldots)$ are in order $\left[\chi_{1} \chi_{2} \ldots \chi_{n}(\ldots)\right]$.
Dihedral angular ray emanating from o and containing χ.
The half-plane χ precedes the half-plane κ on the dihedral angular ray o_{μ}.
For half-planes χ, κ on o_{μ} we let $\chi \preceq \kappa \stackrel{\text { def }}{\Longleftrightarrow}(\chi \prec \kappa) \vee(\chi=\kappa)$.
The half-plane χ precedes κ in the direct $(i=1)$ or inverse $(i=2)$ order.
Dihedral angular ray, complementary to the dihedral angular ray o_{χ}.
The interval $A B$ is congruent to the interval $C D$
Angle $\angle(h, k)$ is congruent to the angle $\angle(l, m)$
The figure (point set) \mathcal{A} is congruent to the figure \mathcal{B}.
The path $A_{1} A_{2} \ldots A_{n}$ is weakly congruent to the path $B_{1} B_{2} \ldots B_{n}$.
The path $A_{1} A_{2} \ldots A_{n}$ is congruent to the path $B_{1} B_{2} \ldots B_{n}$.
The path $A_{1} A_{2} \ldots A_{n}$ is strongly congruent to the path $B_{1} B_{2} \ldots B_{n}$.
The line a is perpendicular to the line b.
Projection of the point A on the line a.
Projection of the interval $A B$ on the line a.
The interval $A^{\prime} B^{\prime}$ is shorter than or congruent to the interval $A B$.
The interval $A^{\prime} B^{\prime}$ is shorter than the interval $A B$.
The angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to the angle $\angle(h, k)$.
The angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than the angle $\angle(h, k)$.
Symbol Meaning
$\mathcal{A B} \equiv \mathcal{C D} \quad$ The generalized interval $\mathcal{A B}$ is congruent to the generalized interval $\mathcal{C D}$. 126
$\mathcal{A B} \geqq \mathcal{A}^{\prime} \mathcal{B}^{\prime} \quad$ The generalized interval $\mathcal{A B}$ is shorter than or congruent to the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$. 129
$\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \quad$ The generalized interval $\mathcal{A B}$ is shorter than the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$. 129
$E=\operatorname{mid} A B \quad$ The point E is the midpoint of the interval $A B$. 148

Part I

Classical Geometry

Chapter 1

Absolute (Neutral) Geometry

Preamble

Following Hilbert, in our treatment of neutral geometry (called also absolute geometry and composed of facts true in both Euclidean and Lobachevskian geometries) we define points, lines, and planes as mathematical objects with the property that these objects, as well as some objects formed from them, like angles and triangles, satisfy the axioms listed in sections 1 through 4 of this chapter. We shall denote points, lines and planes by capital Latin A, B, C, \ldots, small Latin a, b, c, \ldots, and small Greek $\alpha, \beta, \gamma, \ldots$ letters respectively, possibly with subscripts.

1.1 Incidence

Hilbert's Axioms of Incidence

Denote by $\mathcal{C}^{P t}, \mathcal{C}^{L}$ and $\mathcal{C}^{P l}$ the classes of all points, lines and planes respectively. ${ }^{1}$ Axioms A 1.1.1- A 1.1.8 define two relations $\in_{L} \subset \mathcal{C}^{P t} \times \mathcal{C}^{L}$ and $\in_{P l} \subset \mathcal{C}^{P t} \times \mathcal{C}^{P l}$. If $A \in_{L} a$ or $A \in_{P l} \alpha^{2}$, we say that A lies on, or incident with, a (respectively α), or that a (respectively α) goes through A. As there is no risk of confusion, when speaking of these two relations in the future, we will omit the clumsy subscripts L and $P l$.

We call a set of points (or, speaking more broadly, of any geometrical objects for which this relation is defined) lying on one line a (plane $\alpha)^{3}$, a collinear (coplanar) set. ${ }^{4}$ Points of a collinear (coplanar) set are said to colline of be collinear (coplane or be coplanar, respectively).

Denote $\mathcal{P}_{a} \rightleftharpoons\{A \mid A \in a\}$ and $\mathcal{P}_{\alpha} \rightleftharpoons\{A \mid A \in \alpha\}$ the set of all point of line a and plane α, respectively. We shall also sometimes refer to the set $\mathcal{P}_{a}\left(\mathcal{P}_{\alpha}\right)$ as the "contour of the line a " (respectively, "contour of the plane α ").

Axiom 1.1.1. Given distinct points A, B, there is at least one line a incident with both A and B.
Axiom 1.1.2. There is at most one such line.
We denote the line incident with the points A, B by $a_{A B}$.
Axiom 1.1.3. Each line has at least two points incident with it. There are at least three points not on the same line.
Axiom 1.1.4. If A, B, C are three distinct points not on the same line, there is at least one plane incident with all three. Each plane has at least one point on it.

Axiom 1.1.5. If A, B, C are three distinct points not on the same line, there is at most one plane incident with all three.

We denote the plane incident with the non-collinear points A, B, C by $\alpha_{A B C}$.
Axiom 1.1.6. If A, B are distinct points on a line l that lies on a plane α, then all points of lie on α.
If all points of the line a lie in the plane α, one writes $a \subset \alpha$ and says " a lies on α ", " α goes through $a . "$ In general, if for a geometric object, viewed as a point set \mathcal{X}, we have $\mathcal{X} \subset \mathcal{P}_{a}$ or $\mathcal{X} \subset \mathcal{P}_{\alpha}$, we say that the object \mathcal{X} lies on line a or in (on) plane α, respectively.

[^0]Axiom 1.1.7. If a point lies on two distinct planes, at least one other point lies on both planes.
Axiom 1.1.8. There are at least four points not on the same plane.
Obviously, axioms A 1.1.3, A 1.1.4 imply there exists at least one line and at least one plane.
If $A \in a(A \in \alpha)$ and $A \in b(A \in \beta)$, the lines (planes) $a(\alpha)$ and $b(\beta)$ are said to intersect or meet in their common point. We then write $A \in a \cap b^{5}$ Unless other definitions are explicitly given for a specific case, a point set \mathcal{A} is said to meet another point set \mathcal{B} (line a or plane alpha in their common points $A \in \mathcal{A} \cap \mathcal{B}(A \in \mathcal{A} \cap \alpha$ and $\mathcal{A} \cap \alpha$ respectively). ${ }^{6}$

If two (distinct) lines meet, they are said to form a cross.
If two or more point sets, lines or planes meet in a single point, they are said to concur, or be concurrent, in (at) that point.

A non-empty set of points is usually referred to as a geometric figure. A set of points all lying in one plane (on one line) is referred to as plane geometric figure (line figure).

Consequences of Incidence Axioms

Proposition 1.1.1.1. If A, C are distinct points and C is on $a_{A B}$ then $a_{A C}=a_{A B}$.
Proof. $A \in a_{A C} \& C \in a_{A C} \& A \in a_{A B} \& C \in a_{A B} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{A C}=a_{A B}$.
Corollary 1.1.1.2. If A, C are distinct points and C is on $a_{A B}$ then B is on $a_{A C}$.
Corollary 1.1.1.3. If A, B, C are distinct points and C is on $a_{A B}$ then $a_{A B}=a_{A C}=a_{B C}$.
Lemma 1.1.1.4. If $\left\{A_{i} \mid i \in \mathcal{U}\right\}$, is a set of points on one line a then $a=a_{A_{i} A_{j}}$ for all $i \neq j, i, j \in \mathcal{U}$.
Proof. $A_{i} \in a \& A_{j} \in a \Rightarrow a=a_{A_{i} A_{j}}$.
Corollary 1.1.1.5. If $\left\{A_{i} \mid i \in \mathcal{U}\right\}$, is a set of points on one line a then any of these points A_{k} lies on all lines $a_{A_{i} A_{j}}$, $i \neq j, i, j \in \mathcal{U}$.
Lemma 1.1.1.6. If the point E is not on the line $a_{A C}$, then all other points of the line $a_{A E}$ except A are not on $a_{A C}$.

Proof. Suppose $F \in a_{A E} \cap a_{A C}$ and $F \neq A$. Then by A 1.1.2 $a_{A E}=a_{A C}$, whence $E \in a_{A C}$ - a contradiction.
Lemma 1.1.1.7. If $A_{1}, A_{2}, \ldots, A_{n}(, \ldots), n \geq 3$, is a finite or (countably) infinite sequence of (distinct) points, and any three consecutive points $A_{i}, A_{i+1}, A_{i+2}, i=1,2, \ldots, n-2(, \ldots)$ of the sequence are collinear, then all points of the sequence lie on one line.

Proof. By induction. The case $n=3$ is trivial. If $A_{1}, A_{2}, \ldots, A_{n-1}$ are on one line a (induction!), then by C 1.1.1.5 $A_{i} \in a=a_{A_{n-2} A_{n-1}}, i=1,2, \ldots, n$.

Lemma 1.1.1.8. If two points of a collinear set lie in plane α then the line, containing the set, lies in plane α.
Proof. Immediately follows from A 1.1.6.
Theorem 1.1.1. Two distinct lines cannot meet in more than one point.
Proof. Let $A \neq B$ and $(A \in a \cap b) \&(B \in a \cap b)$. Then by A1.1.2 $a=b$.
Lemma 1.1.2.1. For every line there is a point not on it.
Proof. By A1.1.3 $\exists\{A, B, C\}$ such that $\neg \exists b(A \in b \& B \in b \& C \in b)$, whence $\exists P \in\{A, B, C\}$ such that $P \notin a$ (otherwise $A \in a \& B \in a \& C \in a$.)

Lemma 1.1.2.2. If A and B are on line a and C is not on line a then A, B, C are not on one line.
Proof. If $\exists B(A \in b \& B \in b \& C \in b)$, then $A \in b \& B \in b \& A \in a \& B \in a \stackrel{\text { A1.1.2 }}{\Longrightarrow} a=b \ni C$ - a contradiction.
Corollary 1.1.2.3. If C is not on line $a_{A B}$ then A, B, C are not on one line, B is not on $a_{A C}$, and A is not on $a_{B C}$. If A, B, C are not on one line, then C is not on line $a_{A B}, B$ is not on $a_{A C}$, and A is not on $a_{B C}$.
Lemma 1.1.2.4. If A and B are distinct points, there is a point C such that A, B, C are not on one line.
Proof. By L1.1.2.1 $\exists C \notin a_{A B}$. By C 1.1.2.3 $C \notin a_{A B} \Rightarrow \neg \exists b(A \in b \& B \in b \& C \in b)$.
Lemma 1.1.2.5. For every point A there are points B, C such that A, B, C are not on one line.

[^1]Proof. By A1.1.3 $\exists B \neq A$. By C1.1.2.3 $\exists C$ such that $\neg \exists b(A \in b \& B \in b \& C \in b)$.
Lemma 1.1.2.6. For every plane α there is a point P not on it.
Proof. By A1.1.8 $\exists\{A, B, C, D\}$ such that $\neg \exists \beta(A \in \beta \& B \in \beta \& C \in \beta \& D \in \beta)$, whence $\exists P \in\{A, B, C, D\}$ such that $P \notin \alpha$. (otherwise $(A \in \alpha \& B \in \alpha \& C \in \alpha \& D \in \alpha$).

Lemma 1.1.2.7. If three non-collinear points A, B, C are on plane α, and D is not on it, then A, B, C, D are not all on one plane.

Proof. If $\exists \beta(A \in \beta \& B \in \beta \& C \in \beta \& D \in \beta)$ then $(\neg \exists b(A \in b \& B \in b \& C \in b)) \&(A \in \alpha \& B \in \alpha \& C \in \alpha \& A \in$ $\beta \& B \in \beta \& C \in \beta) \stackrel{A 1.1 .5}{\Longrightarrow} \alpha=\beta \ni D$ - a contradiction.

Corollary 1.1.2.8. If D is not on plane $\alpha_{A B C}$, then A, B, C, D are not on one plane.
Lemma 1.1.2.9. If A, B, C are not on one line, there is a point D such that A, B, C, D are not on one plane.
Proof. $\neg \exists b(A \in b \& B \in b \& C \in b) \stackrel{A 1.1 .4}{\Longrightarrow} \exists \alpha_{A B C}$. By L1.1.2.6 $\exists D \notin \alpha_{A B C}$, whence by C1.1.2.8 $\neg \exists \beta(A \in \beta \& B \in$ $\beta \& C \in \beta \& D \in \beta$).

Lemma 1.1.2.10. For any two points A, B there are points C, D such that A, B, C, D are not on one plane.
Proof. By L1.1.2.4 $\exists C$ such that $\neg \exists b(A \in b \& B \in b \& C \in b)$, whence by By L1.1.2.9 $\exists D \neg \exists \beta(A \in \beta \& B \in \beta \& C \in$ $\beta \& D \in \beta$).

Lemma 1.1.2.11. For any point A there are points B, C, D such that A, B, C, D are not one plane.
Proof. By A1.1.3 $\exists B \neq A$. By L 1.1.2.10 $\exists\{C, D\}$ such that $\neg \exists \beta(A \in \beta \& B \in \beta \& C \in \beta \& D \in \beta)$.
Lemma 1.1.2.12. A point A not in plane α cannot lie on any line a in that plane.
Proof. $A \in a \& a \subset \alpha \Rightarrow A \in \alpha$ - a contradiction.
Theorem 1.1.2. Through a line and a point not on it, one and only one plane can be drawn.
Proof. Let $C \notin a$. By A1.1.3 $\exists\{A, B\}((A \in a) \&(B \in a))$. By L1.1.2.2 $\neg \exists b((A \in b) \&(B \in b) \&(C \in b))$, whence by A1.1.4 $\exists \alpha((A \in \alpha) \&(B \in \alpha) \&(C \in \alpha))$. By 1.1.6 $(A \in a) \&(B \in a) \&(A \in \alpha) \&(B \in \alpha) \Rightarrow a \subset \alpha$. To show uniqueness note that $(a \subset \alpha) \&(C \in \alpha) \&(a \subset \beta) \&(C \in \beta) \Rightarrow(A \in \alpha) \&(B \in \alpha) \&(C \in \alpha) \&(A \in \beta) \&(B \in$ $\beta) \&(C \in \beta) \Rightarrow \alpha=\beta$.

We shall denote the plane drawn through a line a and a point A by $\alpha_{a A}$.
Theorem 1.1.3. Through two lines with a common point, one and only one plane can be drawn.
Proof. Let $A=a \cap b$. By A1.1.3 $\exists B((B \in b) \&(B \neq A))$. By T1.1.1 $B \notin a$, whence by T1.1.2 $\exists \alpha((a \subset \alpha) \&(B \in \alpha))$. By A1.1.6 $(A \in \alpha) \&(B \in \alpha) \&(A \in b) \&(B \in b) \Rightarrow b \subset \alpha$. If there exists β such that $a \subset \beta \& b \subset \beta$ then $b \subset \beta \& B \in b \Rightarrow B \in \beta$ and $(a \subset \alpha \& B \in \alpha \& a \subset \beta \& B \in \beta) \stackrel{T 1.1 .2}{\Longrightarrow} \alpha=\beta$.

Theorem 1.1.4. A plane and a line not on it cannot have more than one common point.
Proof. If $A \neq B$ then by A1.1.6 $A \in a \& A \in \alpha \& B \in a \& B \in \alpha \Rightarrow a \subset \alpha$.
Theorem 1.1.5. Two distinct planes either do not have common points or there is a line containing all their common points.
Proof. Let $\alpha \cap \beta \neq \emptyset$. Then $\exists A(A \in \alpha \& A \in \beta) \stackrel{\text { A1.1.7 }}{\Longrightarrow} \exists B(B \neq A \& B \in \alpha \& B \in \beta)$ and by A1.1.6 $a_{A B} \subset \alpha \cap \beta$. If $C \notin a_{A B} \& C \in \alpha \cap \beta$ then $a_{A B} \subset \alpha \cap \beta \& C \notin a_{A B} \& C \in \alpha \cap \beta \stackrel{\text { T1.1.2 }}{\Longrightarrow} \alpha=\beta$ - a contradiction.

Lemma 1.1.6.1. A point A not in plane α cannot lie on any line a in that plane.
Proof. $A \in a \& a \subset \alpha \Rightarrow A \in \alpha-$ a contradiction.
Corollary 1.1.6.2. If points A, B are in plane α, and a point C is not in that plane, then C is not on $a_{A B}$.
Proof. $A \in \alpha \& B \in \alpha \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{A B} \subset \alpha . C \notin \alpha \& a_{A B} \subset \alpha \stackrel{\text { L1.1.6.1 }}{\Longrightarrow} C \notin a_{A B}$.
Corollary 1.1.6.3. If points A, B are in plane α, and a point C is not in that plane, then A, B, C are not on one line.

Proof. By C1.1.6.2 $C \notin a_{A B}$, whence by 1.1.2.3 A, B, C are not on one line.
Theorem 1.1.6. Every plane contains at least three non-collinear points.

Figure 1.1: Every plane contains at least three non-collinear points.

Proof. (See Fig. 1.1.) By A 1.1.4 $\exists A A \in \alpha$. By L 1.1.2.6 $\exists B B \notin \alpha$. By L1.1.2.1 $\exists D D \notin a_{A B}$, whence by T1.1.2 $\exists \beta\left(a_{A B} \subset \beta \& D \in \beta\right) . a_{A B} \subset \beta \Rightarrow A \in \beta \& B \in \beta . A \notin \alpha \& A \in \beta \Rightarrow \alpha \neq \beta . A \in \alpha \& A \in \beta \& \alpha \neq \beta \xrightarrow{A 1.1 .7} \exists C C \in$ $\alpha \cap \beta . A \in \beta \& C \in \beta \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{A C} \subset \beta$. By L 1.1.2.6 $\exists E E \notin \beta . E \notin \beta \& a_{A B} \subset \beta \stackrel{\text { L1.1.6.1 }}{\Longrightarrow} E \notin a_{A B} \xrightarrow{\mathrm{~T} 1.1 .2} \exists \gamma a_{A B} \subset$ $\gamma \& E \in \gamma \cdot a_{A B} \subset \gamma \Rightarrow A \in \gamma \& B \in \gamma . B \notin \alpha \& B \in \gamma \Rightarrow \alpha \neq \gamma . E \notin \beta \& E \in \gamma \Rightarrow \beta \neq \gamma . A \in \alpha \cap \gamma \xrightarrow{\text { A1.1.7 }} \exists F F \in$ $\alpha \cap \gamma . F \notin a_{A C}$, since otherwise $F \in a_{A C} \& a_{A C} \subset \beta \Rightarrow F \in \beta$, and $A \in \alpha \& F \in \alpha \& B \notin \alpha \stackrel{\text { C1.1.6.3 }}{\Longrightarrow} \neg \exists b(A \in b \& B \in$ $b \& F \in b)$, and $\neg \exists b(A \in b \& B \in b \& F \in b) \& A \in \beta \& B \in \beta \& F \in \beta \& A \in \gamma \& B \in \gamma \& \& F \in \gamma \stackrel{\text { A1.1.4 }}{\Longrightarrow} \beta=\gamma-\mathrm{a}$ contradiction. Finally, $F \notin a_{A C} \xrightarrow{\text { A1.1.4 }} \neg \exists b(A \in b \& C \in b \& F \in b)$.

Corollary 1.1.6.4. In any plane (at least) three distinct lines can be drawn.
Proof. Using T 1.1.6, take three non - collinear points A, B, C in plane α. Using A 1.1.1, draw lines $a_{A B}, a_{B C}, a_{A C}$. By A 1.1.6 they all line in α. Finally, they are all distinct in view of non-collinearity of A, B, C.

Corollary 1.1.6.5. Given a line a lying in a plane α, there is a point A lying in α outside a.
Proof. See T 1.1.6.
Corollary 1.1.6.6. In every plane α there is a line a and a point A lying in α outside a.
Proof. See T 1.1.6, A 1.1.1.
We say that a line a is parallel to a line b, or that lines a and b are parallel (the relation being obviously symmetric), and write $a \| b$, if a and b lie in one plane and do not meet.

A couple of parallel lines a, b will be referred to as an abstract strip (or simply a strip) $a b$.
A line a is said to be parallel to a plane α (the plane α is then said to be parallel to the line a) if they do not meet.

A plane α is said to be parallel to a plane β (or, which is equivalent, we say that the planes α, β are parallel, the relation being obviously symmetric) if $\alpha \cap \beta=\emptyset$.
Lemma 1.1.7.1. If lines $a_{A B}, a_{C D}$ are parallel, no three of the points A, B, C, D are collinear, and, consequently, none of them lies on the line formed by two other points in the set $\{A, B, C, D\}$.

Proof. In fact, collinearity of any three of the points A, B, C, D would imply that the lines $a_{A B}, a_{C D}$ meet.
Lemma 1.1.7.2. For any two given parallel lines there is exactly one plane containing both of them.
Proof. Let $a \| b$, where $a \subset \alpha, a \subset \beta, b \subset \alpha, b \subset \beta$. Using A 1.1.3, choose points $A_{1} \in a, A_{2} \subset a, B \in b$. Since $a \| b$, the points A_{1}, A_{2}, B are not collinear. Then $A_{1} \in \alpha \& A_{2} \in \alpha \& \& B \in \alpha \& A_{1} \in \beta \& A_{2} \in \beta \& B \in \beta \stackrel{\text { A1.1.5 }}{\Longrightarrow} \alpha=\beta$.

We shall denote a plane containing lines a, b, whether parallel or having a common point, by $\alpha_{a b}$.

Lemma 1.1.7.3. If lines a, b and b, c are parallel and points $A \in a, B \in b, C \in c$ are collinear, the lines a, b, c all lie in one plane.

Proof. That A, B, C are collinear means $\exists d(A \in d \& B \in d \& C \in d)$. We have $B \in d \cap \alpha_{b c} \& C \in d \cap \alpha_{b c} \stackrel{\text { A1.1. } 6}{\Longrightarrow} d \subset \alpha_{b c}$. $A \in a \& a \| b \Rightarrow A \notin b$. Finally, $A \in d \subset \alpha_{b c} \& A \in a \subset \alpha_{a b} \& b \subset \alpha_{a b} \& b \subset \alpha_{b c} \& A \notin b \stackrel{\mathrm{~T} 1.1 .2}{\Longrightarrow} \alpha_{a b}=\alpha_{b c}$.

Two lines a, b that cannot both be contained in a common plane are called skew lines. Obviously, skew lines are not parallel and do not meet (see T 1.1.3.)

Lemma 1.1.7.4. If four (distinct) points A, B, C, D are not coplanar, the lines $a_{A B}, a_{C D}$ are skew lines.

Proof. Indeed, if the lines $a_{A B}, a_{C D}$ were contained in a plane α, this would make the points A, B, C, D coplanar contrary to hypothesis.

Lemma 1.1.7.5. If a plane α not containing a point B contains both a line a and a point A lying outside a, the lines $a, a_{A B}$ are skew lines.

Proof. If both $a, a_{A B}$ were contained in a single plane, this would be the plane α, which would in this case contain B contrary to hypothesis.

1.2 Betweenness and Order

Hilbert's Axioms of Betweenness and Order

Axioms A 1.2.1-A 1.2.4 define a ternary relation "to lie between" or "to divide" $\rho \subset C^{P t} \times C^{P t} \times C^{P t}$. If points A, B, C are in this relation, we say that the point B lies between the points A and C and write this as $[A B C]$.

Axiom 1.2.1. If B lies between A and C, then A, C are distinct, A, B, C lie on one line, and B lies between C and A.

Axiom 1.2.2. For every two points A and C there is a point B such that C lies between A and B.

Axiom 1.2.3. If the point B lies between the points A and C, then the point C cannot lie between the points A and B.

For any two distinct points A, B define the following point sets:
An (abstract) interval $A B \rightleftharpoons\{A, B\}$;
An open interval $(A B) \rightleftharpoons\{X \mid[A X B]\} ;$
Half-open (half-closed) intervals $[A B) \rightleftharpoons\{A\} \cup(A B)$ and $(A B] \rightleftharpoons(A B) \cup\{B\} ;$
For definiteness, in the future we shall usually refer to point sets of the form $[A B)$ as the half-open intervals, and to those of the form $(A B]$ as the half-closed ones.

A closed interval, also called a line segment, $[A B] \rightleftharpoons(A B) \cup A B$.
Open, half-open (half - closed), and closed intervals thus defined will be collectively called interval - like sets. Abstract intervals and interval - like sets are also said to join their ends A, B.

An interval $A B$ is said to meet, or intersect, another interval $C D$ (generic point set \mathcal{A}^{7}, line a, plane α) in a point X if $X \in(A B) \cap(C D)(X \in(A B) \cap \mathcal{A}, X \in(A B) \cap a, X \in(A B) \cap \alpha$, respectively).

Given an abstract interval or any interval-like set \mathcal{X} with the ends A, B, we define its interior $\operatorname{Int} \mathcal{X}$ by Int $\mathcal{X} \rightleftharpoons$ $(A B)$, and its exterior $\operatorname{Ext} \mathcal{X}$ by $\operatorname{Ext} \mathcal{X} \rightleftharpoons \mathcal{P}_{a_{A B}} \backslash[A B]=\left\{C \mid C \in a_{A B} \& C \notin[A B]\right\}$. If some point C lies in the interior (exterior) of \mathcal{X}, we say that it lies inside (outside) $\mathcal{X} .{ }^{8}$

Axiom 1.2.4 (Pasch). Let a be a line in a plane $\alpha_{A B C}$, not containing any of the points A, B, C. Then if a meets $A B$, it also meets either $A C$ or $B C$.

[^2]

Figure 1.2: Construction for the proofs of L 1.2.1.6 and C 1.2.1.7

Basic Properties of Betweenness Relation

The axiom A 1.2.3 can be augmented by the following statement.
Proposition 1.2.1.1. If B lies between A and C, then A, B, C are distinct points. ${ }^{9}$
Proof. $[A B C] \stackrel{\text { A1.2.3 }}{\Longrightarrow} \neg[A B C] .[A B C] \& \neg[A C B] \& B=C \Rightarrow[A B B] \& \neg[A B B]$ - a contradiction.
Proposition 1.2.1.2. If a point B lies between points A and C, then the point A cannot lie between the points B and C. ${ }^{10}$

Proof. $[A B C] \stackrel{\mathrm{A} 1.2 .1}{\Longrightarrow}[C B A] \stackrel{\mathrm{A} 1.2 .3}{\Longrightarrow} \neg[C A B] \stackrel{\mathrm{A} 1.2 .1}{\Longrightarrow} \neg[B A C]$.
Lemma 1.2.1.3. If a point B lies between points A and C, then B is on line $a_{A C}, C$ is on $a_{A B}, A$ is on $a_{B C}$, and the lines $a_{A B}, a_{A C}, a_{B C}$ are equal.

Proof. $[A B C] \stackrel{\text { A1.2.1 }}{\Longrightarrow} A \neq B \neq C \& \exists a(A \in a \& B \in a \& C \in a)$. By C 1.1.1.5 $B \in a_{A C} \& C \in a_{A B} \& A \in a_{B C}$. Since $A \neq B \neq C$, by C 1.1.1.3 $a_{A B}=a_{A C}=a_{B C}$.

Lemma 1.2.1.4. If a point B lies between points A and C, then the point C lies outside $A B$ (i.e., C lies in the set $\operatorname{Ext} A B$), and the point A lies outside $B C$ (i.e., $A \in \operatorname{Ext} B C$).

Proof. Follows immediately from A 1.2.1, A 1.2.3, L 1.2.1.3.
Lemma 1.2.1.5. A line a, not containing at least one of the ends of the interval $A B$, cannot meet the line $a_{A B}$ in more than one point.

Proof. If $C \in a \cap a_{A B}$ and $D \in a \cap a_{A B}$, where $D \neq C$, then by A 1.1.2 $a=a_{A B} \Rightarrow A \in a \& B \in a$.
Lemma 1.2.1.6. Let A, B, C be three points on one line a; the point A lies on this line outside the interval $B C$, and the point D is not on a. If a line b, drawn through the point A, meets one of the intervals $B D, C D$, it also meets the other.

Proof. (See Fig. 1.2.) Let $A \in b$ and suppose that $\exists E([B E D] \& E \in b)$. Then $[B E D] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} E \in a_{B D} \& D \in a_{B E}$. $A \in a=a_{B C} \subset \alpha_{B C D} \& E \in a_{B D} \subset \alpha_{B C D} \& A \in b \& E \in b \stackrel{\text { A1.1.6 }}{\Longrightarrow} b \subset \alpha_{B C D} . E \notin a$, since otherwise $B \in a \& E \in$ $a \Rightarrow a=a_{B E} \ni D$ - a contradiction. $B \notin b \& C \notin b$, because $(B \in b \vee C \in b) \& A \in b \Rightarrow a=b \ni E . D \notin b$, otherwise $D \in b \& E \in b \Rightarrow B \in b=a_{D E}$. By A 1.2.4 $\exists F(F \in b \&[C F D])$, because if $\exists H(H \in b \&[B H C])$ then $a \neq b \& H \in a=a B C \& H \in b \& A \in a \& A \in b \stackrel{\text { T1.1.1 }}{\Longrightarrow} H=A$, whence $[B A C]$ - a contradiction. Replacing E with F and B with C, we find that $\exists F(F \in b \&[C F D]) \Rightarrow \exists E([B E D] \& E \in b)$.

Corollary 1.2.1.7. Let a point B lie between points A and C, and D be a point not on $a_{A C}$. If a line b,drawn through the point A, meets one of the intervals $B D, C D$, it also meets the other. Furthermore, if b meets $B D$ in E and $C D$ in F, the point E lies between the points A, F.

Proof. (See Fig. 1.2.) Since by A 1.2.1, A $1.2 .3[A B C] \Rightarrow A \neq B \neq C \& \exists a(A \in a \& B \in a \& C \in a) \& \neg[B A C]$, the first statement follows from L 1.2.1.6. To prove the rest note that $D \notin a_{A C} \stackrel{\text { C1.1.2.3 }}{\Longrightarrow} A \notin a_{C D},[D F C] \& A \notin$ $a_{C D} \& D \in a_{D B} \& B \in a_{D B} \&[C B A] \stackrel{\text { above }}{\Longrightarrow} \exists E^{\prime} E^{\prime} \in a_{D B} \cap(A F)$, and $E^{\prime} \in a_{D B} \cap a_{A F} \& E \in a_{B D} \cap a_{A F} \& B \notin$ $a_{A F}=b \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} E^{\prime}=E .{ }^{11}$

[^3]

Figure 1.3: For any two distinct points A and C there is a point D between them.

Corollary 1.2.1.8. Let A, C be two distinct points and a point E is not on line $a_{A C}$. Then any point F such that $[A E F]$ or $[A F E]$ or $[E A F]$, is also not on $a_{A C}$.

Proof. Observe that $[A E F] \vee[A F E] \vee[E A F] \stackrel{\text { A1.2.1 }}{\Longrightarrow} A \neq F \& F \in a_{A E}$ and then use L 1.1.1.6.
Lemma 1.2.1.9. If half-open/half-closed intervals $[A B),(B C]$ have common points, the points A, B, C colline. ${ }^{12}$
Proof. $[A B) \cap(B C] \neq \emptyset \Rightarrow \exists D D \in[A B) \cap(B C] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} D \in a_{A B} \cap a_{B C} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{A B}=a_{B C}$, whence the result.
Corollary 1.2.1.10. If lines a, b and b, c are parallel and a point $B \in b$ lies between points $A \in a, C \in c$, the lines a, b, c all lie in one plane.

Proof. Follows immediately from L 1.2.1.3, L 1.1.7.3.
Corollary 1.2.1.11. Any plane containing two points contains all points lying between them.
Proof. Follows immediately from A 1.1.6, L 1.2.1.3.

Corollary 1.2.1.12. Suppose points A, B, C are not collinear and a line a has common points with (at least) two of the open intervals $(A B),(B C),(A C)$. Then these common points are distinct and the line a does not contain any of the points A, B, C.

Proof. Let, for definiteness, $F \in a \cap(A B), D \in a \cap(A C)$. Obviously, $F \neq D$, for otherwise we would have (see L 1.2.1.3, A 1.1.2) $F=D \in a_{A B} \cap a_{A C} \Rightarrow a_{A B}=a_{A C}$ - a contradiction. Also, we have $A \notin a, B \notin a, C \notin a$, because otherwise ${ }^{13}(A \in a \vee B \in a \vee C \in a) \& F \in a \& D \in a \& F \in a_{A B} \& D \in a_{A C} \Rightarrow a=a_{A B} \vee a=a_{A C} \Rightarrow F \in$ $a_{A B} \cap a_{A C} \vee F \in a_{A B} \cap a_{A C} \Rightarrow a_{A B}=a_{A C}$ - again a contradiction.

Corollary 1.2.1.13. If a point A lies in a plane α and a point B lies outside α, then any other point $C \neq A$ of the line $a_{A B}$ lies outside the plane $\alpha .^{14}$

Proof. $B \notin \alpha \Rightarrow a_{A B} \notin \alpha$. Hence by T 1.1.2 $a_{A B}$ and α concur at A (that is, A is the only common point of the line $a_{A B}$ and the plane α).

Theorem 1.2.1. For any two distinct points A and C there is a point D between them.
Proof. (See Fig. 1.3.) By L 1.1.2.1 $\exists E E \notin a_{A C}$. By A 1.2.2 $\exists F[A E F]$. From C 1.2.1.8 $F \notin a_{A C}$, and therefore $C \notin a_{A F}$ by L 1.1.1.6. Since $F \neq C$, by A $1.2 .2 \exists G[F C G] . C \notin a_{A F} \&[F C G] \stackrel{\text { C1.2.1.8 }}{\Longrightarrow} G \notin a_{A F} \xrightarrow{\text { C1.1.2.3 }} G \neq E \& A \notin$ $a_{F G} \cdot[A E F] \stackrel{\text { A1.2.1 }}{\Longrightarrow}[F E A] \& A \neq F$. Denote $b=a_{G E}$. As $[F C G], A \notin a_{F G}, G \in b$, and $E \in b \&[F E A]$, by C 1.2.1.7 $\exists D(D \in b \&[A C D])$.

[^4]

Figure 1.4: Among any three collinear points A, B, C one always lies between the others.

Figure 1.5: If B is on $(A C)$, and C is on $(B D)$, then both B and C lie on $(A D)$.

Theorem 1.2.2. Among any three collinear points A, B, C one always lies between the others. ${ }^{15}$
Proof. (See Fig. 1.4.) Suppose $A \in a, B \in a, C \in a$, and $\neg[B A C], \neg[A C B]$. By L 1.1.2.1 $\exists D D \notin a$. By A 1.2 .2 $\exists G[B D G]$. From L 1.2.1.8 $F \notin a_{B C}=a=a_{A C}$, and therefore $C \notin a_{B G}, A \notin a_{C G}$ by C 1.1.2.3. $(B \neq G$ by A 1.2.1). $D \in a_{A D} \& A \in a_{A D} \& D \in a_{C D} \& C \in a_{C D} \&[B D G] \stackrel{C 1.2 .1 .7}{\Longrightarrow} \exists E\left(E \in a_{A D} \&[C E G]\right) \& \exists F\left(F \in a_{C D} \&[A F G]\right)$. $[C E G] \& A \notin a_{C G} \& C \in a_{C D} \& F \in a_{C D} \&[A F G] \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists I\left(I \in a_{C D} \&[A I E]\right) . E \in a_{A D} \& A \neq E \xrightarrow{\mathrm{C} 1.1 .1 .2}$ $D \in a_{A E} . \quad D \notin a_{A C}=a \stackrel{C 1.12 .3}{\Longrightarrow} A \notin a_{C D} . A \notin a_{C D} \& D \in a_{A E} \&[A I E] \& D \in a_{C D} \& I \in a_{C D} \xrightarrow{\mathrm{~L} 1.2 .1 .5} I=D$, whence $[A D E] \stackrel{\text { A1.2.2 }}{\Longrightarrow}[E D A] .[C E G] \& A \notin a_{C G} \& G \in a_{G D} \& D \in a_{G D} \&[A D E] \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists J\left(J \in a_{G D} \&[A J C]\right)$. $B \in a_{G D} \& J \in a_{G D} \&[A J C] \& B \in a_{B C}=a \& C \notin a_{G D}=a_{B D} \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} J=B$, whence $[A B C]$.

Lemma 1.2.3.1. If a point B lies on an open interval $(A C)$, and the point C lies on an open interval $(B D)$, then both B and C lie on the open interval $(A D)$, that is, $[A B C] \&[B C D] \Rightarrow[A B D] \&[A C D]$.

Proof. (See Fig. 1.5) $D \neq A$, because $[A B C] \stackrel{\text { A1.2.3 }}{\Longrightarrow} \neg[B C A]$. By A 1.2.1, L 1.1.1.7 $\exists a(A \in a \& B \in a \& C \in a \& D \in$ $a)$. By L 1.1.2.1 $\exists E E \notin a$. By A 1.2.2 $\exists F[E C F]$. From C 1.2.1.8 $F \notin a_{A C}$, and therefore $A \notin a_{C F}$ by C 1.1.2.3. $[A B C] \& F \notin a_{A C} \& A \in a_{A E} \&[C E F] \& A \notin A_{C F} \& F \in a_{B F} \& B \in a_{B F} \exists G\left(G \in a_{B F} \&[A G E]\right) \& \exists I(I \in$ $\left.a_{A E} \&[B I F]\right) . E \notin a_{A B} \stackrel{\text { C1.1.2.3 }}{\Longrightarrow} B \notin a_{A E} . B \notin a_{A E} \&[B I F] \& I \in a_{A E} \& G \in a_{A E} \& G \in a_{B F} \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} I=G$. From $F \notin a_{B D}$ by C 1.1.2.3 $D \notin a_{B F}$ and by C 1.2.1.8 $G \notin a_{B D}$, whence $G \neq D$. $[B C D] \& F \notin a_{B D} \& D \in a_{G D} \& G \in$ $a_{G D} \&[B G F] \& D \notin a_{B F} \& F \in a_{C F} \& C \in a_{C F} \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists H\left(H \in a_{G D} \&[C H F]\right) \& \exists J\left(J \in a_{C F} \&[G J D]\right)$. $G \notin a_{C D}=a_{B D} \stackrel{\mathrm{C} 1.1 .2 .3}{\Longrightarrow} C \in a_{G D} . \quad C \notin a_{G D} \& J \in a_{G D} \& H \in a_{G D} \& J \in a_{C F} \&[C H F] \stackrel{\mathrm{L} 1.2 .1 .5}{\Longrightarrow} J=H$. $E \notin a_{A C}=a_{A D} \stackrel{C 1.12 .3}{\Longrightarrow} D \notin a_{A E} \& A \notin a_{E C} .[A G E] \& D \notin a_{A E} \& E \in a_{E C} \& H \in a_{E C} \&[G H D] \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists K(K \in$ $\left.a_{E C} \&[A K D]\right) . A \notin a_{E C} \& K \in a_{E C} \& C \in a_{E C} \& C \in a_{A D} \&[A K D] \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} K=C$. Using the result just proven, we also obtain $[A B C] \&[B C D] \stackrel{\text { A1.2.2 }}{\Longrightarrow}[D C B] \&[C B A] \stackrel{\text { above }}{\Longrightarrow}[D B A] \stackrel{\text { A1.2.2 }}{\Longrightarrow}[A B D]$.

[^5]

Figure 1.6: If B lies on $(A C)$, and C lies on $(A D)$, then B also lies on $(A D)$, and C lies on $(B D)$. The converse is also true.

Lemma 1.2.3.2. If a point B lies on an open interval $(A C)$, and the point C lies on an open interval $(A D)$, then B also lies on the open interval $(A D)$, and C lies on the open interval $(B D)$. The converse is also true. That is, $[A B C] \&[A C D] \Leftrightarrow[B C D] \&[A B D] .{ }^{16}$

Proof. (See Fig. 1.6.) By A 1.2.1, L 1.1.1.7 $\exists a(A \in a \& B \in a \& C \in a \& D \in a)$. By L 1.1.2.1 $\exists G G \notin a$. By A 1.2.2 $\exists F[B G F]$. From C 1.2.1.8 $F \notin a_{A B}=a_{A C}=a_{B C}=a_{B D}$, and therefore by C 1.1.2.3 $A \notin a_{B F}, A \notin a_{F C}$, $D \notin a_{F C}, D \notin a_{B F} . \neg \exists M\left(M \in a_{F C} \&[A M C]\right)$, because $[B G F] \& A \notin a_{B F} \& F \in a_{F C} \& M \in a_{F C} \&[A M G] \xrightarrow{\mathrm{C} 1.2 .1 .7}$ $\exists L\left(L \in a_{F C} \&[A L B]\right)$ and therefore $A \notin a_{F C} \& L \in a_{F C} \& C \in a_{F C} \&[A L B] \& C \in a_{A B} \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} L=C$, whence $[A C B] \stackrel{\text { A1.2.3 }}{\Longrightarrow} \neg[A B C]-$ a contradiction. $B \in a_{A D} \subset \alpha_{A G D} \& G \in \alpha_{A G D} \& F \in a_{B G} \& C \in a_{A D} \subset \alpha_{A G D} \stackrel{\text { A1.1. } 6}{\Longrightarrow} a_{F C} \subset$ $\alpha_{A G D} . C \in a_{F C} \&[A C D] \& \neg \exists M\left(M \in a_{F C} \&[A M G]\right) \stackrel{A 1.2 .4}{\Longrightarrow} \exists H\left(H \in a_{F C} \&[G H D]\right) .[B G F] \& D \notin a_{B F} \& F \in$ $a_{C F} \& C \in a_{C F} \&[G H D] \stackrel{C 1.2 .1 .7}{\Longrightarrow} \exists I\left(I \in a_{C F} \&[B I D]\right) . D \notin a_{C F} \& I \in a_{C F} \& C \in a_{C F} \&[B I D] \& C \in a_{B D} \xrightarrow{\text { L1.2.1.5 }}$ $I=C$, whence $[B C D] .[A B C] \&[B C D] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}[A B D]$. To prove the converse, note that $[A B D] \&[B C D] \xrightarrow{\text { A1.2.1 }}$ $[D C B] \&[D B A] \stackrel{\text { above }}{\Longrightarrow}[D C A] \&[C B A] \stackrel{\text { A1.2.1 }}{\Longrightarrow}[A C D] \&[A B C]$.

If $[C D] \subset(A B)$, we say that the interval $C D$ lies inside the interval $A B$.
Theorem 1.2.3. Suppose each of the points C, D lie between points A and B. If a point M lies between C and D, it also lies between A and B. In other words, if points C, D lie between points A and B, the open interval ($C D$) lies inside the open interval $(A B)$.

Proof. (See Fig. 1.8) By A 1.2.1, L 1.1.1.7 $\exists a(A \in a \& B \in a \& C \in a \& D \in a)$, and all points A, B, C, D are distinct, whence by T 1.2.2 $[A C D] \vee[A D C] \vee[C A D]$. But $\neg[C A D]$, because otherwise $[C A D] \&[A D B] \xrightarrow{\text { L1.2.3. } 1}[C A B] \xrightarrow{\text { A1.2.3 }}$ $\neg[A C B]$ - a contradiction. Finally, $[A C D] \&[C M D] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[A M D]$ and $[A M D] \&[A D B] \xrightarrow{\mathrm{L} 1.2 .3 .2}[A M B]$.

Lemma 1.2.3.3. If points A, B, D do not colline, a point F lies between A, B and the point C lies between B, D, there is a point E, which lies between C, A as well as between D, F.

Proof. (See Fig. 1.7.) $[A F B] \stackrel{\text { A1.2. } 1}{\Longrightarrow} A \neq F \neq B . F \neq B \xrightarrow{\text { A1.2.2 }} \exists H[F B H] .[A F H] \&[F B H] \xrightarrow{\text { L1.2.3.1 }}[A F H] \&[A B H]$. Denote for the duration of this proof $a \rightleftharpoons a_{F B}=a_{A B}=a_{A F}=a_{F H}=\ldots$ (see L 1.2.1.3). By C 1.1.2.3 that A, B, D do not colline implies $D \notin a$. We have $[F B H] \& D \notin a \&[B C D] \stackrel{\mathrm{C} 1.2 .1 .7}{\Longrightarrow} \exists R[F R D] \&[H C R]$. $[A F H] \& D \notin a \&[F R D] \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists L[A L D] \&[H R L] .[H C R] \&[H R L] \xrightarrow{\text { L1.2.3.2 }}[H C L] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} H \in a_{C L}$. Observe that $B \in a \&[B C D] \& D \notin a \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} C \notin a$, and therefore $C \notin a_{A L},{ }^{17}$ because otherwise $C \in a_{A L} \& L \neq C \xrightarrow{\text { C1.1.1.2 }} A \in$ $a_{L C}$ and $A \in a_{L C} \& H \in a_{L C} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{L C}=a_{A H}=a \Rightarrow C \in a-$ a contradiction. $C \notin a_{A L} \&[A L D] \&[L R C] \xrightarrow{\text { C1.2.1.7 }}$ $\exists E[A E C] \&[D R E] . \quad D \notin a=a_{A B} \xrightarrow{\mathrm{C1.1.2.3}} A \notin a_{B D} . A \notin a_{B D} \&[B C D] \&[C E A] \stackrel{\mathrm{C} 1.2 .1 .7}{\Longrightarrow} \exists X([B X A] \&[D E X])$. $[D R E] \&[D E X] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[D R X] .[F R D] \&[D R X] \&[B X A] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} F \in a_{D R} \& X \in a_{D R} \& X \in a . D \notin a \Rightarrow a_{D R} \neq a$. Finally, $F \in a \cap a_{D R} \& X \in a \cap a_{D R} \& a \neq a_{D R} \stackrel{\text { A1.1.2 }}{\Longrightarrow} X=F$.

Proposition 1.2.3.4. If two (distinct) points E, F lie on an open interval $(A B)$ (i.e., between points A, B), then either E lies between A and F or F lies between A and E.

[^6]

Figure 1.7: If A, B, D do not colline, F lies between A, B, and C lies between B, D, there is a point E with [CEA] and $[D E F]$.

Figure 1.8: If C, D lie between A and $B,(C D)$ lies inside $(A B)$.
18

Proof. By A 1.2.1 $[A E B] \&[A F B] \Rightarrow A \neq E \& A \neq F$, and the points A, B, E, F are collinear (by L 1.2.1.3 $\left.E \in a_{A B}, F \in a_{A B}\right)$. Also, by hypothesis, $E \neq F$. Therefore, by T $1.2 .2[E A F] \vee[A E F] \vee[A F E]$. But $[E A F] \& E \in$ $(A B) \& F \in(A B) \stackrel{\text { T1.2.3 }}{\Longrightarrow} A \in(A B)$, which is absurd as it contradicts A 1.2.1. We are left with $[A E F] \vee[A F E]$, q.e.d.

Lemma 1.2.3.5. If both ends of an interval $C D$ lie on a closed interval $[A B]$, the open interval $(C D)$ is included in the open interval $(A B)$.

Proof. Follows immediately from L 1.2.3.2, T 1.3.3.

Theorem 1.2.4. If a point C lies between points A and B, then none of the points of the open interval $(A C)$ lie on the open interval ($C B$).

Proof. (See Fig. 1.9) $[A M C] \&[A C B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[M C B] \stackrel{\text { A1.2.3 }}{\Longrightarrow} \neg[C M B]$.

Theorem 1.2.5. If a point C lies between points A and B, then any point of the open interval $(A B)$, distinct from C, lies either on the open interval $(A C)$ or on the open interval $(C B) .{ }^{19}$

Proof. By A 1.2.1, L 1.1.1.7 $\exists a(A \in a \& B \in a \& C \in a \& M \in a)$, whence by T $1.2 .2[C B M] \vee[C M B] \vee$ $[M C B]$. But $\neg[C B M]$, because otherwise $[A C B] \&[C B M] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}[A B M] \stackrel{\text { A1.2.3 }}{\Rightarrow} \neg[A M B]$ - a contradiction. Finally, $[A M B] \&[M C B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A M C]$.

Figure 1.9: If C lies between A and B, then $(A C)$ has no common points with $(C B)$. Any point of $(A B)$ lies either on $(A C)$ or $(C B)$.

Figure 1.10: If C lies between A and B, any point M of $A B, M \neq C$, lies either on $(A C)$ or on $C B$.
1)

Figure 1.11: If O divides A and C, A and D, it does not divide C and D.

Proposition 1.2.5.1. If a point O divides points A and C, as well as A and D, then it does not divide C and D.
Proof. (See Fig. 1.10) By L 1.1.1.7, A 1.2.1 $[A O C] \&[A O D] \Rightarrow A \neq C \& A \neq D \& \exists a(A \in a \& C \in a \& D \in a)$. If also $C \neq D^{20}$, from T 1.2.2 $[C A D] \vee[A C D] \vee[A D C]$. But $\neg[C A D]$, because $[C A D] \&[A O D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[C A O] \xrightarrow{\text { A1.2.3 }} \neg[A O C]$. Hence by T 1.2.4 $([A C D] \vee[A D C]) \&[A O C] \&[A O D] \Rightarrow \neg[C O D]$.

Proposition 1.2.5.2. If two points or both ends of an interval-like set lie on line a, this set lies on line a.
Proposition 1.2.5.3. If two points or both ends of an interval-like set with the ends A, B lie in plane α, then the line $a_{A B}$, and, in particular, the set itself, lies in plane α.

Theorem 1.2.6. Let either

- A, B, C be three collinear points, at least one of them not on line a, or
- A, B, C be three non-collinear point, and a is an arbitrary line.

Then the line a cannot meet all of the open intervals $(A B),(B C)$, and $(A C)$.
Proof. (See Fig. 1.2) Suppose $\exists L(L \in a \&[A L B]) \& \exists M(M \in a \&[B M C]) \& \exists N(N \in a \&[A N C])$. If $A \notin a$, then also $B \notin a \& C \notin a$, because otherwise by A 1.1.2, L 1.2.1.3 $((B \in a \vee C \in a) \&[A L B] \&[A N C]) \Rightarrow\left(a=a_{A B}\right) \vee(a=$ $\left.a_{A C}\right) \Rightarrow A \in a$.

1) Let $\exists g(A \in g \& B \in g \& C \in g)$. Then by T $1.2 .2[A C B] \vee[A B C] \vee[C A B]$. Suppose that $[A C B] .{ }^{21}$. Then $A \notin a \& A \in g \Rightarrow a \neq g,[A L B] \&[B M C] \&[A N C] \stackrel{L 1.2 .1 .3}{\Longrightarrow} L \in a_{A B}=g \& M \in a_{B C}=g \& N \in a_{A C}=g$, and therefore $L \in a \cap g \& M \in a \cap g \& N \in a \cap g \& a \neq g \stackrel{\text { T1.1.1 }}{\Longrightarrow} L=M=N$, whence [ALC]\&[CLB], which contradicts $[A C B]$ by T 1.1.1.
2) Now suppose $\neg \exists g(A \in g \& B \in g \& C \in g)$, and therefore $a_{A B} \neq a_{B C} \neq a_{A C} . L \neq M$, because $[A L B] \&[B L C] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} L \in a_{A B} \& L \in a_{B C} \Rightarrow a_{A B}=a_{B C}, L \neq N$, because $[A L B] \&[A L C] \xrightarrow{\text { L1.2.1.3 }} L \in$ $a_{A B} \& L \in a_{A C} \Rightarrow a_{A B}=a_{A C}$, and $M \neq N$, because $[B L C] \&[A L C] \stackrel{\mathrm{L} 1.2 .1 .3}{\Longrightarrow} L \in a_{B C} \& L \in a_{A C} \Rightarrow a_{B C}=a_{A C}$. $L \neq M \neq N \& L \in a \& M \in a \& N \in a \stackrel{\text { T1.2.2 }}{\Longrightarrow}[L M N] \vee[L N M] \vee[M L N]$. Suppose $[L M N] .{ }^{22}$ Then $[A N C] \& a_{A B} \neq$

[^7]

Figure 1.12: Every point, except the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers
$a_{A C} \Rightarrow N \notin a_{A B},[A L B] \& N \notin a_{A B} \& B \in a_{B C} \& C \in a_{B C} \&[L M N] \stackrel{\mathrm{C} 1.2 .1 .7}{\Longrightarrow} \exists D\left(D \in a_{B C} \&[A D N]\right)$ and $A \notin a_{B C} \& C \in a_{B C} \& D \in \& a_{B C} \& C \in a_{A N} \&[A D N] \stackrel{\text { L1.2.1.5 }}{\Longrightarrow} C=D$, whence $[A C N] \stackrel{\text { A1.2.3 }}{ } \neg[A N C]$-a contradiction.

Denote $\mathbb{N}_{n} \rightleftharpoons\{1,2, \ldots n\}$

Betweenness Properties for n Collinear Points

Lemma 1.2.7.1. Suppose $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$, where $n \in \mathbb{N}_{n}(n \in \mathbb{N})$ is a finite (infinite) sequence of points with the property that a point lies between two other points if its number has an intermediate value between the numbers of these points. Then if a point of the sequence lies between two other points of the same sequence, its number has an intermediate value between the numbers of these two points. That is, $\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, $\left.\mathbb{N}\right)((i<j<$ $\left.\left.k) \vee(k<j<i) \Rightarrow\left[A_{i} A_{j} A_{k}\right]\right)\right) \Rightarrow\left(\forall i, j, k \in \mathbb{N}_{n}(\right.$ respectively, $\mathbb{N})\left(\left[A_{i} A_{j} A_{k}\right] \Rightarrow(i<j<k) \vee(k<j<i)\right)$.
Proof. Suppose $\left[A_{i} A_{j} A_{k}\right]$. Then $i<j<k$ or $k<j<i$, because $(j<i<k) \vee(k<i<j) \vee(i<k<j) \vee(j<k<$ $i) \Rightarrow\left[A_{j} A_{i} A_{k}\right] \vee\left[A_{j} A_{k} A_{i}\right] \stackrel{\text { A1.2.3 }}{\Longrightarrow} \neg\left[A_{i} A_{j} A_{k}\right]$ - a contradiction.

Let an infinite (finite) sequence of points A_{i}, where $i \in \mathbb{N}\left(i \in \mathbb{N}_{n}, n \geq 4\right)$, be numbered in such a way that, except for the first and (in the finite case) the last, every point lies between the two points with adjacent (in \mathbb{N}) numbers. (See Fig. 1.12.) Then:
Lemma 1.2.7.2. - All these points are on one line, and all lines $a_{A_{i} A_{j}}$ (where $i, j \in \mathbb{N}_{n}, i \neq j$) are equal.
Proof. Follows from A 1.2.1, L 1.1.1.7.
Lemma 1.2.7.3. - A point lies between two other points iff its number has an intermediate value between the numbers of these two points;

Proof. By induction. $\left[A_{1} A_{2} A_{3}\right] \&\left[A_{2} A_{3} A_{4}\right] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}\left[A_{1} A_{2} A_{4}\right] \&\left[A_{1} A_{3} A_{4}\right](n=4) .\left[A_{i} A_{n-2} A_{n-1}\right] \&\left[A_{n-2} A_{n-1} A_{n}\right]$ $\xrightarrow{\mathrm{L} 1.2 .3 .1}\left[A_{i} A_{n-1} A_{n}\right],\left[A_{i} A_{j} A_{n-1}\right] \&\left[A_{j} A_{n-1} A_{n}\right] \xrightarrow{\mathrm{L} 1.2 .3 .2}\left[A_{i} A_{j} A_{n}\right]$.

Lemma 1.2.7.4. - An arbitrary point cannot lie on more than one of the open intervals formed by pairs of points with adjacent numbers;
Proof. Suppose $\left[A_{i} B A_{i+1}\right],\left[A_{j} B A_{j+1}\right], i<j$. By L 1.2.7.3 $\left[A_{i} A_{i+1} A_{j+1}\right]$, whence $\left[A_{i} B A_{i+1}\right] \&\left[A_{i} A_{i+1} A_{j+1}\right] \xrightarrow{\mathrm{T} 1.2 .4}$ $\neg\left[A_{i+1} B A_{j+1}\right] \Rightarrow j \neq i+1$. But if $j>i+1$ we have $\left[A_{i+1} A_{j} A_{j+1}\right] \&\left[A_{j} B A_{j+1}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{i+1} B A_{j+1}\right]$ - a contradiction.

Lemma 1.2.7.5. - In the case of a finite sequence, a point which lies between the end (the first and the last) points of the sequence, and does not coincide with the other points of the sequence, lies on at least one of the open intervals, formed by pairs of points of the sequence with adjacent numbers.

Proof. By induction. For $n=3$ see T 1.2.5. $\left[A_{1} B A_{n}\right] \& B \notin\left\{A_{2}, \ldots, A_{n-1}\right\} \stackrel{\mathrm{T} 1.2 .5}{\Longrightarrow}\left(\left[A_{1} B A_{n-1}\right] \vee\left[A_{n-1} B A_{n}\right]\right) \& B \notin$ $\left\{A_{2}, \ldots, A_{n-2}\right\} \Rightarrow\left(\exists i i \in \mathbb{N}_{n-2} \&\left[A_{i} B A_{i+1}\right) \vee\left[A_{n-1} B A_{n}\right] \Rightarrow \exists i i \in \mathbb{N}_{n-1} \&\left[A_{i} B A_{i+1}\right]\right.$.

Lemma 1.2.7.6. - All of the open intervals $\left(A_{i} A_{i+1}\right)$, where $i=1,2, \ldots, n-1$, lie in the open interval $\left(A_{1} A_{n}\right)$, i.e. $\forall i \in\{1,2, \ldots, n-1\}\left(A_{i} A_{i+1}\right) \subset\left(A_{1} A_{n}\right)$.

Proof. By induction on n. For $n=4\left(\left[A_{1} M A_{2}\right] \vee\left[A_{2} M A_{3}\right]\right) \&\left[A_{1} A_{2} A_{3}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{1} M A_{3}\right]$.
If $M \in\left(A_{i} A_{i+1}\right), i \in\{1,2, \ldots, n-2\}$, then by induction hypothesis $M \in\left(A_{1} A_{n-1}\right)$, by L 1.2.7.3 [$\left.A_{1} A_{n-1} A_{n}\right]$, therefore $\left[A_{1} M A_{n-1}\right] \&\left[A_{1} A_{n-1} A_{n}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[A_{1} M A_{n}\right]$; if $M \in\left(A_{n-1} A_{n}\right)$ then $\left[A_{1} A_{n-1} A_{n}\right] \&\left[A_{n-1} M A_{n}\right] \xrightarrow{\mathrm{L} 1.2 .3 .2}$ $\left[A_{1} M A_{n}\right]$.

Lemma 1.2.7.7. - The half-open interval $\left[A_{1} A_{n}\right)$ is the disjoint union of the half-open intervals $\left[A_{i} A_{i+1}\right)$, where $i=1,2, \ldots, n-1$:
$\left[A_{1} A_{n}\right)=\bigcup_{i=1}^{n-1}\left[A_{i} A_{i+1}\right)$.
Also,
The half-closed interval $\left(A_{1} A_{n}\right]$ is a disjoint union of the half-closed intervals $\left(A_{i} A_{i+1}\right]$, where $i=1,2, \ldots, n-1$: $\left(A_{1} A_{n}\right]=\bigcup_{i=1}^{n-1}\left(A_{i} A_{i+1}\right]$.

Figure 1.13: Any open interval contains infinitely many points.

Proof. Use L 1.2.7.5, L 1.2.7.3, L 1.2.7.6.
This lemma gives justification for the following definition:
If a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers, we say that the interval $A_{1} A_{n}$ is divided into $n-1$ intervals $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ (by the points $A_{2}, A_{3}, \ldots A_{n-1}$).

If a finite (infinite) sequence of points $A_{i}, i \in \mathbb{N}_{n}, n \geq 3(n \in \mathbb{N})$ on one line has the property that a point lies between two other points iff its number has an intermediate value between the numbers of these two points, we say that the points $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$ are in order $\left[A_{1} A_{2} \ldots A_{n}(\ldots)\right]$. Note that for $n=3$ three points A_{1}, A_{2}, A_{3} are in order $\left[A_{1} A_{2} A_{3}\right]$ iff A_{2} divides A_{1} and A_{3}, so our notation $\left[A_{1} A_{2} A_{3}\right]$ is consistent.

Theorem 1.2.7. Any finite sequence of distinct points $A_{i}, i \in \mathbb{N}_{n}, n \geq 4$ on one line can be renumbered in such a way that a point lies between two other points iff its number has an intermediate value between the numbers of these two points. In other words, any finite sequence of points $A_{i}, i \in \mathbb{N}_{n}, n \geq 4$ on a line can be put in order $\left[A_{1} A_{2} \ldots A_{n}\right]$.

By a renumbering of a finite sequence of points $A_{i}, i \in \mathbb{N}_{n}, n \geq 4$ we mean a bijective mapping (permutation) $\sigma: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$, which induces a bijective transformation $\sigma_{S}:\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \rightarrow\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of the set of points of the sequence by $A_{i} \mapsto A_{\sigma(i)}, i \in \mathbb{N}_{n}$.

The theorem then asserts that for any finite (infinite) sequence of points $A_{i}, i \in \mathbb{N}_{n}, n \geq 4$ on one line there is a bijective mapping (permutation) of renumbering $\sigma: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$ such that $\forall i, j, k \in \mathbb{N}_{n}(i<j<k) \vee(k<j<i) \Leftrightarrow$ $\left[A_{\sigma(i)} A_{\sigma(j)} A_{\sigma(k)}\right] .{ }^{23}$

Proof. Let $\left[A_{l} A_{m} A_{n}\right], l \neq m \neq n, l \in \mathbb{N}_{4}, m \in \mathbb{N}_{4}, n \in \mathbb{N}_{4}$ (see T 1.2.2). If $p \in \mathbb{N}_{4} \& p \neq l \& p \neq m \& p \neq n$, then by T 1.2.2, T 1.2.5 $\left[A_{p} A_{l} A_{n}\right] \vee\left[A_{l} A_{p} A_{m}\right] \vee\left[A_{m} A_{p} A_{n}\right] \vee\left[A_{l} A_{p} A_{n}\right] \vee\left[A_{l} A_{n} A_{p}\right]$.

Define the values of the function σ by
for $\left[A_{p} A_{l} A_{n}\right]$ let $\sigma(1)=p, \sigma(2)=l, \sigma(3)=m, \sigma(4)=n$;
for $\left[A_{l} A_{p} A_{m}\right]$ let $\sigma(1)=l, \sigma(2)=p, \sigma(3)=m, \sigma(4)=n$;
for $\left[A_{m} A_{p} A_{n}\right]$ let $\sigma(1)=l, \sigma(2)=m, \sigma(3)=p, \sigma(4)=n$;
for $\left[A_{l} A_{n} A_{p}\right]$ let $\sigma(1)=l, \sigma(2)=m, \sigma(3)=n, \sigma(4)=p$.
Now suppose that $\exists \tau \tau: \mathbb{N}_{n-1} \rightarrow \mathbb{N}_{n-1}$ such that $\forall i, j, k \in \mathbb{N}_{n-1}(i<j<k) \vee(k<j<i) \Leftrightarrow\left[A_{\tau(i)} A_{\tau(j)} A_{\tau(k)}\right]$.
By T 1.2.2, L 1.2.7.5 $\left[A_{n} A_{\tau(1)} A_{\tau(n-1)}\right] \vee\left[A_{\tau(1)} A_{\tau(n-1)} A_{\tau(n)}\right] \vee \exists i i \in \mathbb{N}_{n-2} \&\left[A_{\tau(i)} A_{n} A_{\tau(n+1)}\right]$.
The values of σ are now given
for $\left[A_{n} A_{\sigma(1)} A_{\sigma(n-1)}\right]$ by $\sigma(1)=n$ and $\sigma(i+1)=\tau(i)$, where $i \in \mathbb{N}_{n-1}$;
for $\left[A_{\sigma(i)} A_{\sigma(n-1)} A_{\sigma(n)}\right]$ by $\sigma(i)=\tau(i)$, where $i \in \mathbb{N}_{n-1}$, and $\sigma(n)=n$;
for $\left[A_{\sigma(i)} A_{n} A_{\sigma(i+1)}\right]$ by $\sigma(j)=\tau(j)$, where $j \in\{1,2, \ldots, i\}, \sigma(i+1)=n$, and $\sigma(j+1)=\tau(j)$, where $j \in$ $\{i+1, i+2, \ldots, n-1\}$. See L 1.2.7.3.

Every Open Interval Contains Infinitely Many Points

Lemma 1.2.8.1. For any finite set of points $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of an open interval $(A B)$ there is a point C on $(A B)$ not in that set.

Proof. (See Fig. 1.13.) Using T 1.2.7, put the points of the set $\left\{A, A_{1}, A_{2}, \ldots, A_{n}, B\right\}$ in order $\left[A, A_{1}, A_{2}, \ldots, A_{n}, B\right]$. By T $1.2 .2 \exists C\left[A_{1} C A_{2}\right]$. By T $1.2 .3[A C B]$ and $C \neq A_{1}, A_{2}, \ldots, A_{n}$, because by A $1.2 .3\left[A_{1} C A_{2}\right] \Rightarrow \neg\left[A_{1} A_{2} C\right]$ and by A 1.2.1 $C \neq A_{1}, A_{2}$.

Theorem 1.2.8. Every open interval contains an infinite number of points.
Corollary 1.2.8.2. Any interval-like set contains infinitely many points.

Further Properties of Open Intervals

Lemma 1.2.9.1. Let A_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, be a finite sequence of points with the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Then if $i \leq j \leq l, i \leq k \leq l, i, j, k, l \in \mathbb{N}_{n}(i, j, k, l \in \mathbb{N})$, the open interval $\left(A_{j} A_{k}\right)$ is included in the open interval $\left(A_{i} A_{l}\right) .{ }^{24}$ Furthermore, if $i<j<k<l$ and $B \in\left(A_{j} A_{k}\right)$ then $\left[A_{i} A_{j} B\right]$. ${ }^{25}$

[^8]Proof. Assume $j<k .{ }^{26}$ Then $i=j \& k=l \Rightarrow\left(A_{i} A_{l}\right)=\left(A_{j} A_{k}\right) ; i=j \& k<l \Rightarrow\left[A_{i} A_{k} A_{l}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left(A_{j} A_{k}\right) \subset\left(A_{i} A_{l}\right)$; $i<j \& k=l \Rightarrow\left[A_{i} A_{j} A_{k}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left(A_{j} A_{k}\right) \subset\left(A_{i} A_{l}\right) . i<j \& k<l \Rightarrow\left[A_{i} A_{j} A_{l}\right] \&\left[A_{i} A_{k} A_{l}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left(A_{j} A_{k}\right) \subset\left(A_{i} A_{l}\right)$.

The second part follows from $\left[A_{i} A_{j} A_{k}\right] \&\left[A_{j} B A_{k}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{i} A_{j} B\right]$. \square
Let an interval $A_{0} A_{n}$ be divided into intervals $A_{0} A_{1}, A_{1} A_{2}, \ldots A_{n-1} A_{n} \cdot{ }^{27}$ Then
Lemma 1.2.9.2. - If $B_{1} \in\left(A_{k-1} A_{k}\right)$, $B_{2} \in\left(A_{l-1} A_{l}\right), k<l$ then $\left[A_{0} B_{1} B_{2}\right]$. Furthermore, if $B_{2} \in\left(A_{k-1} A_{k}\right)$ and $\left[A_{k-1} B_{1} B_{2}\right]$, then $\left[A_{0} B_{1} B_{2}\right]$.

Proof. By L 1.2.7.3 $\left[A_{0} A_{k} A_{m}\right]$. Using L 1.2.9.1, (since $0 \leq k-1, k \leq l-1<n$) we obtain $\left[A_{0} B_{1} A_{k}\right],\left[A_{k} B_{2} A_{n}\right]$. Hence $\left[B_{1} A_{k} A_{m}\right] \&\left[A_{k} B_{2} A_{m}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[B_{1} A_{k} B_{2}\right],\left[A_{0} B_{1} A_{k}\right] \&\left[B_{1} A_{k} B_{2}\right] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}\left[A_{0} B_{1} B_{2}\right]$. To show the second part, observe that for $0<k-1$ we have by the preceding lemma (the second part of L1.2.9.1) $\left[A_{0} A_{k-1} B_{2}\right]$, whence $\left[A_{0} A_{k-1} B_{2}\right] \&\left[A_{k-1} B_{1} B_{2}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{0} B_{1} B_{2}\right]$.

Corollary 1.2.9.3. - If $B_{1} \in\left[A_{k-1} A_{k}\right), B_{2} \in\left[A_{l-1} A_{l}\right), k<l$, then $\left[A B_{1} B_{2}\right]$.
Proof. Follows from the preceding lemma (L 1.2.9.2) and L 1.2.9.1.
Lemma 1.2.9.4. - If $\left[A_{0} B_{1} B_{2}\right]$ and $B_{2} \in\left(A_{0} A_{n}\right)$, then either $B_{1} \in\left[A_{k-1} A_{k}\right), B_{2} \in\left[A_{l-1} A_{l}\right)$, where $0<k<l \leq n$, or $B_{1} \in\left[A_{k-1} A_{k}\right)$, $B_{2} \in\left[A_{k-1} A_{k}\right)$, in which case either $B_{1}=A_{k-1}$ and $B_{2} \in\left(A_{k-1} A_{k}\right)$, or $\left[A_{k-1} B_{1} B_{2}\right]$, where $B_{1}, B_{2} \in\left(A_{k-1} A_{k}\right)$.

Proof. $\left[A_{0} B_{1} B_{2}\right] \&\left[A_{0} B_{2} A_{n}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{0} B_{1} A_{k}\right]$. By L 1.2.7.7 we have $B_{1} \in\left[A_{k-1} A_{k}\right), B_{2} \in\left[A_{l-1} A_{l}\right)$, where $k, l \in \mathbb{N}_{n}$. Show $k \leq l$. In fact, otherwise $B_{1} \in\left[A_{k-1} A_{k}\right), B_{2} \in\left[A_{l-1} A_{l}\right), k>l$ would imply $\left[A_{0} B_{2} B_{1}\right]$ by the preceding corollary, which, according to A 1.2.3, contradicts $\left[A_{0} B_{1} B_{2}\right]$. Suppose $k=l$. Note that $\left[A_{0} B_{1} B_{2}\right] \stackrel{\text { A1.2.1 }}{\Longrightarrow} B_{1} \neq B_{2} \neq A_{0}$. The assumption $B_{2}=A_{k-1}$ would (by L 1.2.9.1; we have in this case $0<k-1$, because $B_{2} \neq A_{0}$) imply $\left[A_{0} B_{2} B_{1}\right]$ - a contradiction. Finally, if $B_{1}, B_{2} \in\left(A_{k-1} A_{k}\right)$ then by P 1.2.3.4 either $\left[A_{k-1} B_{1} B_{2}\right.$] or $\left[A_{k-1} B_{2} B_{1}\right]$. But $\left[A_{k-1} B_{2} B_{1}\right]$ would give $\left[A_{0} B_{2} B_{1}\right]$ by (the second part of) L 1.2.9.2. Thus, we have $\left[A_{k-1} B_{1} B_{2}\right]$. There remains also the possibility that $B_{1}=A_{k-1}$ and $B_{2} \in\left[A_{k-1} A_{k}\right)$.

Lemma 1.2.9.5. - If $0 \leq j<k \leq l-1<n$ and $B \in\left(A_{l-1} A_{l}\right)$ then $\left[A_{j} A_{k} B\right] .{ }^{28}$

Proof. By L 1.2.7.7 $\left[A_{j} A_{k} A_{l}\right]$. By L 1.2.9.1 $\left[A_{k} B A_{l}\right]$. Therefore, $\left[A_{j} A_{k} A_{l}\right] \&\left[A_{k} B A_{l}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{j} A_{k} B\right]$.
Lemma 1.2.9.6. - If $D \in\left(A_{j-1} A_{j}\right), B \in\left(A_{l-1} A_{l}\right), 0<j \leq k \leq l-1<n$, then $\left[D A_{k} B\right]$.
Proof. Since $j \leq k \Rightarrow j-1<k$, we have from the preceding lemma (L 1.2.9.5) $\left[A_{j-1} A_{k} B\right]$ and from L 1.2.9.1 $\left[A_{j-1} D A_{k}\right]$. Hence by L 1.2.3.2 $\left[D A_{k} B\right]$.

Lemma 1.2.9.7. - If $B_{1} \in\left(A_{i} A_{j}\right), B_{2} \in\left(A_{k} A_{l}\right), 0 \leq i<j<k<l \leq n$ then $\left(A_{j} A_{k}\right) \subset\left(B_{1} A_{k}\right) \subset\left(B_{1} B_{2}\right) \subset$ $\left(B_{1} A_{l}\right) \subset\left(A_{i} A_{l}\right),\left(A_{j} A_{k}\right) \neq\left(B_{1} A_{k}\right) \neq\left(B_{1} B_{2}\right) \neq\left(B_{1} A_{l}\right) \neq\left(A_{i} A_{l}\right)$ and $\left(A_{j} A_{k}\right) \subset\left(A_{j} B_{2}\right) \subset\left(B_{1} B_{2}\right) \subset\left(A_{i} B_{2}\right) \subset$ $\left(A_{i} A_{l}\right),\left(A_{j} A_{k}\right) \neq\left(A_{j} B_{2}\right) \neq\left(B_{1} B_{2}\right) \neq\left(A_{i} B_{2}\right) \neq\left(A_{i} A_{l}\right)$.

Proof. ${ }^{29}$ Using the lemmas L 1.2.3.1, L 1.2.3.2 and the results following them (summarized in the footnote accompanying T 1.2.5), we can write $\left[A_{i} B_{1} A_{j}\right] \&\left[A_{i} A_{j} A_{k}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[B_{1} A_{j} A_{k}\right] \Rightarrow\left(A_{j} A_{k}\right) \subset\left(B_{1} A_{k}\right) \&\left(A_{j} A_{k}\right) \neq\left(B_{1} A_{k}\right)$. Also, $\left[A_{j} A_{k} A_{l}\right] \&\left[A_{k} B_{2} A_{l}\right] \Rightarrow\left[A_{j} A_{k} B_{2}\right] \Rightarrow\left(A_{j} A_{k}\right) \subset\left(A_{j} B_{2}\right) \&\left(A_{j} A_{k}\right) \neq\left(A_{j} B_{2}\right) .\left[B_{1} A_{j} A_{k}\right] \&\left[A_{j} A_{k} B_{2}\right] \xrightarrow{\mathrm{L} 1.2 .3 .1}$ $\left[B_{1} A_{j} B_{2}\right] \&\left[B_{1} A_{k} B_{2}\right] \Rightarrow\left(A_{j} B_{2}\right) \subset\left(B_{1} B_{2}\right) \&\left(A_{j} B_{2}\right) \neq\left(B_{1} B_{2}\right) \&\left(B_{1} A_{k}\right) \subset\left(B_{1} B_{2}\right) \&\left(B_{1} A_{k}\right) \neq\left(B_{1} B_{2}\right)$. $\left[B_{1} A_{k} B_{2}\right] \&\left[A_{k} B_{2} A_{l}\right] \Rightarrow\left[B_{1} B_{2} A_{l}\right] \Rightarrow\left(B_{1} B_{2}\right) \subset\left(B_{1} A_{l}\right) \Rightarrow\left(B_{1} B_{2}\right) \neq\left(B_{1} A_{l}\right) .\left[A_{i} B_{1} A_{j}\right] \&\left[B_{1} A_{j} B_{2}\right] \Rightarrow\left[A_{i} B_{1} B_{2}\right] \Rightarrow$ $\left(B_{1} B_{2}\right) \subset\left(A_{i} B_{2}\right) \Rightarrow\left(B_{1} B_{2}\right) \neq\left(A_{i} B_{2}\right) .\left[A_{i} B_{1} B_{2}\right] \&\left[B_{1} B_{2} A_{l}\right] \Rightarrow\left[A_{i} B_{1} A_{l}\right] \&\left[A_{i} B_{2} A_{l}\right] \Rightarrow\left(B_{1} A_{l}\right) \subset\left(A_{i} A_{l}\right) \&\left(B_{1} A_{l}\right) \neq$ $\left(A_{i} A_{l}\right) \&\left(A_{i} B_{2}\right) \subset\left(A_{i} A_{l}\right) \&\left(A_{i} B_{2}\right) \neq\left(A_{i} A_{l}\right)$.

Lemma 1.2.9.8. - Suppose $B_{1} \in\left[A_{k} A_{k+1}\right)$, $B_{2} \in\left[A_{l} A_{l+1}\right.$), where $0<k+1<l<n$. Then $\left(A_{k+1} A_{l}\right) \subset\left(B_{1} B_{2}\right) \subset$ $\left(A_{k} A_{l+1}\right),\left(A_{k+1} A_{l}\right) \neq\left(B_{1} B_{2}\right) \neq\left(A_{k} A_{l+1}\right)$.

[^9]Proof. ${ }^{30}$ Suppose $B_{1}=A_{k}, B_{2}=A_{l}$. Then $\left[A_{k} A_{k+1} A_{l}\right] \Rightarrow\left(A_{k+1} A_{l}\right) \subset\left(A_{k} A_{l}\right)=\left(B_{1} B_{2}\right) \&\left(A_{k+1} A_{l}\right) \neq$ $\left(B_{1} B_{2}\right)$. Also, in view of $k<k+1<l<l+1$, taking into account L 1.2.9.1, we have $\left(A_{k+1} A_{l}\right) \subset\left(B_{1} B_{2}\right) \subset$ $\left(A_{k} A_{l+1}\right) \&\left(A_{k+1} A_{l}\right) \neq\left(B_{1} B_{2}\right) \neq\left(A_{k} A_{l+1}\right)$. Suppose now $B_{1}=A_{k}, B_{2} \in\left(A_{l} A_{l+1}\right)$. Then $\left[A_{k} A_{l} A_{l+1}\right] \&\left[A_{l} B_{2} A_{l+1}\right] \Rightarrow$ $\left[A_{k} A_{l} B_{2}\right] \&\left[A_{k} B_{2} A_{l+1}\right] \Rightarrow\left[B_{1} B_{2} A_{l+1} \Rightarrow\left(B_{1} B_{2}\right) \subset\left(A_{k} A_{l+1}\right) \&\left(B_{1} B_{2}\right) \neq\left(A_{k} A_{l+1}\right) .\left[A_{k} A_{k+1} A_{l}\right] \&\left[A_{k+1} A_{l} B_{2}\right] \Rightarrow\right.$ $\left[A_{k} A_{k+1} B_{2}\right] \Rightarrow\left(A_{k+1} B_{2}\right) \subset\left(A_{k} B_{2}\right)=\left(B_{1} B_{2}\right) \&\left(A_{k+1} B_{2}\right) \neq\left(B_{1} B_{2}\right) . \quad\left(A_{k+1} A_{l}\right) \subset\left(A_{k+1} B_{2}\right) \&\left(A_{k+1} A_{l}\right) \neq$ $\left(A_{k+1} B_{2}\right) \&\left(A_{k+1} B_{2}\right) \subset\left(B_{1} B_{2}\right) \&\left(A_{k+1} B_{2}\right) \neq\left(B_{1} B_{2}\right) \Rightarrow\left(A_{k+1} A_{l}\right) \subset\left(B_{1} B_{2}\right) \&\left(A_{k+1} A_{l}\right) \neq\left(B_{1} B_{2}\right)$. Now consider the case $B_{1} \in\left(A_{k} A_{k+1}\right), B_{2}=A_{l}$. We have $\left[A_{k} B_{1} A_{k+1}\right] \&\left[A_{k} A_{k+1} A_{l}\right] \Rightarrow\left[A_{1} A_{k+1} A_{l}\right] \Rightarrow\left(A_{k+1} A_{l}\right) \subset$ $\left(B_{1} B_{2}\right) \&\left(A_{k+1} A_{l}\right) \neq\left(B_{1} B_{2}\right) . \quad\left[A_{k} A_{k+1} A_{l}\right] \&\left[A_{k} B_{1} A_{k+1}\right] \Rightarrow\left[B_{1} A_{k+1} A_{l}\right] \Rightarrow\left(A_{k+1} A_{l}\right) \subset\left(B_{1} B_{2}\right) \&\left(A_{k+1} A_{l}\right) \neq$ $\left(B_{1} B_{2}\right) . \quad\left[B_{1} A_{k+1} A_{l}\right] \&\left[A_{k+1} A_{l} A_{l+1}\right] \Rightarrow\left[B_{1} A_{l} A_{l+1}\right] \Rightarrow\left(B_{1} B_{2}\right)=\left(B_{1} A_{l}\right) \subset\left(B_{1} A_{l+1}\right) \&\left(B_{1} B_{2}\right) \neq\left(B_{1} A_{l+1}\right)$. $\left[A_{k} B A_{k+1}\right] \&\left[A_{k} A_{k+1} A_{l+1}\right] \Rightarrow\left[A_{k} B_{1} A_{l+1}\right] \quad \Rightarrow \quad\left(B_{1} A_{l+1}\right) \quad \subset \quad\left(A_{k} A_{l+1}\right) \&\left(B_{1} A_{l+1}\right) \quad \neq \quad\left(A_{k} A_{l+1}\right)$. $\left(B_{1} B_{2}\right) \subset\left(B_{1} A_{l+1}\right) \&\left(B_{1} B_{2}\right) \neq\left(B_{1} A_{l+1}\right) \&\left(B_{1} A_{l+1}\right) \subset\left(A_{k} A_{l+1}\right) \&\left(B_{1} A_{l+1}\right) \quad \neq\left(A_{k} A_{l+1}\right) \quad \Rightarrow$ $\left(B_{1} B_{2}\right) \subset\left(A_{k} A_{l+1}\right) \&\left(B_{1} B_{2}\right) \neq\left(A_{k} A_{l+1}\right)$. Finally, in the case when $B_{1} \in\left(A_{k} A_{k+1}\right), B_{2} \in\left(A_{l} A_{l+1}\right)$ the result follows immediately from the preceding lemma (L 1.2.9.7).

Lemma 1.2.9.9. If open intervals $(A D),(B C)$ meet in a point E and there are three points in the set $\{A, B, C, D\}$ known not to colline, the open intervals $(A D),(B C)$ concur in E.

Proof. If also $F \in(A D) \cap(B C), F \neq E$, then by L 1.2.1.3, A 1.1.2 $a_{A D}=a_{B C}$, contrary to hypothesis. \square
Lemma 1.2.9.10. Let $\left(B_{1} D_{1}\right),\left(B_{2} D_{2}\right), \ldots,\left(B_{n} D_{n}\right)$ be a finite sequence of open intervals containing a point C and such that each of these open intervals $\left(B_{j} D_{j}\right)$ except the first has at least one of its ends not on any of the lines $a_{B_{i} D_{i}}, 1 \leq i<j$ formed by the ends of the preceding (in the sequence) open intervals. ${ }^{31}$ Then all intervals $\left(B_{i} D_{i}\right)$, $i \in \mathbb{N}_{n}$ concur in C.

Proof. By L 1.2.9.9, we have for $1 \leq i<j \leq n: C \in\left(B_{i} D_{i}\right) \cap\left(B_{j} D_{j}\right) \& B_{j} \notin a_{B_{i} D_{i}} \vee D_{j} \notin a_{B_{i} D_{i}} \Rightarrow C=$ $\left(B_{i} D_{i}\right) \cap\left(B_{j} D_{j}\right)$, whence the result.

Lemma 1.2.9.11. Let $\left(B_{1} D_{1}\right),\left(B_{2} D_{2}\right), \ldots,\left(B_{n} D_{n}\right)$ be a finite sequence of open intervals containing a point C and such that the line $a_{B_{i_{0}} D_{i_{0}}}$ defined by the ends of a (fixed) given open interval of the sequence contains at least one of the ends of every other open interval in the sequence. Then all points $C, B_{i}, D_{i}, i \in \mathbb{N}_{n}$ colline.

Proof. By L 1.2.1.3, A 1.1.2, we have $\forall i \subset \mathbb{N}_{n} \backslash i_{0}\left(C \in\left(B_{i} D_{i}\right) \cap\left(B_{i_{0}} D_{i_{0}}\right)\right) \&\left(B_{i} \in a_{B_{i_{0}} D_{i_{0}}} \vee D_{i} \in a_{B_{i_{0}} D_{i_{0}}}\right) \Rightarrow$ $a_{B_{i} D_{i}}=a_{B_{i_{0}} D_{i_{0}}}$, whence all points $B_{i}, D_{i}, i \in \mathbb{N}_{n}$, are collinear. C also lies on the same line by L1.2.1.3. \square

Lemma 1.2.9.12. Let $\left(B_{1} D_{1}\right),\left(B_{2} D_{2}\right), \ldots,\left(B_{k} D_{k}\right)$ be a finite sequence of open intervals containing a point C and such that the line $a_{B_{i_{0}} D_{i_{0}}}$ defined by the ends of a (fixed) given interval of the sequence contains at least one of the ends of every other interval in the sequence. Then there is an open interval containing the point C and included in all open intervals $\left(B_{i}, D_{i}\right), i \in \mathbb{N}_{k}$ of the sequence.

Proof. By (the preceding lemma) L 1.2.9.11 all points $C, B_{i}, D_{i}, i \in \mathbb{N}_{k}$ colline. Let $A_{1}, A_{2}, \ldots, A_{n}$ be the sequence of these points put in order $\left[A_{1} A_{2} \ldots A_{n}\right]$, where $C=A_{i}$ for some $i \in \mathbb{N}_{n}$. (See T 1.2.7.) ${ }^{32}$ Then $\left[A_{i-1} A_{i} A_{i+1}\right]$ and by L 1.2.9.1 for all open intervals $\left(A_{k} A_{l}\right), 1<k<l<n$, corresponding to the open intervals of the original sequence, we have $\left(A_{i-1} A_{i+1}\right) \subset\left(A_{k} A_{l}\right)$.

Lemma 1.2.9.13. If a finite number of open intervals concur in a point, no end of any of these open intervals can lie on the line formed by the ends of another interval.

In particular, if open intervals $(A D),(B C)$ concur in a point E, no three of the points A, B, C, D colline.
Proof. Otherwise, by (the preceding lemma) L 1.2.9.12 two intervals would have in common a whole interval, which, by T 1.2 .8 , contains an infinite number of points.

Corollary 1.2.9.14. Let $\left(B_{1} D_{1}\right),\left(B_{2} D_{2}\right), \ldots,\left(B_{n} D_{n}\right)$ be a finite sequence of open intervals containing a point C and such that each of these open intervals $\left(B_{j} D_{j}\right)$ except the first has at least one of its ends not on any of the lines $a_{B_{i} D_{i}}, 1 \leq i<j$ formed by the ends of the preceding (in the sequence) open intervals. Then no end of any of these open intervals can lie on the line formed by the ends of another interval.

In particular, if open intervals $(A D),(B C)$ meet in a point E and there are three points in the set $\{A, B, C, D\}$ known not to colline, no three of the points A, B, C, D colline.

Proof. Just combine L 1.2.9.9, L 1.2.9.13.

[^10]

Figure 1.14: The point A lies on the ray O_{A}.

Open Sets and Fundamental Topological Properties

Given a line a, consider a set $\mathcal{A} \subset \mathcal{P}_{a}$ of points all lying on a. A point O is called an interior point of \mathcal{A} if there is an open interval $(A B)$ containing this point and completely included in \mathcal{A}. That is, O is an interior point of a linear point set \mathcal{A} iff $\exists(A B)$ such that $O \in(A B) \subset \mathcal{A}$.

Given a plane α, consider a set $\mathcal{A} \subset \mathcal{P}_{\alpha}$ of points all lying on α. A point O is called an interior point of \mathcal{A} if on any line a lying in α and passing through O there is an open interval $\left(A^{(a)} B^{(a)}\right)$ containing the point O and completely included in \mathcal{A}.

Finally, consider a set \mathcal{A} of points not constrained to lie on any particular plane. A point O is called an interior point of \mathcal{A} if on any line a passing through O there is an open interval $\left(A^{(a)} B^{(a)}\right)$ containing the point O and completely included in \mathcal{A}.

The set of all interior points of a (linear, planar, or spatial) set \mathcal{A} is called the interior of that set, denoted $\operatorname{Int} \mathcal{A}$. A (linear, planar, or spatial) set \mathcal{A} is referred to as open if it coincides with its interior, i.e. if $\operatorname{Int} \mathcal{A}=\mathcal{A}$.

Obviously, the empty set and the set \mathcal{P}_{a} of all points of a given line a are open linear sets.
The empty set and the set \mathcal{P}_{α} of all points of a given plane α are open plane sets.
Finally, the empty set and the set of all points (of space) given are open (spatial) sets.
The following trivial lemma gives us the first non-trivial example of a linear open set.
Lemma 1.2.9.15. Any open interval $(A B)$ is an open (linear) set.
Proof.
Now we can establish that our open sets are indeed open in the standard topological sense.
Lemma 1.2.9.16. A union of any number of (linear, planar, spatial) open sets is an open set.
Proof. (Linear case.) ${ }^{33}$ Suppose $P \in \bigcup_{i \in \mathcal{U}} \mathcal{A}_{i}$, where the sets $\mathcal{A}_{i} \subset \mathcal{P}_{a}$ are open for all $i \in \mathcal{U}$. Here \mathcal{U} is a set of indices. By definition of union $\exists i_{0} \in \mathcal{U}$ such that $P \in \mathcal{A}_{i_{0}}$. By our definition of open set there are points A, B such that $P \in(A B) \subset \mathcal{A}_{i_{0}}$. Hence (using again the definition of union) $P \in(A B) \subset \bigcup_{i \in \mathcal{U}} \mathcal{A}_{i}$, which completes the proof.

Lemma 1.2.9.17. An intersection of any finite number of (linear, planar, spatial) open sets is an open set.
Proof. Suppose $P \in \bigcap_{i=1}^{n} \mathcal{B}_{i}$, where the sets $\mathcal{B}_{i} \subset \mathcal{P}_{a}$ are open for all $i=1,2, \ldots, n$. By definition of intersection $\forall i \in \mathbb{N}_{n}$ we have $P \in \mathcal{B}_{i}$. Hence (from our definition of open set) $\forall i \in \mathbb{N}_{n}$ there are points $B_{i}, D_{i} \in \mathcal{B}_{i}$ such that $P \in\left(B_{i} D_{i}\right) \subset \mathcal{B}_{i}$. Then by L 1.2.9.12 there is an open interval $(B D)$ containing the point P and included in all open intervals $\left(B_{i}, D_{i}\right), i \in \mathbb{N}_{n}$. Hence (using again the definition of intersection) $P \in(B D) \subset \bigcap_{i=1}^{n} \mathcal{B}_{i}$. \square

Theorem 1.2.9. Given a line a, all open sets on that line form a topology on \mathcal{P}_{a}. Given a plane α, all open sets in that plane form a topology on \mathcal{P}_{α}. Finally, all (spatial) open sets form a topology on the set of all points (of space).

Proof. Follows immediately from the two preceding lemmas (L 1.2.9.16, L 1.2.9.17).
Theorem 1.2.10. Proof.
Let O, A be two distinct points. Define the ray O_{A}, emanating from its initial point (which we shall call also the origin) O, as the set of points $O_{A} \rightleftharpoons\left\{B \mid B \in a_{O A} \& B \neq O \& \neg[A O B]\right\}$. We shall denote the line $a_{O A}$, containing the ray $h=O_{A}$, by \bar{h}.

The initial point O of a ray h will also sometimes be denoted $O=\partial h$.

Basic Properties of Rays

Lemma 1.2.11.1. Any point A lies on the ray O_{A}. (See Fig. 1.14)
Proof. Follows immediately from A 1.2.1.
Note that L 1.2.11.1 shows that there are no empty rays.

[^11]

Figure 1.15: If B lies on O_{A}, A lies on O_{B}.

Figure 1.16: B lies on the opposite side of O from A iff O divides A and B.

Lemma 1.2.11.2. If a point B lies on a ray O_{A}, the point A lies on the ray O_{B}, that is, $B \in O_{A} \Rightarrow A \in O_{B}$.
Proof. (See Fig. 1.15) From A 1.2.1, C 1.1.1.2 $B \neq O \& B \in a_{O A} \& \neg[A O B] \Rightarrow A \in a_{O B} \& \neg[B O A]$.
Lemma 1.2.11.3. If a point B lies on a ray O_{A}, then the ray O_{A} is equal to the ray O_{B}.
Proof. Let $C \in O_{A}$. If $C=A$, then by L 1.2.11.2 $C \in O_{B} . C \neq O \neq A \& \neg[A O C] \stackrel{\mathrm{T} 1.2 .2}{\Longrightarrow}[O A C] \vee[O C A]$. Hence $\neg[B O C]$, because from L 1.2.3.1, L 1.2.3.2 $\quad[B O C] \&([O A C] \vee[O C A]) \Rightarrow[B O A]$.

Lemma 1.2.11.4. If rays O_{A} and O_{B} have common points, they are equal.
Proof. $O_{A} \cap O_{B} \neq \emptyset \Rightarrow \exists C C \in O_{A} \& C \in O_{B} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{A}=O_{C}=O_{B}$.
If $B \in O_{A}\left(B \in a_{O A} \& B \notin O_{A} \& B \neq O\right)$, we say that the point B lies on line $a_{O A}$ on the same side (on the opposite side) of the given point O as (from) the point A.

Lemma 1.2.11.5. The relation "to lie on the given line a the same side of the given point $O \in a$ as" is an equivalence relation on $\mathcal{P}_{a} \backslash O$. That is, it possesses the properties of:

1) Reflexivity: A geometric object \mathcal{A} always lies in the set the same side of the point O as itself;
2) Symmetry: If a point B lies on the same side of the point O as A, then the point A lies on the same side of O as B.
3) Transitivity: If a point B lies on the same side of the point O as the point A, and a point C lies on the same side of O as B, then C lies on the same side of O as A.

Proof. 1) and 2) follow from L 1.2.11.1, L 1.2.11.2. Show 3): $B \in O_{A} \& C \in O_{B} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{A}=O_{B}=O_{C} \Rightarrow C \in O_{A}$.

Lemma 1.2.11.6. A point B lies on the opposite side of O from A iff O divides A and B.
Proof. (See Fig. 1.16) By definition of the ray $O_{A}, B \in a_{O A} \& B \notin O_{A} \& B \neq O \Rightarrow[A O B]$. Conversely, from L 1.2.1.3, A 1.2.1 $[A O B] \Rightarrow B \in a_{O A} \& B \neq O \& B \notin O_{A}$.

Lemma 1.2.11.7. The relation "to lie on the opposite side of the given point from" is symmetric.
Proof. Follows from L 1.2.11.6 and $[A O B] \stackrel{\text { A1.2.1 }}{\Longrightarrow}[B O A]$.
If a point B lies on the same side (on the opposite side) of the point O as (from) a point A, in view of symmetry of the relation we say that the points A and B lie on the same side (on opposite sides) of O.

Lemma 1.2.11.8. If points A and B lie on one ray O_{C}, they lie on line $a_{O C}$ on the same side of the point O. If, in addition, $A \neq B$, then either A lies between O and B or B lies between O and A.

Proof. (See Fig. 1.17) $A \in O_{C} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{A}=O_{C} . B \in O_{A} \Rightarrow B \in a_{O A} \& B \neq O \& \neg[B O A]$. When also $B \neq A$, from T 1.2.2 $[O A B] \vee[O B A]$.

Lemma 1.2.11.9. If a point C lies on the same side of the point O as a point A, and a point D lies on the opposite side of O from A, then the points C and D lie on the opposite sides of $O .^{34}$

[^12]

Figure 1.17: If A and B lie on O_{C}, they lie on $a_{O C}$ on the same side of O.

Figure 1.18: If C lies on O_{A}, and O divides A and D, then O divides C and D.

Figure 1.19: If C and D lie on the opposite side of O from A, then C and D lie on the same side of O.

Proof. (See Fig. 1.18) $C \in O_{A} \Rightarrow \neg[A O C] \& C \neq O$. If also $C \neq A^{35}$, from $\mathrm{T} 1.2 .2[A C O]$ or $[C A O]$, whence by L 1.2.3.1, L 1.2.3.2 $([A C O] \vee[C A O]) \&[A O D] \Rightarrow[C O D]$.

Lemma 1.2.11.10. If points C and D lie on the opposite side of the point O from a point $A,{ }^{36}$ then C and D lie on the same side of O.

Proof. (See Fig. 1.19) By A 1.2.1, L 1.1.1.7, and P 1.2.5.1 $[A O C] \&[A O D] \Rightarrow D \in a_{O C} \& O \neq C \& \neg[C O D] \Rightarrow D \in$ O_{C}.

Lemma 1.2.11.11. Suppose a point C lies on a ray O_{A}, a point D lies on a ray O_{B}, and O lies between A and B. Then O also lies between C and D.

Proof. (See Fig. 1.21) Observe that $D \in O_{B} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{B}=O_{D}$ and use L 1.2.11.9.
Lemma 1.2.11.12. The point O divides the points A and B iff the rays O_{A} and O_{B} are disjoint, $O_{A} \cap O_{B}=\emptyset$, and their union, together with the point O, gives the set of points of the line $a_{A B}, \mathcal{P}_{a_{A B}}=O_{A} \cup O_{B} \cup\{O\}$. That is, $[O A B] \Leftrightarrow\left(\mathcal{P}_{a_{A B}}=O_{A} \cup O_{B} \cup\{O\}\right) \&\left(O_{A} \cap O_{B}=\emptyset\right)$.

Proof. Suppose $[A O B]$. If $C \in \mathcal{P}_{a_{A B}}$ and $C \notin O_{B}, C \neq O$ then $[C O B]$ by the definition of the ray O_{B}. $[C O B] \&[A O B] \& O \neq C \stackrel{\mathrm{P} 1.2 .5 .1}{\Longrightarrow} \neg[C O A] . \Rightarrow C \in O_{A} . O_{A} \cap O_{B}=\emptyset$, because otherwise $C \in O_{A} \& C \in O_{B} \xrightarrow{\text { L1.2.11.4 }}$ $B \in O_{A} \Rightarrow \neg[A O B]$.

Now suppose $\left(\mathcal{P}_{a_{A B}}=O_{A} \cup O_{B} \cup O\right)$ and $\left(O_{A} \cap O_{B}=\emptyset\right)$. Then $O \in a_{A B} \& A \neq O \stackrel{\text { C1.1.1.2 }}{\Longrightarrow} B \in a_{O A}$, $B \in O_{B} \& O_{A} \cap O_{B}=\emptyset \Rightarrow B \notin O_{A}$, and $B \neq O \& B \in a_{O A} \& B \notin O_{A} \Rightarrow[A O B]$.

Lemma 1.2.11.13. A ray O_{A} contains the open interval $(O A)$.
Proof. If $B \in(O A)$ then from A 1.2.1 $B \neq O$, from L 1.2.1.3 $B \in a_{O A}$, and from A 1.2.3 $\neg[B O A]$. We thus have $B \in O_{A} . \square$

Lemma 1.2.11.14. For any finite set of points $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of a ray O_{A} there is a point C on O_{A} not in that set.

Proof. Immediately follows from T 1.2.8 and L 1.2.11.13.
Lemma 1.2.11.15. If a point B lies between points O and A then the rays O_{B} and O_{A} are equal.
Proof. $[O B A] \xrightarrow{\mathrm{L} 1.2 .11 .13} B \in O_{A} \xrightarrow{\mathrm{~L} 1.2 .11 .3} O_{B}=O_{A}$.
Lemma 1.2.11.16. If a point A lies between points O and B, the point B lies on the ray O_{A}.
Proof. By L 1.2.1.3, A 1.2 .1, A $1.2 .3[O A B] \Rightarrow B \in a_{O A} \& B \neq O \& \neg[B O A] \Rightarrow B \in O_{A}$.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.11.15).
Lemma 1.2.11.17. If rays O_{A} and ${O^{\prime}}_{B}$ are equal, their initial points coincide.
Proof. Suppose $O^{\prime} \neq O$ (See Fig. 1.20.) We have also $O^{\prime} \neq O \& O_{B}^{\prime}=O_{A} \Rightarrow O^{\prime} \notin O_{A}$. Therefore, $O^{\prime} \in a_{O A} \& O^{\prime} \neq$ $O \& O^{\prime} \notin O_{A} \Rightarrow O^{\prime} \in O_{A}^{c} . \quad O^{\prime} \in O_{A}^{c} \& B \in O_{A} \Rightarrow\left[O^{\prime} O B\right] . \quad B \in O_{B}^{\prime}{ }_{B}\left[O^{\prime} O B\right] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} O \in O_{B}^{\prime}=O_{A}-\mathrm{a}$ contradiction.

[^13]

Figure 1.20: If O_{A} and O_{B}^{\prime} are equal, their origins coincide.

Lemma 1.2.11.18. If an interval $A_{0} A_{n}$ is divided into n intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ (by the points $A_{1}, A_{2}, \ldots A_{n-1}$),
${ }^{37}$ the points $A_{1}, A_{2}, \ldots A_{n-1}, A_{n}$ all lie ${ }^{38}$ on the same side of the point A_{0}, and the rays $A_{0 A_{1}}, A_{0 A_{2}}, \ldots, A_{0 A_{n}}$ are equal. 39

Proof. Follows from L 1.2.7.3, L 1.2.11.15.
Lemma 1.2.11.19. Every ray contains an infinite number of points.
Proof. Follows immediately from T 1.2.8, L 1.2.11.13.
This lemma implies, in particular, that
Lemma 1.2.11.20. There is exactly one line containing a given ray.
Proof.
The line, containing a given ray O_{A} is, of course, the line $a_{O A}$.
Theorem 1.2.11. A point O on a line a separates the rest of the points of this line into two non-empty classes (rays) in such a way that...

Linear Ordering on Rays

Let A, B be two points on a ray O_{D}. Let, by definition, $(A \prec B)_{O_{D}} \stackrel{\text { def }}{\Longleftrightarrow}[O A B]$. If $(A \prec B),{ }^{40}$ we say that the point A precedes the point B on the ray O_{D}, or that the point B succeeds the point A on the ray O_{D}.

Obviously, $A \prec B$ implies $A \neq B$. Conversely, $A \neq B$ implies $\neg(A \prec B)$.
Lemma 1.2.12.1. If a point A precedes a point B on the ray O_{D}, and B precedes a point C on the same ray, then A precedes C on O_{D} :

$$
A \prec B \& B \prec C \Rightarrow A \prec C \text {, where } A, B, C \in O_{D}
$$

Proof. (See Fig. 1.22) $[O A B] \&[O B C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[O A C]$.
Lemma 1.2.12.2. If A, B are two distinct points on the ray O_{D} then either A precedes B or B precedes A; if A precedes B then B does not precede A.

Proof. $A \in O_{D} \& B \in O_{D} \stackrel{\text { L1.2.11.8 }}{\Longrightarrow} B \in O_{A} \Rightarrow \neg[A O B]$. If $A \neq B$, then by T 1.2.2 $[O A B] \vee[O B A]$, that is, $A \prec B$ or $B \prec A . A \prec B \Rightarrow[O A B] \stackrel{\mathrm{A} 1.2 .3}{\Longrightarrow} \neg[O B A] \Rightarrow \neg(B \prec A)$.

Lemma 1.2.12.3. If a point B lies on a ray O_{P} between points A and $C,{ }^{41}$ then either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if A precedes B and B precedes C, or C precedes B and B precedes A, then B lies between A and C. That is,
$[A B C] \Leftrightarrow(A \prec B \& B \prec C) \vee(C \prec B \& B \prec A)$.
Proof. From the preceding lemma (L 1.2.12.2) we know that either $A \prec C$ or $C \prec A$, i.e. $[O A C]$ or $[O C A]$. Suppose $[O A C] .{ }^{42}$ Then $[O A C] \&[A B C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[O A B] \&[O B C] \Rightarrow A \prec B \& B \prec C$. Conversely, $A \prec B \& B \prec C \Rightarrow$ $[O A B] \&[O B C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A B C]$.

For points A, B on a ray O_{D} we let by definition $A \preceq B \stackrel{\text { def }}{\Longleftrightarrow}(A \prec B) \vee(A=B)$.
Theorem 1.2.12. Every ray is a chain with respect to the relation \preceq.
Proof. $A \preceq A . \quad(A \preceq B) \&(B \preceq A) \stackrel{\mathrm{L} 1.2 .12 .2}{\Longrightarrow} A=B ;(A \prec B) \&(B \prec A) \stackrel{\mathrm{L} 1.2 .12 .1}{\Longrightarrow} A \prec C ; A \neq B \xrightarrow{\mathrm{~L} 1.2 .12 .2}(A \prec$ $B) \vee(B \prec A)$.

[^14]

Figure 1.21: If C lies on the ray O_{A}, D on O_{B}, and O between A and B, then O lies between C and D.

Figure 1.22: If A precedes B on O_{D}, and B precedes C on the same ray, then A precedes C on O_{D}.

Ordering on Lines

Let $O \in a, P \in a,[P O Q]$. Define the direct (inverse) ordering on the line a, that is, a relation of ordering on the set \mathcal{P}_{a} of all points of the line a, as follows:

Call O_{P} the first ray, and O_{Q} the second ray. ${ }^{43}$ A point A precedes a point B on the line a in the direct (inverse) order iff: (See Fig. 1.23)

- Both A and B lie on the first (second) ray and B precedes A on it; or
- A lies on the first (second) ray, and B lies on the second (first) ray or coincides with O; or
- $A=O$ and B lies on the second (first) ray; or
- Both A and B lie on the second (first) ray, and A precedes B on it.

Thus, a formal definition of the direct ordering on the line a can be written down as follows:
$\left(A \prec_{1} B\right)_{a} \stackrel{\text { def }}{\Longleftrightarrow}\left(A \in O_{P} \& B \in O_{P} \& B \prec A\right) \vee\left(A \in O_{P} \& B=O\right) \vee\left(A \in O_{P} \& B \in O_{Q}\right) \vee(A=O \& B \in$ $\left.O_{Q}\right) \vee\left(A \in O_{Q} \& B \in O_{Q} \& A \prec B\right)$,
and for the inverse ordering: $\left(A \prec_{2} B\right)_{a} \stackrel{\text { def }}{\Longleftrightarrow}\left(A \in O_{Q} \& B \in O_{Q} \& B \prec A\right) \vee\left(A \in O_{Q} \& B=O\right) \vee\left(A \in O_{Q} \& B \in\right.$ $\left.O_{P}\right) \vee\left(A=O \& B \in O_{P}\right) \vee\left(A \in O_{P} \& B \in O_{P} \& A \prec B\right)$

The term "inverse order" is justified by the following trivial
Lemma 1.2.13.1. A precedes B in the inverse order iff B precedes A in the direct order.
Proof.
Obviously, for any order on any line $A \prec B$ implies $A \neq B$. Conversely, $A=B$ implies $\neg(A \prec B)$.
For our notions of order (both direct and inverse) on the line to be well defined, they have to be independent, at least to some extent, on the choice of the initial point O, as well as on the choice of the ray-defining points P and Q.

Toward this end, let $O^{\prime} \in a, P^{\prime} \in a,\left[P^{\prime} O^{\prime} Q^{\prime}\right]$, and define a new direct (inverse) ordering with displaced origin (ODO) on the line a, as follows:

Call O^{\prime} the displaced origin, $O^{\prime}{ }_{P^{\prime}}$ and $O^{\prime}{ }_{Q^{\prime}}$ the first and the second displaced rays, respectively. A point A precedes a point B on the line a in the direct (inverse) ODO iff:

- Both A and B lie on the first (second) displaced ray, and B precedes A on it; or
- A lies on the first (second) displaced ray, and B lies on the second (first) displaced ray or coincides with O^{\prime}; or
- $A=O^{\prime}$ and B lies on the second (first) displaced ray; or
- Both A and B lie on the second (first) displaced ray, and A precedes B on it.

Figure 1.23: To the definition of order on a line.

Figure 1.24: If O^{\prime} lies on O_{P} between O and P^{\prime}, then $O^{\prime}{ }_{P^{\prime}} \subset O_{P}$.

Figure 1.25: If O^{\prime} lies on O_{P}, O lies on $O_{Q^{\prime}}^{\prime}$, and B lies on both O_{P} and $O^{\prime}{ }_{Q^{\prime}}$, then B also divides O and O^{\prime}.

Thus, a formal definition of the direct ODO on the line a can be written down as follows:
$\left(A \prec_{1} B\right)_{a} \stackrel{\text { def }}{\Longleftrightarrow}\left(A \in O^{\prime}{ }_{P^{\prime}} \& B \in O^{\prime}{ }_{P^{\prime}} \& B \prec A\right) \vee\left(A \in O^{\prime}{ }_{P^{\prime}} \& B=O^{\prime}\right) \vee\left(A \in O^{\prime}{ }_{P^{\prime}} \& B \in O^{\prime}{ }_{Q^{\prime}}\right) \vee\left(A=O^{\prime} \& B \in\right.$ $\left.O^{\prime}{ }_{Q^{\prime}}\right) \vee\left(A \in O^{\prime}{ }_{Q^{\prime}} \& B \in O^{\prime}{ }_{Q^{\prime}} \& A \prec B\right)$,
and for the inverse ordering: $\left(A \prec_{2}^{\prime} B\right)_{a} \stackrel{\text { def }}{\Longleftrightarrow}\left(A \in O^{\prime}{ }_{Q^{\prime}} \& B \in O^{\prime}{ }_{Q^{\prime}} \& B \prec A\right) \vee\left(A \in O^{\prime}{ }_{Q^{\prime}} \& B=O^{\prime}\right) \vee(A \in$ $\left.O^{\prime}{ }_{Q^{\prime}} \& B \in O^{\prime}{ }_{P^{\prime}}\right) \vee\left(A=O^{\prime} \& B \in O^{\prime}{ }_{P^{\prime}}\right) \vee\left(A \in O^{\prime}{ }_{P^{\prime}} \& B \in O^{\prime}{ }_{P}\right.$ \& $\left.A \prec B\right)$.

Lemma 1.2.13.2. If the displaced ray origin O^{\prime} lies on the ray O_{P} and between O and P^{\prime}, then the ray O_{P} contains the ray $O^{\prime}{ }_{P^{\prime}}, O^{\prime}{ }_{P^{\prime}} \subset O_{P}$.

In particular, ${ }^{44}$ if a point O^{\prime} lies between points O, P, the ray O_{P} contains the ray $O^{\prime}{ }_{P}$.
Proof. (See Fig. 1.24) $O^{\prime} \in O_{P} \Rightarrow O^{\prime} \in a_{O P},\left[O O^{\prime} P\right] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} O \in a_{O^{\prime} P^{\prime}}$, and therefore $O \in a_{O P} \& O \in a_{O^{\prime} P^{\prime}} \& O^{\prime} \in$ $a_{O P} \& O^{\prime} \in a_{O^{\prime} P^{\prime}} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{O P}=a_{O^{\prime} P^{\prime}} . A \in O^{\prime}{ }_{P^{\prime}} \Rightarrow A \in O_{P}$, because otherwise $A \in a_{O P} \& A \neq O \& A \notin O_{P} \& O^{\prime} \in$ $O_{P} \stackrel{\mathrm{~L} 1.2 .11 .9}{\Longrightarrow}\left[A O O^{\prime}\right]$ and $\left[A O O^{\prime}\right] \&\left[O O^{\prime} P^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .1}{\Longrightarrow}\left[A O^{\prime} P^{\prime}\right] \Rightarrow A \notin O^{\prime} P^{\prime}$.

Lemma 1.2.13.3. Let the displaced origin O^{\prime} be chosen in such a way that O^{\prime} lies on the ray O_{P}, and the point O lies on the ray $O^{\prime}{ }_{Q^{\prime}}$. If a point B lies on both rays O_{P} and $O_{Q^{\prime}}^{\prime}$, then it divides O and O^{\prime}.

Proof. (See Fig. 1.25) $O^{\prime} \in O_{P} \& B \in O_{P} \& O \in O^{\prime}{ }_{Q^{\prime}} \& B \in O^{\prime}{ }_{Q^{\prime}} \stackrel{\text { L1.2.11.8 }}{\Longrightarrow} \neg\left[O^{\prime} O B\right] \& \neg\left[O O^{\prime} B\right]$, whence by T 1.2.2 $\Rightarrow\left[O B O^{\prime}\right]$.

Lemma 1.2.13.4. An ordering with the displaced origin O^{\prime} on a line a coincides with either direct or inverse ordering on that line (depending on the choice of the displaced rays). In other words, either for all points A, B on a A precedes B in the ODO iff A precedes B in the direct order; or for all points A, B on a A precedes B in the ODO iff A precedes B in the inverse order.

Proof. Let $O^{\prime} \in O_{P}, O \in O^{\prime} Q^{\prime},\left(A \prec^{\prime}{ }_{1} B\right)_{a}$. Then $\left[P^{\prime} O^{\prime} Q^{\prime}\right] \& O \in O^{\prime}{ }_{Q^{\prime}} \stackrel{\text { L1.2.11.9 }}{\Longrightarrow}\left[O O^{\prime} P^{\prime}\right]$ and $O^{\prime} \in O_{P} \&\left[O O^{\prime} P^{\prime}\right] \stackrel{\text { L1.2.13.2 }}{\Longrightarrow}$ $O^{\prime}{ }_{P} \subset O_{P}$.

Suppose $A \in O^{\prime}{ }_{P^{\prime}}, B \in O^{\prime}{ }_{P^{\prime}} . A \in O^{\prime}{ }_{P^{\prime}} \& B \in O^{\prime}{ }_{P^{\prime}} \& O^{\prime}{ }_{P^{\prime}} \subset O_{P} \Rightarrow A \in O_{P} \& B \in O_{P} . A \in O^{\prime}{ }_{P} \& B \in$ $O^{\prime}{ }_{P^{\prime}} \&\left(A \prec^{\prime}{ }_{1} B\right)_{a} \Rightarrow(B \prec A)_{O^{\prime}{ }_{P^{\prime}}} \Rightarrow\left[O^{\prime} B A\right] . \quad B \in O^{\prime}{ }_{P^{\prime}} \& O \in O^{\prime} Q_{Q^{\prime}} \stackrel{\text { L1.2.11.11 }}{\Longrightarrow}\left[O O^{\prime} B\right],\left[O O^{\prime} B\right] \&\left[O^{\prime} B A\right] \xrightarrow{\text { L1.2.3.1 }}$ $(B \prec A)_{O_{P}} \Rightarrow\left(A \prec_{1} B\right)_{a}$.

Suppose $A \in O^{\prime} P^{\prime} \& B=O^{\prime} . A \in O^{\prime}{ }_{P^{\prime}} \& B=O^{\prime} \& O \in O^{\prime}{ }_{Q^{\prime}} \stackrel{\text { L1.2.11.11 }}{\Longrightarrow}[O B A] \Rightarrow\left(A \prec_{1} B\right)_{a}$.
Suppose $A \in O^{\prime}{ }_{P^{\prime}}, B \in O^{\prime}{ }_{Q^{\prime}} . A \in O_{P} \&\left(B=O \vee B \in O_{Q}\right) \Rightarrow\left(A \prec{ }_{1} B\right)_{a}$. If $B \in O_{P}$ then $O^{\prime} \in O_{P} \& O \in$ $O^{\prime} Q^{\prime} \& B \in O_{P} \& B \in O^{\prime}{Q^{\prime}}^{\mathrm{L} 1.2 .13 .3}\left[O^{\prime} B O\right]$ and $\left[A O^{\prime} B\right] \&\left[O^{\prime} B O\right] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}[A B O] \Rightarrow\left(A \prec_{1} B\right)_{a} .{ }^{45}$

Suppose $A, B \in O^{\prime}{ }_{Q^{\prime}} .\left(A \prec^{\prime}{ }_{1} B\right)_{a} \Rightarrow(A \prec B)_{O^{\prime}{ }_{Q^{\prime}}} \Rightarrow\left[O^{\prime} A B\right]$. If $A \in O_{P}$ and $B \in O_{P}$ then by L 1.2.13.3 [$\left.O^{\prime} B O\right]$ and $\left[O^{\prime} B O\right] \&\left[O^{\prime} A B\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[A B O] \Rightarrow\left(A \prec_{1} B\right)_{a} .\left(A \in O_{P} \& B=O\right) \vee\left(A \in O_{P} \& B \in O_{Q}\right) \vee\left(A=O \& B \in O_{Q}\right) \Rightarrow$ $\left(A \prec_{1} B\right)_{a}$. Now let $A \in O_{Q}, B \in O_{Q}$. Then $\neg[A O B] ; \neg[O B A]$, because $[O B A] \&\left[B A O^{\prime}\right] \xrightarrow{\text { L1.2.3.1 }}\left[O^{\prime} B O\right] \xrightarrow{\text { A1.2.3 }}$ $\neg\left[B O O^{\prime}\right] \Rightarrow O^{\prime} \in O_{B}$ and $B \in O_{Q} \& O^{\prime} \in O_{B} \Rightarrow O^{\prime} \in O_{Q}$. Finally, $\neg[A O B] \& \neg[O B A] \stackrel{\mathrm{T1.2.2}}{\Longrightarrow}[O A B] \Rightarrow\left(A \prec_{1} B\right)_{a}$.

Lemma 1.2.13.5. Let A, B be two distinct points on a line a, on which some direct or inverse order is defined. Then either A precedes B in that order, or B precedes A, and if A precedes B, B does not precede A, and vice versa.

Proof.
For points A, B on a line where some direct or inverse order is defined, we let $A \preceq_{i} B \stackrel{\text { def }}{\Longleftrightarrow}\left(A \prec{ }_{i} B\right) \vee(A=B)$, where $i=1$ for the direct order and $i=2$ for the inverse order.

[^15]Lemma 1.2.13.6. If a point A precedes a point B on a line a, and B precedes a point C on the same line, then A precedes C on a :
$A \prec B \& B \prec C \Rightarrow A \prec C$, where $A, B, C \in a$.
Proof. Follows from the definition of the precedence relation \prec and L 1.2.12.1. ${ }^{46}$
Theorem 1.2.14. Every line with a direct or inverse order is a chain with respect to the relation \preceq_{i}.
Proof. See the preceding two lemmas (L 1.2.13.5, L 1.2.13.6.) \square
Theorem 1.2.14. If a point B lies between points A and C, then in any ordering, defined on the line containing these points, either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if in some order, defined on the line, containing points A, B, C, A precedes B and B precedes C, or C precedes B and B precedes A, then B lies between A and C. That is,
$[A B C] \Leftrightarrow(A \prec B \& B \prec C) \vee(C \prec B \& B \prec A)$.
Proof. Suppose $[A B C]$. ${ }^{47}$
For $A, B, C \in O_{P}$ and $A, B, C \in O_{Q}$ see L 1.2.12.3.
If $A, B \in O_{P}, C=O$ then $[A B O] \Rightarrow(B \prec A)_{O_{P}} \Rightarrow(A \prec B)_{a}$; also $B \prec C$ in this case from definition of order on line.

If $A, B \in O_{P}, C \in O_{Q}$ then $[A B C] \&[B O C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A B O] \Rightarrow(A \prec B)_{a}$ and $B \in O_{P} \& C \in O_{Q} \Rightarrow(B \prec C)_{a}$.
For $A \in O_{P}, B=O, C \in O_{Q}$ see definition of order on line.
For $A \in O_{P}, B, C \in O_{Q}$ we have $[A O B] \&[A B C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[O B C] \Rightarrow B \prec C$.
If $A=O$ and $B, C \in O_{Q}$, we have $[O B C] \Rightarrow B \prec C$.
Conversely, suppose $A \prec B$ and $B \prec C$ in the given direct order on a. ${ }^{48}$
For $A, B, C \in O_{P}$ and $A, B, C \in O_{Q}$ see L 1.2.12.3.
If $A, B \in O_{P}, C=O$ then $(A \prec B)_{a} \Rightarrow(B \prec A)_{O_{P}} \Rightarrow[A B O]$.
If $A, B \in O_{P}, C \in O_{Q}$ then $[A B O] \&[B O C] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}[A B C]$.
For $A \in O_{P}, B=O, C \in O_{Q}$ we immediately have $[A B C]$ from L 1.2.11.11.
For $A \in O_{P}, B, C \in O_{Q}$ we have $[A O B] \&[O B C] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}[A B C]$.
If $A=O$ and $B, C \in O_{Q}$, we have $B \prec C \Rightarrow[O B C]$.

Corollary 1.2.14.1. Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers, i.e. that the interval $A_{1} A_{n}$ is divided into $n-1$ intervals $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ (by the points $A_{2}, A_{3}, \ldots A_{n-1}$). Then in any order (direct or inverse), defined on the line containing these points, we have either $A_{1} \prec A_{2} \prec$ $\ldots \prec A_{n-1} \prec A_{n}$ or $A_{n} \prec A_{n-1} \prec \ldots \prec A_{2} \prec A_{1}$. Conversely, if either $A_{1} \prec A_{2} \prec \ldots \prec A_{n-1} \prec A_{n}$ or $A_{n} \prec A_{n-1} \prec \ldots \prec A_{2} \prec A_{1}$, then the points $A_{1}, A_{2}, \ldots, A_{n}$ are in order $\left[A_{1} A_{2} \ldots A_{n}\right]$.

Proof. Follows from the two preceding theorems (T 1.2.14, T 1.2.14).
The following simple corollary may come in handy, for example, in discussing properties of vectors on a line.
Corollary 1.2.14.2. If points A, B both precede a point C (in some order, direct or inverse, defined on a line a), they lie on the same side of C.

Proof. We know that $A \prec C \& B \prec C \Rightarrow A \neq C \& B \neq C$. Also, we have $\neg[A C B]$, for $[A C B]$ would imply that either $A \prec C \prec B$ or $B \prec C \prec A$, which contradicts either $B \prec C$ or $A \prec C$ by L 1.2.13.5. Thus, from the definition of C_{A} we see that $B \in C_{A}$, as required.

By definition, an ordered abstract ${ }^{49}$ interval is an ordered pair of points. A pair (A, B) will be denoted by $\overrightarrow{A B}$, where the first point of the pair A is called the beginning, or initial point, of $\overrightarrow{A B}$, and the second point of the pair B is called the end, or final point, of the ordered interval $\overrightarrow{A B}$. A pair (A, A) (i.e. (A, B) with $A=B$) will be referred to as a zero ordered abstract interval. A non-zero ordered abstract interval (A, B), i.e. $(A, B), A \neq B$, will also be referred to as a proper ordered abstract interval, although in most cases we shall leave out the words "non-zero" and "proper" whenever this usage is perceived not likely to cause confusion.

[^16]

Figure 1.26: $(O A)$ is the intersection of rays O_{A} and A_{O}, i.e. $(O A)=O_{A} \cap A_{O}$.

Figure 1.27: O_{A}^{c} is complementary to O_{A}

The concept of a non-zero ordered abstract interval is intimately related to the concept of line order. For the remainder of this subsection we shall usually assumed that one of the two possible orders (precedence relations) on a is chosen and fixed on some given (in advance) line a. A non-zero ordered (abstract) interval $\overrightarrow{A B}$ lying on a (i.e. such that $A \in a, B \in a$) is said to have positive direction (with respect to the given order on a) iff A precedes B on a. Similarly, a non-zero ordered interval $\overrightarrow{A B}$ lying on a is said to have negative direction (with respect to the given order on a) iff B precedes A on a.

A non-zero (abstract) ordered interval $\overrightarrow{A B}$ is said to have the same direction as a non-zero ordered interval $\overrightarrow{C D}$ (lying on the same line a) iff either both $\overrightarrow{A B}$ and $\overrightarrow{C D}$ have positive direction on a or both $\overrightarrow{A B}$ and $\overrightarrow{C D}$ have negative direction on a. If either $\overrightarrow{A B}$ has positive direction on a and $\overrightarrow{C D}$ negative direction, or $\overrightarrow{A B}$ has negative direction on a and $\overrightarrow{C D}$ positive direction, we say that the ordered intervals $\overrightarrow{A B}, \overrightarrow{C D}$ have opposite directions (on a).

Obviously, the relation "to have the same direction as", defined on the class of all non-zero ordered intervals lying on a given line a, is an equivalence.

Consider a collinear set of points \mathcal{A}, i.e. a set $\mathcal{A} \subset \mathcal{P}_{a}$ of points lying on some line a. We further assume that one of the two possible orders (precedence relations) on a is chosen. A transformation $f: \mathcal{A} \rightarrow \mathcal{A}$ is called sensepreserving if for any points $A, B \in \mathcal{A}$ the precedence $A \prec B$ implies $f(A) \prec f(B)$. A transformation $f: \mathcal{A} \rightarrow \mathcal{A}$ is called sense-reversing if for any points $A, B \in \mathcal{A}$ the precedence $A \prec B$ implies $f(B) \prec f(A)$. In other words, the sense-preserving transformations transform non-zero (abstract) ordered intervals into ordered intervals with the same direction, and the sense-reversing transformations transform non-zero (abstract) ordered intervals into ordered intervals with the opposite direction.

Obviously, as we have noted above in different terms, the composition of any two sense-preserving transformations of a line set \mathcal{A} is a sense-preserving transformation, as is the composition of any two sense-reversing transformations. On the other hand, for line sets the composition of a sense-preserving transformation and a sense-reversing transformation, taken in any order, is a sense-reversing transformation.

Complementary Rays

Lemma 1.2.15.1. An interval $(O A)$ is the intersection of the rays O_{A} and A_{O}, i.e. $(O A)=O_{A} \cap A_{O}$.
Proof. (See Fig. 1.26) $B \in(O A) \Rightarrow[O B A]$, whence by L1.2.1.3, A 1.2.1, A 1.2.3 $B \in a_{O A}=a_{A O}, B \neq O, B \neq A$, $\neg[B O A]$, and $\neg[B A O]$, which means $B \in O_{A}$ and $B \in A_{O}$.

Suppose now $B \in O_{A} \cap A_{O}$. Hence $B \in a_{O A}, B \neq O, \neg[B O A]$ and $B \in a_{A O}, B \neq A, \neg[B A O]$. Since O, A, B are collinear and distinct, by $\mathrm{T} 1.2 .2[B O A] \vee[B A O] \vee[O B A]$. But since $\neg[B O A], \neg[B A O]$, we find that $[O B A]$.

Given a ray O_{A}, define the ray O_{A}^{c}, complementary to the ray O_{A}, as $O_{A}^{c} \rightleftharpoons \mathcal{P}_{a_{O A}} \backslash\left(\{O\} \cup O_{A}\right)$. In other words, the ray O_{A}^{c}, complementary to the ray O_{A}, is the set of all points lying on the line $a_{O A}$ on the opposite side of the point O from the point A. (See Fig. 1.27) An equivalent definition is provided by

Lemma 1.2.15.2. $O_{A}^{c}=\{B \mid[B O A]\}$. We can also write $O_{A}^{c}=O_{D}$ for any D such that $[D O A]$.
Proof. See L 1.2.11.6, L 1.2.11.3.

Lemma 1.2.15.3. The ray $\left(O_{A}^{c}\right)^{c}$, complementary to the ray O_{A}^{c}, complementary to the given ray O_{A}, coincides with the ray $O_{A}:\left(O_{A}^{c}\right)^{c}=O_{A}$.

Proof. $\mathcal{P}_{a_{O A}} \backslash\left(\{O\} \cup\left(\mathcal{P}_{a_{O A}} \backslash\left(\{O\} \cup O_{A}\right)\right)=O_{A} \square\right.$
Lemma 1.2.15.4. Given a point C on a ray O_{A}, the ray O_{A} is a disjoint union of the half - open interval (OC] and the ray C_{O}^{c}, complementary to the ray C_{O} : $O_{A}=(O C] \cup C_{O}^{c}$.
Proof. By L 1.2.11.3 $O_{C}=O_{A}$. Suppose $M \in O_{C} \cup C_{O}^{c}$. By A 1.2.3, L 1.2.1.3, A 1.2.1 $[O M C] \vee M=C \vee[O C M] \Rightarrow$ $\neg[M O C] \& M \neq O \& M \in a_{O C} \Rightarrow M \in O_{A}=O_{C}$.

Conversely, if $M \in O_{A}=O_{C}$ and $M \neq C$ then $M \in a_{O C} \& M \neq C \& M \neq O \& \neg[M O C] \stackrel{\mathrm{T} 1.2 .2}{\Longrightarrow}[O M C] \vee[O C M] \Rightarrow$ $M \in(O C) \vee M \in C_{O}^{c}$.

Figure 1.28: $A_{1 A_{n}}$ is a disjoint union of $\left(A_{i} A_{i+1}\right], i=1,2, \ldots, n-1$, with $A_{n A_{k}}^{c}$.

Lemma 1.2.15.5. Given on a line $a_{O A}$ a point B, distinct from O, the point B lies either on O_{A} or on O_{A}^{c}.
Theorem 1.2.15. Let a finite sequence of points $A_{1}, A_{2}, \ldots, A_{n}, n \in \mathbb{N}$, be numbered in such a way that, except for the first and (in the finite case) the last, every point lies between the two points with adjacent (in \mathbb{N}) numbers. (See Fig. 1.12) Then the ray $A_{1 A_{n}}$ is a disjoint union of half-closed intervals $\left(A_{i} A_{i+1}\right], i=1,2, \ldots, n-1$, with the ray $A_{n A_{k}}^{c}$, complementary to the ray $A_{n A_{k}}$, where $k \in\{1,2, \ldots, n-1\}$, i.e.

$$
A_{1 A_{n}}=\bigcup_{i=1}^{n-1}\left(A_{i} A_{i+1}\right] \cup A_{n A_{k}}^{c} .
$$

Proof. (See Fig. 1.28) Observe that $\left[A_{1} A_{k} A_{n}\right] \stackrel{\text { L1.2.15.5 }}{\Longrightarrow} A_{n A_{k}}=A_{n A_{1}}$, then use L 1.2.7.7, L 1.2.15.4.

Point Sets on Rays

Given a point O on a line a, a nonempty point set $\mathcal{B} \subset \mathcal{P}_{a}$ is said to lie on line a on the same side (on the opposite side) of the point O as (from) a nonempty set $\mathcal{A} \subset \mathcal{P}_{a}$ iff for all $A \in \mathcal{A}$ and all $B \in \mathcal{B}$ the point B lies on the same side (on the opposite side) of the point O as (from) the point $A \in \mathcal{A}$. If the set \mathcal{A} (the set \mathcal{B}) consists of a single element, we say that the set \mathcal{B} (the point B) lies on line a on the same side of the point O as the point A (the set $\mathcal{A})$.
Lemma 1.2.16.1. If a set $\mathcal{B} \subset \mathcal{P}_{a}$ lies on line a on the same side of the point O as a set $\mathcal{A} \subset \mathcal{P}_{a}$, then the set \mathcal{A} lies on line a on the same side of the point O as the set \mathcal{B}.

Proof. See L 1.2.11.5.
Lemma 1.2.16.2. If a set $\mathcal{B} \subset \mathcal{P}_{a}$ lies on line a on the same side of the point O as a set $\mathcal{A} \subset \mathcal{P}_{a}$, and a set $\mathcal{C} \subset \mathcal{P}_{a}$ lies on line a on the same side of the point O as the set \mathcal{B}, then the set \mathcal{C} lies on line a on the same side of the point O as the set \mathcal{A}.

Proof. See L 1.2.11.5.
Lemma 1.2.16.3. If a set $\mathcal{B} \subset \mathcal{P}_{a}$ lies on line a on the opposite side of the point O from a set $\mathcal{A} \subset \mathcal{P}_{a}$, then the set \mathcal{A} lies on line a on the opposite side of the point O from the set \mathcal{B}.

Proof. See L 1.2.11.6.
In view of symmetry of the relations, established by the lemmas above, if a set $\mathcal{B} \subset \mathcal{P}_{a}$ lies on line a on the same side (on the opposite side) of the point O as a set (from a set) $\mathcal{A} \subset \mathcal{P}_{a}$, we say that the sets \mathcal{A} and \mathcal{B} lie on line a on one side (on opposite sides) of the point O.
Lemma 1.2.16.4. If two distinct points A, B lie on a ray O_{C}, the open interval $(A B)$ also lies on the ray O_{C}.
Proof. By L 1.2.11.8 $[O A B] \vee[O B A]$, whence by T 1.2.15 $(A B) \subset O_{A}=O_{C}$.
Given an interval $A B$ on a line $a_{O C}$ such that the open interval $(A B)$ does not contain O, we have (L 1.2.16.5L 1.2.16.7):
Lemma 1.2.16.5. If one of the ends of $(A B)$ is on the ray O_{C}, the other end is either on O_{C} or coincides with O.
Proof. Let, say, $B \in O_{C}$. By L 1.2.11.3 $O_{B}=O_{C}$. Assuming the contrary to the statement of the lemma, we have $A \in O_{B}^{c} \Rightarrow[A O B] \Rightarrow O \in(A B)$, which contradicts the hypothesis.

Lemma 1.2.16.6. If $(A B)$ has common points with the ray O_{C}, either both ends of $(A B)$ lie on O_{C}, or one of them coincides with O.

Proof. By hypothesis $\exists M M \in(A B) \cap O_{C} . M \in O_{C} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{M}=O_{C}$. Assume the contrary to the statement of the lemma and let, say, $A \in O_{M}^{c}$. Then $[A O M] \&[A M B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A O B] \Rightarrow O \in(A B)$ - a contradiction.
Lemma 1.2.16.7. If $(A B)$ has common points with the ray O_{C}, the interval $(A B)$ lies on $O_{C},(A B) \subset O_{C}$.
Proof. Use L 1.2.16.6 and L 1.2.15.4 or L 1.2.16.4.
Lemma 1.2.16.8. If A and B lie on one ray O_{C}, the complementary rays A_{O}^{c} and B_{O}^{c} lie on line $a_{O C}$ on one side of the point O.

Lemma 1.2.16.9. If an open interval $(C D)$ is included in an open interval $(A B)$, neither of the ends of ($A B$) lies on $(C D)$.

Proof. $A \notin(C D), B \notin(C D)$, for otherwise $(A \in(C D) \vee B \in(C D)) \&(C D) \subset(A B) \Rightarrow A \in(A B) \vee B \in(A B)$, which is absurd as it contradicts A 1.2.1.

Lemma 1.2.16.10. If an open interval $(C D)$ is included in an open interval $(A B)$, the closed interval $[C D]$ is included in the closed interval $[A B] .{ }^{50}$

Proof. By T 1.2.1 $\exists E[C E D] . E \in(C D) \&(C D) \subset(A B) \stackrel{\text { L1.2.15.1 }}{\Longrightarrow} E \in(C D) \cap\left(A_{B} \cap B_{A}\right) . A \notin(C D) \& B \notin$ $(C D) \& E \in A_{B} \cap(C D) \& E \in B_{A} \cap(C D) \stackrel{L 1.2 .16 .6}{\Longrightarrow} C \in A_{B} \cup\{A\} \& C \in B_{A} \cup\{B\} \& D \in A_{B} \cup\{A\} \& D \in$ $B_{A} \cup\{B\} \Rightarrow C \in\left(A_{B} \cap B_{A}\right) \cup\{A\} \cup\{B\} \& D \in\left(A_{B} \cap B_{A}\right) \cup\{A\} \cup\{B\} \stackrel{\mathrm{L} 1.2 .15 .1}{\Longrightarrow} C \in[A B] \& D \in[A B]$.

Corollary 1.2.16.11. For intervals $A B, C D$ both inclusions $(A B) \subset(C D),(C D) \subset(A B)$ (i.e., the equality $(A B)=(C D))$ holds iff the (abstract) intervals $A B, C D$ are identical.

Proof. \#1. $(C D) \subset(A B) \xrightarrow{\text { L1.2.16.10 }}[C D] \subset[A B] \Rightarrow C \in[A B] \& D \in[A B]$. On the other hand, $(A B) \subset(C D) \xrightarrow{\text { L1.2.16.9 }}$ $C \notin(A B) \& D \notin(A B)$.
$\# 2 . ~(A B) \subset(C D) \&(C D) \subset(A B) \xrightarrow{\text { L1.2.16.10 }}[A B] \subset[C D] \&[C D] \subset[A B] .(A B)=(C D) \&[A B]=[C D] \Rightarrow$ $\{A, B\}=[A B] \backslash(A B)=[C D] \backslash(C D)=\{C, D\}$.

Lemma 1.2.16.12. Both ends of an interval $C D$ lie on a closed interval $[A B]$ iff the open interval $(C D)$ is included in the open interval $(A B)$.

Proof. Follows immediately from L 1.2.3.5, L 1.2.16.10.
We can put some of the results above (as well as some of the results we encounter in their particular cases below) into a broader context as follows.

A point set \mathcal{A} is called convex if $A \in \mathcal{A} \& B \in \mathcal{A}$ implies $(A B) \subset \mathcal{A}$ for all points $A, B \mathcal{A}$.
Theorem 1.2.16. Consider a ray O_{A}, a point $B \in O_{A}$, and a convex set \mathcal{A} of points of the line $a_{O A}$. If $B \in \mathcal{A}$ but $O \notin \mathcal{A}$ then $\mathcal{A} \subset O_{A} .{ }^{51}$

Proof. Suppose that there exists $C \in O_{A}^{c} \cap \mathcal{A}$. Then $O \in \mathcal{A}$ in view of convexity, contrary to hypothesis. Since $\mathcal{A} \subset \mathcal{P}_{a}$ and $O_{A}^{c} \cap \mathcal{A}=\emptyset, O \notin \mathcal{A}$, we conclude that $\mathcal{A} \subset O_{A}$.

Basic Properties of Half-Planes

We say that a point B lies in a plane α on the same side (on the opposite (other) side) of a line a as the point A (from the point A) iff:

- Both A and B lie in plane α;
- a lies in plane α and does not contain A, B;
- a meets (does not meet) the interval $A B$;
and write this as $(A B a)_{\alpha}\left((A a B)_{\alpha}\right)$.
Thus, we let, by definition
$(A B a)_{\alpha} \stackrel{\text { def }}{\Longrightarrow} A \notin a \& B \notin a \& \neg \exists C(C \in a \&[A C B]) \& A \in \alpha \& B \in \alpha$; and
$(A a B)_{\alpha} \stackrel{\text { def }}{\Longleftrightarrow} A \notin a \& B \notin a \& \exists C(C \in a \&[A C B]) \& A \in \alpha \& B \in \alpha$.
Lemma 1.2.17.1. The relation "to lie in plane α on the same side of a line a as", i.e. the relation $\rho \subset \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \times$ $\mathcal{P}_{\alpha} \backslash \mathcal{P}_{a}$ defined by $(A, B) \in \rho \stackrel{\text { def }}{\Longleftrightarrow} A B a$, is an equivalence on $\mathcal{P}_{\alpha} \backslash \mathcal{P}_{a}$.

Proof. By A 1.2.1 $A A a$ and $A B a \Rightarrow B A a$. To prove $A B a \& B C a \Rightarrow A C a$ assume the contrary, i.e. that $A B a, B C a$ and $A a C$. Obviously, $A a C$ implies that $\exists D D \in a \&[A D C]$. Consider two cases:

If $\exists b(A \in b \& B \in b \& C \in b)$, by T 1.2.2 $[A B C] \vee[B A C] \vee[A C B]$. But $[A B C] \&[A D C] \& D \neq B \xrightarrow{T 1.2 .5}$ $[A D B] \vee[B D C],[B A C] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[B D C],[A C B] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A D B]$, which contradicts $A B a \& B C a$.

If $\neg \exists b(A \in b \& B \in b \& C \in b)$ (see Fig. 1.29), then $A \notin a \& B \notin a \& C \notin a \& a \subset \alpha=\alpha_{A B C} \& \exists D(D \in$ $a \&[A D C]) \stackrel{\text { A1.2.4 }}{\Longrightarrow} \exists E(E \in a \&[A E B]) \vee \exists F(F \in a \&[B F C])$, which contradicts $A B a \& B C a$.

A half-plane $\left(a_{A}\right)_{\alpha}$ is, by definition, the set of points lying in plane α on the same side of the line a as the point B, i.e. $a_{A} \rightleftharpoons\{B \mid A B a\} .{ }^{52}$ The line a is called the edge of the half-plane a_{A}. The edge a of a half-plane χ will also sometimes be denoted by $\partial \chi$.

[^17]

Figure 1.29: If A, B and B, C lie on one side of a, so do A, C.

Lemma 1.2.17.2. The relation "to lie in plane α on the opposite side of the line a from" is symmetric.
Proof. Follows from A 1.2.1.
In view of symmetry of the corresponding relations, if a point B lies in plane α on the same side of a line a as (on the opposite side of a line a from) a point A, we can also say that the points A and B lie in plane α on one side (on opposite (different) sides) of the line a.

Lemma 1.2.17.3. A point A lies in the half-plane a_{A}.
Lemma 1.2.17.4. If a point B lies in a half-plane a_{A}, then the point A lies in the half-plane a_{B}.
Lemma 1.2.17.5. Suppose a point B lies in a half-plane a_{A}, and a point C in the half-plane a_{B}. Then the point C lies in the half-plane a_{A}.

Lemma 1.2.17.6. If a point B lies on a half-plane a_{A} then $a_{B}=a_{A}$.
Proof. To show $a_{B} \subset a_{A}$ note that $C \in a_{B} \& B \in a_{A} \stackrel{\text { C1.2.17.5 }}{\Longrightarrow} C \in a_{A}$. Since $B \in a_{A} \xrightarrow{\text { C1.2.17.4 }} A \in a_{B}$, we have $C \in a_{A} \& A \in a_{B} \stackrel{\mathrm{C} 1.2 .17 .5}{\Longrightarrow} C \in a_{B}$ and thus $a_{A} \subset a_{B}$.

Lemma 1.2.17.7. If half-planes a_{A} and a_{B} have common points, they are equal.
Proof. $a_{A} \cap a_{B} \neq \emptyset \Rightarrow \exists C C \in a_{A} \& C \in a_{B} \stackrel{\text { L1.2.17.6 }}{\Longrightarrow} a_{A}=a_{C}=a_{B}$.
Lemma 1.2.17.8. Let A, B be two points in plane α not lying on the line $a \subset \alpha$. Then the points A and B lie either on one side or on opposite sides of the line a.

Proof. Follows immediately from the definitions of "to lie on one side" and "to lie on opposite side".
Lemma 1.2.17.9. If points A and B lie on opposite sides of a line a, and B and C lie on opposite sides of the line a, then A and C lie on the same side of a.

Proof. (See Fig. 1.30.) $A a B \& B a C \Rightarrow \exists D(D \in a \&[A D B]) \& \exists E(E \in a \&[B E C]) \stackrel{T 1.2 .6}{\Longrightarrow} \neg \exists F(F \in a \&[A F C]) \Rightarrow$ ACa. ${ }^{53}$

Lemma 1.2.17.10. If a point A lies in plane α on the same side of the line a as a point C and on the opposite side of a from a point B, the points B and C lie on opposite sides of the line a.

Proof. Points B, C cannot lie on the same side of a, because otherwise $A C a \& B C a \Rightarrow A B a$ - a contradiction. Then $B a C$ by L 1.2.17.8.

Lemma 1.2.17.11. Let points A and B lie in plane α on opposite sides of the line a, and points C and D - on the half planes a_{A} and a_{B}, respectively. Then the points C and D lie on opposite sides of a.

Proof. $A C a \& A a B \& B D a \xrightarrow{\text { L1.2.17.10 }} C a D$.
Theorem 1.2.17. Proof.

[^18]

Figure 1.30: If A and B, as well as B and C, lie on opposite sides of a, A and C lie on the same side of a.

Point Sets on Half-Planes

Given a line a on a plane α, a nonempty point set $\mathcal{B} \subset \mathcal{P}_{\alpha}$ is said to lie in plane α on the same side (on the opposite side) of the line a as (from) a nonempty set $\mathcal{A} \subset \mathcal{P}_{\alpha}$, written $(\mathcal{A B} a)_{\alpha}$ or simply $\mathcal{A B} a\left((\mathcal{A} a \mathcal{B})_{\alpha}\right.$ or simply $\left.\mathcal{A} a \mathcal{B}\right)$ iff for all $A \in \mathcal{A}$ and all $B \in \mathcal{B}$ the point B lies on the same side (on the opposite side) of the line a as (from) the point $A \in \mathcal{A}$. If the set \mathcal{A} (the set \mathcal{B}) consists of a single element (i.e., only one point), we say that the set \mathcal{B} (the point B) lies in plane a on the same side of the line a as the point A (the set \mathcal{A}).

If all elements of a point set \mathcal{A} lie in some plane α on one side of a line a, it is legal to write $a_{\mathcal{A}}$ to denote the side of a that contains all points of \mathcal{A}.

Lemma 1.2.18.1. If a set $\mathcal{B} \subset \mathcal{P}_{\alpha}$ lies in plane α on the same side of the line a as a set $\mathcal{A} \subset P_{\alpha}$, then the set \mathcal{A} lies in plane α on the same side of the line a as the set \mathcal{B}.

Proof. See L 1.2.17.1.

Lemma 1.2.18.2. If a set $\mathcal{B} \subset \mathcal{P}_{\alpha}$ lies in plane α on the same side of the line a as a set $\mathcal{A} \subset P_{\alpha}$, and a set $\mathcal{C} \subset \mathcal{P}_{\alpha}$ lies in plane α on the same side of the line a as the set \mathcal{B}, then the set \mathcal{C} lies in plane α on the same side of the line a as the set \mathcal{A}.

Proof. See L 1.2.17.1.

Lemma 1.2.18.3. If a set $\mathcal{B} \subset \mathcal{P}_{\alpha}$ lies in plane α on the opposite side of the line a from a set $\mathcal{A} \subset P_{\alpha}$, then the set \mathcal{A} lies in plane α on the opposite side of the line a from the set \mathcal{B}.

Proof. See L 1.2.17.2.

The lemmas L 1.2.17.9 - L 1.2.17.11 can be generalized in the following way:
Lemma 1.2.18.4. If point sets \mathcal{A} and \mathcal{B} lie on opposite sides of a line a, and the sets \mathcal{B} and \mathcal{C} lie on opposite sides of the line a, then \mathcal{A} and \mathcal{C} lie on the same side of a.

Lemma 1.2.18.5. If a point set \mathcal{A} lies in plane α on the same side of the line a as a point set \mathcal{C} and on the opposite side of a from the point set \mathcal{B}, the point sets \mathcal{B} and \mathcal{C} lie on opposite sides of the line a.

Proof.

Lemma 1.2.18.6. Let point sets \mathcal{A} and \mathcal{B} lie in plane α on opposite sides of the line a, and point sets \mathcal{C} and \mathcal{D} on the same side of a as \mathcal{A} and \mathcal{B}, respectively. Then \mathcal{C} and \mathcal{D} lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set $\mathcal{B} \subset \mathcal{P}_{\alpha}$ lies in plane α on the same side (on the opposite side) of the line a as a set (from a set) $\mathcal{A} \subset P_{\alpha}$, we say that the sets \mathcal{A} and \mathcal{B} lie in plane α on one side (on opposite sides) of the line a.

Theorem 1.2.18. Proof.

Figure 1.31: A line b parallel to a and having common points with a_{A}, lies in a_{A}.

Figure 1.32: Given a ray O_{B} with a point C on $\alpha_{a A}$, not meeting a line a, if O lies in a_{A}, so does O_{B}.

Complementary Half-Planes

Given a half-plane a_{A} in plane α, we define the half-plane a_{A}^{c}, complementary to the half-plane a_{A}, as $\mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}\right)$.
An alternative definition of complementary half-plane is provided by the following
Lemma 1.2.19.1. Given a half-plane a_{A}, the complementary half-plane a_{A}^{c} is the set of points B such that the open interval $(A B)$ meets the line $a: a_{A}^{c} \rightleftharpoons\{\exists O O \in a \&[O A B]\}$. Thus, a point C lying in α outside a lies either on a_{A} or on a_{A}^{c}.

Proof. $B \in \mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}\right) \stackrel{\text { L1.2.17.8 }}{\Longleftrightarrow} A a B \Leftrightarrow \exists O O \in a \&[A O B]$.
Lemma 1.2.19.2. The half-plane $\left(a_{A}^{c}\right)^{c}$, complementary to the half-plane a_{A}^{c}, complementary to the half-plane a_{A}, coincides with the half-plane a_{A} itself.

Proof. In fact, we have $a_{A}=\mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup\left(\mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}\right)\right)\right)=\left(a_{A}^{c}\right)^{c}$.
Lemma 1.2.19.3. A line b that is parallel to a line a and has common points with a half-plane a_{A}, lies (completely) in a_{A}.

Proof. (See Fig. 1.31, a).) $B \in a_{A} \Rightarrow B \in \alpha_{a A} . a \subset \alpha \& a \subset \alpha_{a A} \& B \in \alpha \& B \in \alpha_{a A} \stackrel{\text { A1.1.2 }}{\Longleftrightarrow} \alpha=\alpha_{a A}$. By hypothesis, $b \cap a=\emptyset$. To prove that $b \cap a_{A}^{c}=\emptyset$ suppose that $\exists D D \in b \cap a_{A}^{c}$ (see Fig. 1.31, b).). Then $A B a \& A a D \xrightarrow{\text { L1.2.17.10 }}$ $\exists C C \in a \&[B C D] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} \exists C C \in a \cap a_{B D}=b-$ a contradiction. Thus, we have shown that $b \subset \mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}^{c}\right)=a_{A}$.

Given a ray O_{B}, having a point C on plane $\alpha_{a A}$ and not meeting a line a
Lemma 1.2.19.4. - If the origin O lies in half-plane $a_{A}{ }^{54}$, so does the whole ray O_{B}.
Proof. (See Fig. 1.32.) $O \in \alpha_{a A} \cap a_{O B} \& C \in \alpha_{a A} \cap O_{B} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{O B} \subset \alpha_{a A}$. By hypothesis, $O_{B} \cap a=\emptyset$. To prove $O_{B} \cap a_{A}^{c}=\emptyset$, suppose $\exists F F \in O_{B} \cap a_{A}^{c}$. Then $O \in a_{A} \& F \in a_{A}^{c} \Rightarrow \exists E E \in a \&[O E F] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} \exists E E \in a \cap O_{B}-\mathrm{a}$ contradiction. Thus, $O_{B} \subset \mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}^{c}\right)=a_{A}$.

[^19]

Figure 1.33: Given a ray O_{B}, not meeting a line a, and containing a point $C \in \alpha_{a A}$, if O_{B} and a_{A} share a point D, distinct from C, then: a) O lies in a_{A} or on a; b) O_{B} lies in a_{A}.

Figure 1.34: Given an open interval $(D B)$, not meeting a line a and having a point C on plane $\alpha_{a A}$, if one of the ends of $(D B)$ lies in $a_{A},(D B)$ lies in a_{A} and its other end lies either on a_{A} or on a.

Lemma 1.2.19.5. - If the ray O_{B} and the half-plane a_{A} have a common point D, distinct from C^{55}, then:
a) The initial point O of O_{B} lies either in half-plane a_{A} or on (its edge) line a;
b) The whole ray O_{B} lies in half-plane a_{A}.

Proof. a) (See Fig. 1.33, a).) $D \in \alpha_{a A} \cap O_{B} \& C \in \alpha_{a A} \cap O_{B} \stackrel{\text { L1.1.1.8 }}{\Longrightarrow} O_{B} \subset \alpha_{a A}$. To prove $O \notin a_{A}^{c}$ suppose $O \in a_{A}^{c}$. Then $D \in a_{A} \& O \in a_{A}^{c} \exists E E \in a \&[O E D] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} \exists E E \in a \cap O_{B}$ - a contradiction. We see that $O \in \mathcal{P}_{\alpha} \backslash a_{A}^{c}=a_{A} \cup \mathcal{P}_{a}$.
b) (See Fig. 1.33, b).)By hypothesis, $a \cap O_{B}=\emptyset$. If $\exists F F \in O_{B} \cap a_{A}^{c}$, we would have $D \in a_{A} \& F \in a_{A}^{c} \Rightarrow \exists E E \in$ $a \&[D E F] \stackrel{\text { L1.2.16.4 }}{\Longrightarrow} \exists E E \in a \cap O_{B}$ - a contradiction. Therefore, $O_{B} \subset \mathcal{P}_{\alpha} \backslash\left(\mathcal{P}_{a} \cup a_{A}^{c}\right)=a_{A}$.

Given an open interval $(D B)$ having a point C on plane $\alpha_{a A}$ and not meeting a line a
Lemma 1.2.19.6. - If one of the ends of $(D B)$ lies in half-plane a_{A}, the open interval $(D B)$ completely lies in half-plane a_{A} and its other end lies either on a_{A} or on line a.

Proof. (See Fig. 1.34.) $D \in \alpha_{a A} \& C \in \alpha_{a A} \cap(D B) \stackrel{P 1.2 .5 .3}{\Longrightarrow} a_{D B} \subset \alpha_{a A} \Rightarrow(D B) \subset \alpha_{a A}$. If $B \in a_{A}^{c}$ then $D \in a_{A} \& B \in a_{A}^{c} \Rightarrow \exists E E \in a \&[D E B]$ - a contradiction. By hypothesis, $(D B) \cap a=\emptyset$. To prove $(D B) \cap a_{A}^{c}=\emptyset$, suppose $F \in(D B) \cap a_{A}^{c}$. Then $D \in a_{A} \& F \in a_{A}^{c} \exists E E \in a \&[D E F]$. But $[D E F] \&[D F B] \xrightarrow{\text { L1.2.3.2 }}[D E B]$ - a contradiction.

Lemma 1.2.19.7. - If the open interval $(D B)$ and the half-plane a_{A} have at least one common point G, distinct from C, then the open interval $(D B)$ lies completely in a_{A}, and either both its ends lie in a_{A}, or one of them lies in a_{A}, and the other on line a.
Proof. By L 1.1.1.8 $G \in \alpha_{a A} \cap(D B) \& C \in \alpha_{a A} \cap(D B) a_{B D} \stackrel{\text { P1.2.5.3 }}{\Rightarrow} \subset \alpha_{a A} \Rightarrow(D B) \subset \alpha_{a A}$. Both ends of $(D B)$ cannot lie on a, because otherwise by A 1.1.2, L 1.2.1.3 $D \in a \& B \in a \Rightarrow(B D) \subset a \Rightarrow(B D) \cap a_{A}=\emptyset$. Let $D \notin a$. To prove $D \notin a_{A}^{c}$ suppose $D \in a_{A}^{c}$. Then $D \in a_{A}^{c} \&(B D) \cap a=\emptyset \& C \in \alpha_{a A} \cap(B D) \stackrel{\mathrm{L1.2.19.6}}{\Longrightarrow}(D B) \subset a_{A}^{c} \Rightarrow G \in a_{A}^{c}$ a contradiction. Therefore, $D \in a_{A}$. Finally, $D \in a_{A} \&(D B) \cap a=\emptyset \& C \in \alpha_{a A} \cap(D B) \stackrel{\text { L1.2.19.6 }}{\Longrightarrow}(B D) \subset a_{A}$.

Lemma 1.2.19.8. A ray O_{B} having its initial point O on a line a and one of its points C on a half-plane a_{A}, lies completely in a_{A}, and its complementary ray O_{B}^{c} lies completely in the complementary half-plane a_{A}^{c}.

In particular, given a line a and points $O \in a$ and $A \notin a$, we always have $O_{A} \subset a_{A}, O_{A}^{c} \subset a_{A}^{c}$. We can thus write $a_{A}^{c}=a_{O_{A}^{c}}$.

[^20]

Figure 1.35: A ray O_{B} with its initial point O on a and one of its points C on a_{A}, lies in a_{A}, and O_{B}^{c} lies in a_{A}^{c}.

Proof. (See Fig. 1.35.) $O \in a \subset \alpha_{a A} \& C \in a_{A} \subset \alpha_{a A} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{O C} \subset \alpha_{a A} . O_{B} \cap a=\emptyset$, because if $\exists E E \in O_{B} \& E \in a$, we would have $O \in a_{O B} \cap a \& O \in a_{O B} \cap a \stackrel{\text { A1.1.2 }}{\Longrightarrow} a=a_{O B} \Rightarrow C \in a$ - a contradiction. $O_{B} \subset a_{O B}=a_{O C} \subset \alpha_{a A} \& C \in$ $O_{B} \cap a_{A} \& O_{B} \cap a=\emptyset \stackrel{\text { L1.2.19.5 }}{\Longrightarrow} O_{B} \subset a_{A}$. By A $1.2 .1 \exists F[B O F]$. Since $F \in O_{B}^{c} \cap a_{A}^{c}$, by preceding argumentation we conclude that $O_{B}^{c} \subset a_{A}^{c}$.

Lemma 1.2.19.9. If one end of an open interval ($D B$) lies in half - plane a_{A}, and the other end lies either in a_{A} or on line a, the open interval $(D B)$ lies completely in a_{A}.
Proof. $D \in a_{A} \& B \in a_{A} \stackrel{\text { P1.2.5.3 }}{\Longrightarrow}(D B) \subset \alpha_{a A}$. Let $B \in a_{A}$. If $D \in a_{A}$ we note that by L1.2.11.13 $(D B) \subset D_{B}$ and use L 1.2.19.8. Let now $D \in a_{A}$. Then $(D B) \cap a=\emptyset$, because $B \in a_{A} \& E \in(D B) \cap a \Rightarrow D \in a_{A}^{c}$ - a contradiction. Finally, $B \in a_{A} \&(D B) \subset \alpha_{a A} \&(D B) \cap a=\emptyset \stackrel{\text { L1.2.19.5 }}{\Longrightarrow}(D B) \subset a_{A}$.

Lemma 1.2.19.10. Every half-plane contains an infinite number of points. Furthermore, every half-plane contains an infinite number of rays.

Proof.
Lemma 1.2.19.11. There is exactly one plane containing a given half-plane.
Proof.
The plane, containing a given half-plane a_{A} is, of course, the plane $\alpha_{a A}$.
For convenience, (especially when talking about dihedral angles - see p. 87), we shall often denote the plane containing a half-plane χ by $\bar{\chi} \cdot{ }^{56}$.

Lemma 1.2.19.12. Equal half-planes have equal edges.
Proof. Suppose $a_{A}=b_{B}$ and $X \in a$. Then also $\alpha_{a A}=\alpha_{b B},{ }^{57}$ and we have $X \in \alpha_{b B} \& X \notin b_{B} \Rightarrow X \in b \vee X \in b_{B}^{c}$. Suppose $X \in b_{B}^{c}$. Then, taking a point $P \in b_{B}$, we would have $P \in b_{B} \& X \in b_{B}^{c} \Rightarrow \exists M[P M X] \& M \in b$. On the other hand, $X \in a \& P \in b_{B}=a_{A} \&[P M X] \stackrel{\text { L1.2.19.9 }}{\Longrightarrow} M \in b_{B}$, which contradicts $M \in b$. This contradiction shows that, in fact, $X \notin b_{B}^{c}$, and thus $X \in b$. Since we have shown that any point of the line a also lies on the line b, these lines are equal, q.e.d.

Lemma 1.2.19.13. 1 . If a plane α and the edge a of a half-plane χ concur at a point O, the plane α and the half-plane χ have a common ray h with the origin O, and this ray contains all common points of α and χ.

If a plane α and a half-plane χ have a common ray h (and then, of course, they have no other common points), we shall refer to the ray h as the section of the half-plane χ by the plane α.
2. Conversely, if a ray h is the section of a half-plane χ by a plane α, then the plane α and the edge a of the half-plane χ concur at a single point - the origin O of the ray h.

[^21]Proof. 1. Since the planes $\alpha, \bar{\chi}$ have a common point O, they have another common point A. Without loss of generality we can assume $A \in \chi .{ }^{59}$ Then by L 1.2 .19 .8 we have $O_{A} \subset \chi \cap \alpha, O_{A}^{c} \subset \chi^{c} \cap \alpha$, which implies that $O_{A}=\chi \cap \alpha{ }^{60}$
2. We have $h=\chi \cap \alpha \Rightarrow h \subset \chi \stackrel{\text { L1.2.19.5 }}{\Longrightarrow} \partial h \in \chi \cup \partial \chi$. But $O=\partial h \notin h \& h \subset \chi \Rightarrow O \notin \chi$. Hence, $O \in a=\partial \chi$. Since, using L 1.2.19.8, we have $h^{c} \subset \chi^{c}$, together with $\chi^{c} \cap a=\emptyset$, this gives $h^{c} \cap a=\emptyset$. Hence, we have $O=a \cap \alpha$.

Corollary 1.2.19.14. If a ray h is the section of a half-plane χ by a plane α, then the complementary ray h^{c} is the section of the complementary half-plane χ^{c} by α.

Proof.
Lemma 1.2.19.15. Given three distinct points A, O, B on one line b, such that the point O lies on a line a, if A, B lie on one side (on opposite sides) of a, they also lie (on b) on one side (on opposite sides) of the point O.

Proof. Follows from L 1.2.19.8. ${ }^{61}$
Given a strip $a b$ (i.e. a pair of parallel lines a, b), we define its interior, written Int $a b$, as the set of points lying on the same side of the line a as the line b and on the same side of the line b as the line $a .{ }^{62}$ Equivalently, we could take some points A on a and B on b and define Int $a b$ as the intersection $a_{B} \cap b_{A}$.

Lemma 1.2.19.16. If $A \in a, B \in b$, and $a \| b$ then $(A B) \subset$ Int $a b$. Furthermore, $(A B)=\mathcal{P}_{a_{A B}} \cap$ Int $a b$.
Proof. Obviously, $(A B) \subset \mathcal{P}_{a_{A B}} \cap$ Int $a b$ (see L 1.2.1.3, L 1.2.19.9. On the other hand, $C \in a_{A B} \stackrel{\text { T1.2.2 }}{\Longrightarrow} C=A \vee C=$ $B \vee[A B C] \vee[A B C] \vee[C A B]$. From the definition of the interior of the strip $a b$ it is evident that $C \in$ Int $a b$ contradicts all of these options except $[A B C]$, which means that $\mathcal{P}_{a_{A B}} \cap \operatorname{Int} a b \subset(A B)$.

Given a line a with one of the two possible orders (direct or inverse) defined on it, we shall say that the choice of the order defines one of the two possible directions on a. We shall sometimes refer to a line a with direction on it as an oriented or directed line. Thus, an oriented line is the pair consisting of a line and an order defined on it.

Two parallel oriented lines a, b are said to have the same sense (or, loosely speaking, the same direction) iff the following requirements hold for arbitrary points $A, O, B \in a$ and $A^{\prime}, O^{\prime}, B^{\prime} \in b$: If $A \prec O$ on a and $A^{\prime} \prec O^{\prime}$ on b then points A, A^{\prime} lie on the same side of the line $a_{O O^{\prime}}$; if $O \prec B$ on a and $O^{\prime} \prec B^{\prime}$ on b then points B, B^{\prime} lie on the same side of the line $a_{O O^{\prime}}$.

To formulate a simple criteria for deciding whether two given parallel lines have the same sense, we are going to need the following simple lemmas.
Lemma 1.2.19.17. Given two parallel lines a, b and points $A, C \in a, B, D \in b$, all points common to the open interval $(A B)$ and the line $a_{C D}$ (if there are any) lie on the open interval $(C D)$.

Proof. Suppose $X \in(A B) \cap a_{C D}$. By the preceding lemma we have $X \in$ Int ab. Since the points C, X, D are obviously distinct, from T 1.2 .2 we see that either $[X C D]$, or $[C X D]$, or $[C D X]$. But $[X C D]$ would imply that the points X and $D \in b$ lie on opposite sides of the line a, which contradicts $X \in$ Intab. Similarly, we conclude that $\neg[C D X] .{ }^{63}$ Hence $[C X D]$, as required.

Lemma 1.2.19.18. Given two parallel lines a, b and points $A, C \in a, B, D \in b$, if points A, B lie on the same side of the line $a_{C D}$, then the points C, D lie on the same side of the line $a_{A B}$.

Proof. Suppose the contrary, i.e. that the points C, D do not lie on the same side of the line $a_{A B}$. Since, evidently, $C \notin a_{A B}, D \notin a_{A B},{ }^{64}$ this implies that C, D lie on opposite sides of $a_{A B}$. Hence $\exists X\left(X \in(C D) \cap a_{A B}\right)$. From the preceding lemma (L 1.2.19.17) we then have $X \in(C D) \cap(A B)$, which means that A, B lie on opposite sides of $a_{C D}$ - a contradiction. This contradiction shows that in reality the points C, D do lie on the same side of the line $a_{A B}$. \square

Lemma 1.2.19.19. Suppose that for oriented lines a, b and points $A, O \in a, A^{\prime}, O^{\prime} \in b$ wave: $a \| b ; A \prec O$ on a, $A^{\prime} \prec O^{\prime}$ on b, and the points A, A^{\prime} lie on the same side of the line $a_{O O^{\prime}}$. Then the oriented lines a, b have the same direction.

[^22]Proof. ${ }^{65}$ Consider arbitrary points $C, D \in a, C^{\prime}, D^{\prime} \in b$ with the conditions that $C \prec D$ on a and $C^{\prime} \prec D^{\prime}$ on b. We need to show that the points D, D^{\prime} lie on the same side of the line $a_{C C^{\prime}}$.

Suppose first that $C \prec O, C^{\prime} \prec O^{\prime}$. Since also $A \prec O, A^{\prime} \prec O^{\prime}$, and A, A^{\prime} lie on the same side of $a_{O O^{\prime}}$ (by hypothesis), ${ }^{66}$ we see that $C C^{\prime} a_{O O^{\prime}}$. Hence $O O^{\prime} a_{C C^{\prime}}$ from the preceding lemma (L 1.2.19.18). Since also $C \prec D$, $C^{\prime} \prec D^{\prime}$, using again the observation just made, we have $D D^{\prime} a_{C C^{\prime}}$.

Suppose now $C^{\prime}=O^{\prime}$. Without loss of generality we can assume that $[A C O]$. ${ }^{67} A A^{\prime} a_{O O^{\prime}} \Rightarrow O O^{\prime} a_{A A^{\prime}}$. Since $O O^{\prime} a_{A A^{\prime}}$ and C, O lie on the same side of A, we see that $C, C^{\prime}=O^{\prime}$ lie on the same side of $a_{A A^{\prime}}$, whence (again using the preceding lemma (L 1.2.19.18)) $A A^{\prime} a_{C C^{\prime}}$. As, evidently, $[A C D]$ and $\left[A^{\prime} C^{\prime} D^{\prime}\right]$, we find that $D D^{\prime} a_{C C^{\prime}}$, as required.

Finally, suppose $O^{\prime} \prec C^{\prime}$. Again, without loss of generality we can assume that $[A C O]$. Since $A^{\prime} \prec O^{\prime} \prec C^{\prime} \xrightarrow{\mathrm{T} 1.2 .14}$ $\left[A^{\prime} O^{\prime} C^{\prime}\right],{ }^{68}$ we see that C, C^{\prime} lie on the same side of $a_{A A^{\prime}}$, and, consequently, $A A^{\prime} a_{C C^{\prime}}$ (L 1.2.19.18). Finally, from $A \prec C \prec D, A^{\prime} \prec C^{\prime} \prec D^{\prime}$ using the observation made above we see that $D D^{\prime} a_{C C^{\prime}}$, as required.

Lemma 1.2.19.20. Suppose that a line b is parallel to lines a, c and has a point $B \in b$ inside the strip ac. Then the line b lies completely inside ac.

Proof.

Corollary 1.2.19.21. Suppose that a line b is parallel to lines a, c and has a point $B \in b$ lying on an open interval $(A C)$, where $A \in a, C \in c$. Then the line b lies completely inside ac.

Proof. See L 1.2.19.16, L 1.2.19.20.
Lemma 1.2.19.22. If a line b lies completely in a half-plane a_{A}, then the lines a, b are parallel.
Lemma 1.2.19.23. If lines a, b lie on the same side of a line c, they are both parallel to the line c.
Lemma 1.2.19.24. If lines a, b lie on the opposite sides of a line c, they are parallel to each other and are both parallel to the line c.

Lemma 1.2.19.25. If lines a, b lie on opposite sides of a line c, then the lines b, c lie on the same side of the line a. ${ }^{69}$

Proof. Since a, b lie on opposite sides of c, taking points $A \in a, B \in b$, we can find a point $C \in c$ such that $[A C B]$. The rest is obvious (see, for example, L 1.2.19.9).

Lemma 1.2.19.26. Consider lines a, b, c such that $c \| a$ and $c \| b$. If the line c meets at least one open interval $\left(A_{0} B_{0}\right)$, where $A_{0} \in a, B_{0} \in b$, then it meets any open interval $(A B)$ such that $A \in a, B \in b$.

Proof. Denote $C_{0} \rightleftharpoons\left(A_{0} B_{0}\right) \cap c$. Taking arbitrary points $A \in a, B \in b$ we are going to show that $\exists C \in c$ such that $C \in(A B) \cap c$. Since $\left[A_{0} C_{0} B_{0}\right]$ and $c\|a, c\| b$, the lines a, b, c coplane in view of C 1.2.1.10. Therefore, the line c lies in the plane $\alpha_{A_{0} B_{0} A}$ determined by the points A_{0}, B_{0}, A, as well as in the plane $\alpha_{B_{0} A B}$ determined by the points B_{0}, A, B. Furthermore, $c\|a, c\| b$ implies that $A_{0} \notin c, B_{0} \notin c, A \notin c, B \notin c$. Thus, the conditions of A 1.2.4 are met, and applying it twice, we first find that $\exists C^{\prime} \in\left(B A_{0}\right) \cap c$) and then that $\exists C \in(A B) \cap c$, as required.

As before, we can generalize some of our previous considerations using the concept of a convex set.
Lemma 1.2.19.27. Consider a half-plane a_{A}, a point $B \in a_{A}$, and a convex set \mathcal{A} of points of the plane $\alpha_{a A}$. If $B \in \mathcal{A}$ but $\mathcal{A} \cap \mathcal{P}_{a}=\emptyset$ then $\mathcal{A} \subset a_{A} .{ }^{70}$

Proof. Suppose that there exists $C \in a_{A}^{c} \cap \mathcal{A}$. Then $\exists D\left(D \in \mathcal{A} \cap \mathcal{P}_{a}\right)$ in view of convexity, contrary to hypothesis. Since $\mathcal{A} \subset \mathcal{P}_{\alpha}$ and $a_{A}^{c} \cap \mathcal{A}=\emptyset, \mathcal{P}_{a} \cap \mathcal{A}=\emptyset$, we conclude that $\mathcal{A} \subset a_{A}$.

[^23]Theorem 1.2.19. Given a line a, let \mathcal{A} be either

- A set $\left\{B_{1}\right\}$, consisting of one single point B_{1} lying on a half - plane a_{A}; or
- A line b_{1}, parallel to a and having a point B_{1} on a_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$ having a point C_{1} on $\alpha_{a A}$ and not meeting the line a, such that the initial point O or one of its points D_{1} distinct from C_{1} lies on a_{A}; or
an open interval $\left(D_{1} B_{1}\right)$ having a point C_{1} on plane $\alpha_{a A}$, and not meeting a line a, such that one of its ends lies in a_{A}, or one of its points, $G_{1} \neq C_{1}$, lies in a_{A}; or

A ray $\left(O_{1}\right)_{B_{1}}$ with its initial point O_{1} on a and one of its points, C_{1}, in a_{A}; or
An interval - like set with both its ends D_{1}, B_{1} in a_{A}, or with one end in a_{A} and the other on a; and let \mathcal{B} be either

- A line b_{2}, parallel to a and having a point B_{2} on a_{A}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ having a point C_{2} on $\alpha_{a A}$ and not meeting the line a, such that the initial point O or one of its points D_{2} distinct from C_{2} lies on a_{A}; or
- An open interval $\left(D_{2} B_{2}\right)$ having a point C_{2} on plane $\alpha_{a A}$, and not meeting a line a, such that one of its ends lies in a_{A}, or one of its points, $G_{2} \neq C_{2}$, lies in a_{A}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ with its initial point O_{2} on a and one of its points, C_{2}, in a_{A}; or
- An interval - like set with both its ends D_{2}, B_{2} in a_{A}, or with one end in a_{A} and the other on a.

Then the sets \mathcal{A} and \mathcal{B} lie in plane $\alpha_{a A}$ on one side of the line a.
Proof.
Theorem 1.2.20. Given a line a, let \mathcal{A} be either

- A set $\left\{B_{1}\right\}$, consisting of one single point B_{1} lying on a half - plane a_{A}; or
- A line b_{1}, parallel to a and having a point B_{1} on a_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$ having a point C_{1} on $\alpha_{a A}$ and not meeting the line a, such that the initial point O or one of its points D_{1} distinct from C_{1} lies on a_{A}; or
- An open interval $\left(D_{1} B_{1}\right)$ having a point C_{1} on plane $\alpha_{a A}$, and not meeting a line a, such that one of its ends lies in a_{A}, or one of its points, $G_{1} \neq C_{1}$, lies in a_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$ with its initial point O_{1} on a and one of its points, C_{1}, in a_{A}; or
- An interval - like set with both its ends D_{1}, B_{1} in a_{A}, or with one end in a_{A} and the other on a;
and let \mathcal{B} be either
- A line b_{2}, parallel to a and having a point B_{2} on a_{A}^{c}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ having a point C_{2} on $\alpha_{a A}$ and not meeting the line a, such that the initial point O or one of its points D_{2} distinct from C_{2} lies on a_{A}^{c}; or
- An open interval $\left(D_{2} B_{2}\right)$ having a point C_{2} on plane $\alpha_{a A}$, and not meeting a line a, such that one of its ends lies in a_{A}^{c}, or one of its points, $G_{2} \neq C_{2}$, lies in a_{A}^{c}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ with its initial point O_{2} on a and one of its points, C_{2}, in a_{A}^{c}; or
- An interval - like set with both its ends D_{2}, B_{2} in a_{A}^{c}, or with one end in a_{A}^{c} and the other on a.

Then the sets \mathcal{A} and \mathcal{B} lie in plane $\alpha_{a A}$ on opposite sides of the line a.
Proof.
A non-ordered couple of distinct non-complementary rays $h=O_{A}$ and $k=O_{B}, k \neq h^{c}$, with common initial point O is called an angle $\angle(h, k)_{O}$, written also as $\angle A O B$. The point O is called the vertex, ${ }^{71}$ or origin, of the angle, and the rays h, k (or O_{A}, O_{B}, depending on the notation chosen) its sides. Our definition implies $\angle(h, k)=\angle(k, h)$ and $\angle A O B=\angle B O A$.

Basic Properties of Angles

Lemma 1.2.21.1. If points C, D lie respectively on the sides $h=O_{A}$ and $k=O_{B}$ of the angle $\angle(h, k)$ then $\angle C O D=\angle(h, k)$.

Proof. (See Fig. 1.36.) Immediately follows from L 1.2.11.3.

Lemma 1.2.21.2. Given an angle $\angle A O B$, we have $B \notin a_{O A}, A \notin a_{O B}$, and the points A, O, B are not collinear. 72

Proof. Otherwise, we would have $B \in a_{O A} \& B \neq O \stackrel{\text { L1.2.15.5 }}{\Longrightarrow} B \in O_{A} \vee B \in O_{A}^{c} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} O_{B}=O_{A} \vee O_{B}=O_{A}^{c}$, contrary to hypothesis that O_{A}, O_{B} form an angle. We conclude that $B \notin a_{O A}$, whence by C 1.1.2.3 $\neg \exists b(A \in$ $b \& O \in b \& B \in b)$ and $A \notin a_{O B}$.

[^24]

Figure 1.36: If points $C \in h=O_{A}$ and $D \in k=O_{B}$ then $\angle C O D=\angle(h, k)$.

Figure 1.37: If C lies inside $\angle A O B, O_{C}$ lies inside $\angle A O B: O_{C} \subset \operatorname{Int} \angle A O B$.

The set of points, or contour, of the angle $\angle(h, k)_{O}$, is, by definition, the set $\mathcal{P}_{\angle(h, k)} \rightleftharpoons h \cup\{O\} \cup k$. We say that a point lies on an angle if it lies on one of its sides or coincides with its vertex. In other words, C lies on $\angle(h, k)$ if it belongs to the set of its points (its contour): $C \in \mathcal{P}_{\angle(h, k)}$.

Lemma 1.2.21.3. For any angle $\angle(h, k), h=O_{A}, k=O_{B}$, there is one and only one plane, containing the angle $\angle(h, k)$, i.e. which contains the set $\mathcal{P} \angle(h, k)$. It is called the plane of the angle $\angle(h, k)$ and denoted $\alpha_{\angle(h, k)}$. Thus, we have $\mathcal{P}_{\angle(h, k)} \subset \alpha_{\angle(h, k)}=\alpha_{A O B}$.

Proof. By L 1.2.21.2 $\neg \exists b(A \in b \& O \in b \& B \in b)$. Hence by A 1.1.4 $\exists \alpha_{A O B}\left(A \in \alpha_{A O B}\right) \& O \in \alpha_{A O B} \& B \in \alpha_{A O B} .{ }^{73}$ $\left(A \in \alpha_{A O B}\right) \& O \in \alpha_{A O B} \& B \in \alpha_{A O B} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{O A} \subset \alpha_{A O B} \& a_{O B} \subset \alpha_{A O B}$. We thus have $\mathcal{P}_{\angle A O B} \subset \alpha_{A O B}$. Since any other plane, containing the angle $\angle A O B$ (i.e., containing $\mathcal{P} \angle A O B$), would contain the three non-collinear points A, O, B, by 1.1.5 there can be only one such plane.

We say that a point X lies inside an angle $\angle(h, k)$ if it lies ${ }^{74}$ on the same side of the line \bar{h} as any of the points of the ray k, and on the same side of the line \bar{k} as any of the points of the ray $h .{ }^{75}$

The set of all points lying inside an angle $\angle(h, k)$ will be referred to as its interior $\operatorname{Int} \angle(h, k) \rightleftharpoons\{X \mid X k \bar{h} \& X h \bar{k}\}$. We can also write $\operatorname{Int} \angle A O B=\left(a_{O A}\right)_{B} \cap\left(a_{O B}\right)_{A}$.

If a point X lies in plane of an angle $\angle(h, k)$ neither inside nor on the angle, we shall say that X lies outside the angle $\angle(h, k)$.

The set of all points lying outside a given angle $\angle(h, k)$ will be referred to as the exterior of the angle $\angle(h, k)$, written $\operatorname{Ext} \angle(h, k)$. We thus have, by definition, $\operatorname{Ext} \angle(h, k) \rightleftharpoons \mathcal{P}_{\alpha_{\angle(h, k)}} \backslash\left(\mathcal{P}_{\angle(h, k)} \cup \operatorname{Int} \angle(h, k)\right)$.

Lemma 1.2.21.4. If a point C lies inside an angle $\angle A O B$, the ray O_{C} lies completely inside $\angle A O B: O_{C} \subset$ Int $\angle A O B$.

From L 1.2.11.3 it follows that this lemma can also be formulated as:
If one of the points of a ray O_{C} lies inside an angle $\angle A O B$, the whole ray O_{C} lies inside the angle $\angle A O B$.
Proof. (See Fig. 1.37.) Immediately follows from T 1.2.19. Indeed, by hypothesis, $C \in \operatorname{Int} \angle A O B=\left(a_{O A}\right)_{B} \cap\left(a_{O B}\right)_{A}$. Since also $O \in \bar{h} \cap \bar{k}$, by T 1.2.19 $O_{C} \subset \operatorname{Int} \angle A O B=\left(a_{O A}\right)_{B} \cap\left(a_{O B}\right)_{A}$.

Lemma 1.2.21.5. If a point C lies outside an angle $\angle A O B$, the ray O_{C} lies completely outside $\angle A O B: O_{C} \subset$ Ext $\angle A O B$. ${ }^{76}$

[^25]

Figure 1.38: If C lies outside $\angle A O B, O_{C}$ lies outside $\angle A O B: O_{C} \subset E x t \angle A O B$.

Figure 1.39: Suppose that $C \in O_{B}, D \in \operatorname{Int} \angle A O B$, and $C_{D} \cap O_{A}=\emptyset$. Then $C_{D} \subset$ Int $\angle A O B$.

Proof. (See Fig. 1.39.) $O \in \alpha_{A O B} \& C \in \operatorname{Int} \angle A O B \subset \alpha_{A O B} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{O C} \subset \alpha_{A O B} \Rightarrow O_{C} \subset \alpha_{A O B} . O_{C} \cap \mathcal{P}_{\angle A O B}=\emptyset$, because $C \neq O$ and $O_{C} \cap O_{A} \neq \emptyset \vee O_{C} \cap O_{B} \neq \emptyset \stackrel{\text { L1.2.11.4 }}{\Longrightarrow} O_{C}=O_{A} \vee O_{C}=O_{B} \Rightarrow C \in O_{A} \vee C \in O_{B}$ - a contradiction. $O_{C} \cap \operatorname{Int} \angle A O B=\emptyset$, because if $D \in O_{C} \cap \operatorname{Int} \angle A O B$, we would have $O_{D}=O_{C}$ from L 1.2.11.3 and $O_{D} \subset \operatorname{Int} \angle A O B$, whence $C \in$ Int $\angle A O B$ - a contradiction. Finally, $O_{C} \subset \alpha_{A O B} \& O_{C} \cap \mathcal{P} \angle A O B=\emptyset \& O_{C} \cap$ Int $\angle A O B=\emptyset \Rightarrow O_{C} \subset$ Ext $\angle A O B$.

Lemma 1.2.21.6. Given an angle $\angle A O B$, if a point C lies either inside $\angle A O B$ or on its side O_{A}, and a point D either inside $\angle A O B$ or on its other side O_{B}, the open interval ($C D$) lies completely inside $\angle A O B$, that is, $(C D) \subset$ Int $\angle A O B$.

Proof. $C \in \operatorname{Int} \angle A O B \cup O_{A} \& D \in \operatorname{Int} \angle A O B \cup O_{B} \Rightarrow C \in\left(\left(a_{O A}\right)_{B} \cap\left(a_{O B}\right)_{A}\right) \cup O_{A} \& D \in\left(\left(a_{O A}\right)_{B} \cap\left(a_{O B}\right)_{A}\right) \cup O_{B} \Rightarrow$ $C \in\left(\left(a_{O A}\right)_{B} \cup O_{A}\right) \cap\left(\left(a_{O B}\right)_{A} \cup O_{A}\right) \& D \in\left(\left(a_{O A}\right)_{B} \cup O_{B}\right) \cap\left(\left(a_{O B}\right)_{A} \cup O_{B}\right)$. Since, by L 1.2.19.8, $O_{A} \subset\left(a_{O B}\right)_{A}$ and $O_{B} \subset\left(a_{O A}\right)_{B}$, we have $\left(a_{O B}\right)_{A} \cup O_{A}=\left(a_{O B}\right)_{A},\left(a_{O A}\right)_{B} \cup O_{B}=\left(a_{O A}\right)_{B}$, and, consequently, $C \in\left(a_{O A}\right)_{B} \cup O_{A} \& C \in$ $\left(a_{O B}\right)_{A} \& D \in\left(a_{O A}\right)_{B} \& D \in\left(a_{O B}\right)_{A} \cup O_{B} \stackrel{\text { L1.2.19.9 }}{\Longrightarrow}(C D) \subset\left(a_{O A}\right)_{B} \&(C D) \subset\left(a_{O B}\right)_{A} \Rightarrow O_{C} \subset$ Int $\angle A O B$.

The lemma L 1.2.21.6 implies that the interior of an angle is a convex point set.
Lemma 1.2.21.7. Suppose that a point C lies on the side O_{B} of an angle $\angle A O B$, a point D lies inside the angle $\angle A O B$, and the ray C_{D} does not meet the ray O_{A}. Then the ray C_{D} lies completely inside the angle $\angle A O B$.

Proof. (See Fig. 1.39.) By definition of interior, $D \in \operatorname{Int} \angle A O B \Rightarrow D O_{A} a_{O B} \& D O_{B} a_{O A}$. Then by hypothesis and T 1.2.19 we have $O_{A} C_{D} a_{O B} \& O_{B} C_{D} a_{O A} .{ }^{77}$ Hence the result follows from the definition of interior.

Lemma 1.2.21.8. Suppose that a point E of a ray C_{D} lies inside an angle $\angle A O B$, and the ray C_{D} has no common points with the contour $\mathcal{P}_{\angle A O B}$ of the angle $\angle A O B$, i.e. we have $C_{D} \cap O_{A}=\emptyset, C_{D} \cap O_{B}=\emptyset, O \notin C_{D}$. Then the ray C_{D} lies completely inside the angle $\angle A O B$.

Proof. Follows from the definition of interior and T 1.2.19. ${ }^{78}$

[^26]

Figure 1.40: Illustration for proof of L 1.2.21.9.

Lemma 1.2.21.9. Given an angle $\angle(h, k)$ and points $A \in h, B \in k$ on its sides, any point C lying on the line $a_{A B}$ inside $\angle(h, k)$ will lie between A, B.

Proof. Since the points A, B, C colline (by hypothesis) and are obviously $\operatorname{distinct}(\mathcal{P} \angle(h, k) \cap \operatorname{Int} \angle(h, k)=\emptyset)$, from T 1.2.2 we see that either $[C A B]$, or $[A B C]$, or $[A C B]$. Note that $[C A B]$ (see Fig. 1.40, a)) would imply that the points C, B lie on opposite sides of the line \bar{k}, which, in view of the definition of interior of the angle $\angle(h, k)$ would contradict the fact that the point C lies inside $\angle(h, k)$ (by hypothesis). The case $[A B C]$ is similarly brought to contradiction. ${ }^{79}$ Thus, we see that $[A B C]$, as required (see Fig. 1.40, b)).

Lemma 1.2.21.10. Given an angle $\angle(h, k)_{O}$ and a point C inside it, for any points D on h and F on k, the ray O_{C} meets the open interval $(D F)$.

Proof. (See Fig. 1.41.) By A 1.2.2 $\exists G[D O G]$. By L 1.2.1.3 $a_{G D}=a_{O D}=\bar{h}$. Since $F \in k$, using definition of $\angle(h, k)$ we conclude that $F \notin \bar{h}$. By C 1.1.2.3 $\neg \exists b(D \in b \& G \in b \& F \in b)$. Therefore $\exists \alpha_{D G F}$ by A 1.1.4. $D \in \bar{h} \& G \in \bar{h} \& F \in \bar{k} \& \bar{h} \subset \alpha_{\angle(h, k)} \& \bar{k} \subset \alpha_{\angle(h, k)} \Rightarrow D \in \alpha_{\angle(h, k)} \& G \in \alpha_{\angle(h, k)} \& \alpha_{\angle(h, k)} \stackrel{\text { A1.1.5 }}{\Longrightarrow} \alpha_{D G F}=\alpha_{\angle(h, k)}$. $O \in \alpha_{\angle(h, k)} \& C \in \operatorname{Int} \angle(h, k) \subset \alpha_{\angle(h, k)} \stackrel{\text { A1.1.5 }}{\Longrightarrow} a_{O C} \subset \alpha_{\llcorner(h, k)}$. We also have $D \notin a_{O C}, G \notin a_{A C}, F \notin a_{O C}$, because otherwise by A 1.1.2 $a_{O C}=\bar{h} \vee a_{O C}=\bar{k} \Rightarrow C \in \bar{h} \vee C \in \bar{k}$, whence, taking note that $\mathcal{P}_{\bar{h}}=h \cup\{O\} \cup h^{c}$ and $\mathcal{P}_{\bar{h}}=h \cup\{O\} \cup h^{c}$, we get $C \in \mathcal{P}_{\alpha_{L(h, k)}} \cup \operatorname{Ext} \angle(h, k) \Rightarrow C \notin \operatorname{Int} \angle(h, k)$ - a contradiction. Since $C \in$ $\operatorname{Int} \angle(h, k) \stackrel{\text { L1.2.21.6,L1.2.21.4 }}{\Longrightarrow} O_{C} \subset \operatorname{Int} \angle(h, k) \& O_{C}^{c} \subset \operatorname{Int} \angle\left(h^{c}, k^{c}\right), F \in k \& G \in h^{c} \stackrel{\text { L1.2.21.6 }}{\Longrightarrow}(G F) \subset \operatorname{Int} \angle\left(h, k^{c}\right)$, we have $\operatorname{Int} \angle(h, k) \cap \operatorname{Int} \angle\left(h^{c}, k\right)=\emptyset \& \operatorname{Int} \angle\left(h^{c}, k^{c}\right) \cap \operatorname{Int} \angle\left(h^{c}, k\right)=\emptyset \& O \notin \operatorname{Int} \angle\left(h^{c}, k\right) \Rightarrow(G F) \cap O_{C}=\emptyset \&(G F) \cap$ $O_{C}=\emptyset \& O \notin(G F)$. Taking into account $\mathcal{P}_{a_{O C}}=O_{C} \cup\{O\} \cup O_{C}^{c}$, we conclude that $(G F) \cap a_{O C}=\emptyset . a_{O C} \subset$ $\alpha_{D G F} \& D \notin a_{O C} \& G \notin a_{O C} \& F \notin a_{O C} \&[D O G] \&(G F) \cap a_{O C}=\emptyset \stackrel{\text { A1.2.4 }}{\Longrightarrow} \exists E E \in a_{O C} \&[D E F] .[D E F] \& D \in$ $h \& F \in k \stackrel{\text { L1.2.21.6 }}{\Longrightarrow} E \in \operatorname{Int} \angle(h, k)$. Since $O \notin \operatorname{Int} \angle(h, k) \Rightarrow E \neq O, O_{C}^{c} \subset \angle(h, k) \Rightarrow O_{C}^{c} \cap \operatorname{Int} \angle(h, k)=\emptyset$, we conclude that $E \in O_{C}$.

An angle is said to be adjacent to another angle (assumed to lie in the same plane) if it shares a side and vertex with that angle, and the remaining sides of the two angles lie on opposite sides of the line containing their common side. This relation being obviously symmetric, we can also say the two angles are adjacent to each other. We shall denote any angle, adjacent to a given angle $\angle(h, k)$, by $\operatorname{adj} \angle(h, k)$. Thus, we have, by definition, $\angle(k, m)=\operatorname{adj} \angle(h, k)$ ${ }^{80}$ and $\angle(l, h)=a d j \angle(h, k)$ if $h \bar{k} m$ and $l \bar{h} k$, respectively. (See Fig. 1.43.)

Corollary 1.2.21.11. If a point B lies inside an angle $\angle A O C$, the angles $\angle A O B, \angle B O C$ are adjacent. ${ }^{81}$

[^27]

Figure 1.41: Given $\angle(h, k)_{O}$ and a point C inside it, for any points D on h and F on k, O_{C} meets $(D F)$.

Figure 1.42: If a point B lies inside an angle $\angle A O C$, the angles $\angle A O B, \angle B O C$ are adjacent.

Proof. $B \in \operatorname{Int} \angle A O C \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists D D \in O_{B} \&[A D C]$. Since $D \in a_{O B} \cap(A C), A \notin a_{O B}$, we see that the points A, C, and thus the rays O_{A}, O_{C} (see T 1.2.20) lie on opposite sides of the line $a_{O B}$. Together with the fact that the angles $\angle A O B, \angle B O C$ share the side O_{B} this means that $\angle A O B, \angle B O C$ are adjacent.

From the definition of adjacency of angles and the definitions of the exterior and interior of an angle immediately follows

Lemma 1.2.21.12. In an angle $\angle(k, m)$, adjacent to an angle $\angle(h, k)$, the side m lies outside $\angle(h, k)$.
which, together with C 1.2.21.11, implies the following corollary
Corollary 1.2.21.13. If a point B lies inside an angle $\angle A O C$, neither the ray O_{C} has any points inside or on the angle $\angle A O B$, nor the ray O_{A} has any points inside or on $\angle B O C$.

Lemma 1.2.21.14. If angles $\angle(h, k), \angle(k, m)$ share the side k, and points $A \in h, B \in m$ lie on opposite sides of the line \bar{k}, the angles $\angle(h, k), \angle(k, m)$ are adjacent to each other.

Proof. Immediately follows from L 1.2.11.15.
An angle $\angle(k, l)$ is said to be adjacent supplementary to an angle $\angle(h, k)$, written $\angle(k, l)=\operatorname{adjsp} \angle(h, k)$, iff the ray l is complementary to the ray h. That is, $\angle(k, l)=\operatorname{adjsp} \angle(h, k) \stackrel{\text { def }}{\Longleftrightarrow} l=h^{c}$. Since, by L 1.2 .15 .3 , the ray $\left(h^{c}\right)^{c}$, complementary to the ray h^{c}, complementary to the given ray h, coincides with the ray $h:\left(h^{c}\right)^{c}=h$, if $\angle(k, l)$ is adjacent supplementary to $\angle(h, k)$, the angle $\angle(h, k)$ is, in its turn, adjacent supplementary to the angle $\angle(k, l)$. Note also that, in a frequently encountered situation, given an angle $\angle A O C$ such that the point O lies between the point A and some other point B, the angle $\angle B O C$ is adjacent supplementary to the angle $A O C .{ }^{82}$

Lemma 1.2.21.15. Given an angle $\angle(h, k)$, any point lying in plane of this angle on the same side of the line \bar{h} as the ray k, lies either inside the angle $\angle(h, k)$, or inside the angle $\angle\left(k, h^{c}\right)$, or on the ray k (See Fig. 1.44.) That is,

[^28]

Figure 1.43: Angles $\angle(l, h)$ and $\angle(k, m)$ are adjacent to the angle $\angle(h, k)$. Note that h, m lie on opposite sides of \bar{k} and l, k lie on opposite sides of \bar{h}.

Figure 1.44: Any point lying in plane of $\angle(h, k)$ on one side of \bar{h} with k, lies either inside $\angle(h, k)$, or inside $\angle\left(k, h^{c}\right)$, or on k.
$\bar{h}_{k}=\operatorname{Int} \angle(h, k) \cup k \cup \operatorname{Int} \angle\left(k, h^{c}\right)$. Furthermore, any point lying in the plane $\alpha_{\angle(h, k)}$ (of the angle $\left.\angle(h, k)\right)$ not on either of the lines \bar{h}, \bar{k} lies inside one and only one of the angles $\angle(h, k), \angle\left(h^{c}, k\right), \angle\left(h, k^{c}\right), \angle\left(h^{c}, k^{c}\right)$.

Proof. $\bar{h}_{k}=\bar{h}_{k} \cap \mathcal{P}_{\alpha_{\angle(h, k)}}=\bar{h}_{k} \cap\left(\bar{k}_{h} \cup \mathcal{P}_{\bar{k}} \cup \bar{k}_{h}^{c}\right) \stackrel{\text { L1.2.19.8 }}{=} \bar{h}_{k} \cap\left(\bar{k}_{h} \cup \mathcal{P}_{\bar{k}} \cup \bar{k}_{h^{c}}\right)=\left(\bar{h}_{k} \cap \bar{k}_{h}\right) \cup\left(\bar{h}_{k} \cap \mathcal{P}_{\bar{k}}\right) \cup\left(\bar{h}_{k} \cap \bar{k}_{h^{c}}\right)=$ $\operatorname{Int} \angle(h, k) \cup k \cap \operatorname{Int} \angle\left(k, h^{c}\right)$. Similarly, $\bar{h}_{k^{c}} \operatorname{Int} \angle\left(h, k^{c}\right) \cup k^{c} \cap \operatorname{Int} \angle\left(k^{c}, h^{c}\right)$, whence the second part.

Given an angle $\angle(h, k)$, the angle $\angle\left(h^{c}, k^{c}\right)$, formed by the rays h^{c}, k^{c}, complementary to h, k, respectively, is called (the angle) vertical, or opposite, to $\angle(h, k)$. We write vert $\angle(h, k) \rightleftharpoons \angle\left(h^{c}, k^{c}\right)$. Obviously, the angle $\operatorname{vert}(\operatorname{vert} \angle(h, k))$, opposite to the opposite $\angle\left(h^{c}, k^{c}\right)$ of a given angle $\angle(h, k)$, coincides with the angle $\angle(h, k)$.

Lemma 1.2.21.16. If a point C lies inside an angle $\angle(h, k)$, the ray O_{C}^{c}, complementary to the ray O_{C}, lies inside the vertical angle $\angle\left(h^{c}, k^{c}\right)$.

Proof. (See Fig. 1.45.) $C \in \operatorname{Int} \angle(h, k) \Rightarrow C \in \bar{h}_{k} \cap \bar{k}_{h} \stackrel{\text { L1.2.19.8 }}{\Longrightarrow} O_{C}^{c} \subset \bar{h}_{k}^{c} \cap \bar{k}_{h}^{c} \Rightarrow O_{C}^{c} \subset \bar{h}_{k^{c}} \cap \bar{k}_{h^{c}} \Rightarrow O_{C}^{c} \subset$ Int $\angle\left(h^{c}, k^{c}\right)$.

Lemma 1.2.21.17. Given an angle $\angle(h, k)$, all points lying either inside or on the sides h^{c}, k^{c} of the angle opposite to it, lie outside $\angle(h, k) .{ }^{83}$

Proof.

Lemma 1.2.21.18. For any angle $\angle A O B$ there is a point C^{84} such that the ray O_{B} lies inside the angle $\angle A O C .{ }^{85}$

[^29]

Figure 1.45: If C lies inside $\angle(h, k)$, the ray O_{C}^{c} lies inside the vertical angle $\angle\left(h^{c}, k^{c}\right)$.

Figure 1.46: For any angle $\angle A O B$ there is a point C such that O_{B} lies inside $\angle A O C$. For any angle $\angle A O C$ there is a point B such that O_{B} lies inside $\angle A O C$.

Proof. (See Fig. 1.46.) By A $1.2 .2 \exists C[A B C] . C \notin a_{O A}$, because otherwise $[A B C] \stackrel{\text { A1.2.1 }}{\Longrightarrow} A \neq C \xrightarrow{\text { A1.1.2 }} a_{A C}=$ $a_{O A} \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} B \in a_{O A}$, contrary to L 1.2.21.2. ${ }^{86}$ Therefore, $\exists \angle A O C$. Since $[A B C]$, by L 1.2.21.2, L 1.2.21.6, L 1.2.21.4 $O_{B} \subset$ Int $\angle A O C$.

Lemma 1.2.21.19. For any angle $\angle A O C$ there is a point B such that the ray O_{B} lies inside the angle $\angle A O C .{ }^{87}$
Proof. (See Fig. 1.46.) By T 1.2.2 $\exists B[A B C]$. By L 1.2.21.6, L 1.2.21.4 $O_{B} \subset \operatorname{Int} \angle A O C$.
Lemma 1.2.21.20. Given an angle $\angle(h, k)$, all points inside any angle $\angle(k, m)$ adjacent to it, lie outside $\angle(h, k) . .^{8}$
Proof. (See Fig. 1.47.) By definition of the interior, $A \in \operatorname{Int} \angle(k, m) \Rightarrow A m \bar{k}$. By the definition of adjacency $\angle(k, m)=\operatorname{adj}(h, k) \Rightarrow h \bar{k} m . A m \bar{k} \& h \bar{k} m \stackrel{\mathrm{~L} 1.2 .18 .5}{\Longrightarrow} A \bar{k} h \Rightarrow A \in E x t \angle(h, k)$.

Lemma 1.2.21.21. 1. If points B, C lie on one side of a line $a_{O A}$, and $O_{B} \neq O_{C}$, either the ray O_{B} lies inside the angle $\angle A O C$, or the ray O_{C} lies inside the angle $\angle A O B$. 2. Furthermore, if a point E lies inside the angle $\angle B O C$, it lies on the same side of $a_{O A}$ as B and C. That is, Int $\angle B O C \subset\left(a_{O A}\right)_{B}=\left(a_{O A}\right)_{C}$.

Proof. 1. Denote $O_{D} \rightleftharpoons O_{A}^{c}$. (See Fig. 1.48.) $B C a_{O A} \stackrel{\text { T1.2.19 }}{\Longrightarrow} O_{B} O_{C} a_{O A} . O_{B} O_{C} a_{O A} \& O_{B} \neq O_{C} \xrightarrow{\text { L1.2.21.15 }} O_{C} \subset$ Int $\angle A O B \vee O_{C} \subset$ Int $\angle B O D$. ${ }^{89}$ Suppose $O_{C} \subset$ Int $\angle B O D$. ${ }^{90}$ Then by L 1.2.21.12 $O_{B} \subset E x t \angle C O D$. But since $O_{B} O_{C} a_{O A} \& O_{B} \neq O_{C} \stackrel{\text { L1.2.21.15 }}{\Longrightarrow} O_{B} \subset \operatorname{Int} \angle A O C \vee O_{B} \subset \operatorname{Int} \angle C O D$, we conclude that $O_{B} \subset$ Int $\angle A O C .2$. $E \in \operatorname{Int} \angle B O C \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists F F \in O_{E} \cap(B C)$. Hence by L 1.2.19.6, L 1.2.19.8 we have $O_{E} \subset\left(a_{O A}\right)_{B}=\left(a_{O A}\right)_{C}$, q.e.d.

[^30]

Figure 1.47: Given an angle $\angle(h, k)$, all points inside any angle $\angle(k, m)$ adjacent to it, lie outside $\angle(h, k)$.

Figure 1.48: If points B, C lie on one side of $a_{O A}$, and $O_{B} \neq O_{C}$, either O_{B} lies inside $\angle A O C$, or O_{C} lies inside $\angle A O B$.

Lemma 1.2.21.22. If a ray l with the same initial point as rays h, k lies inside the angle $\angle(h, k)$ formed by them, then the ray k lies inside the angle $\angle\left(h^{c}, l\right)$.

Proof. Using L 1.2.21.20, L 1.2.21.15 we have $l \subset \operatorname{Int} \angle(h, k) \Rightarrow k \subset E x t \angle(h, l) \& l k \bar{h} \& l \neq k \Rightarrow k \subset \operatorname{Int} \angle\left(h^{c}, l\right)$.
Lemma 1.2.21.23. If open intervals $(A F),(E B)$ meet in a point G and there are three points in the set $\{A, F, E, B\}$ known not to colline, the ray E_{B} lies inside the angle $\angle A E F .{ }^{91}$

Proof. C 1.2.9.14 ensures that A, E, F do not colline, so by L 1.2.21.2 $\angle A E F$ exists. $[E G B] \xrightarrow{\text { L1.2.11.13 }} G \in E_{B}$. By L 1.2.21.6, L 1.2.21.4 we have $G \in E_{B} \&[A G F] \& A \in E_{A} \& F \in E_{F} \Rightarrow E_{B} \subset$ Int $\angle A E F$.

Corollary 1.2.21.24. If open intervals $(A F),(E B)$ meet in a point G and there are three points in the set $\{A, F, E, F\}$ known not to colline, the points E, F lie on the same side of the line $a_{A B} .{ }^{92}$

Proof. Observe that by definition of the interior of $\angle E A B$, we have $A_{F} \subset \operatorname{Int} \angle E A B \Rightarrow E F a_{A B}$.
Corollary 1.2.21.25. If open intervals $(A F),(E B)$ concur in a point G, the ray E_{B} lies inside the angle $\angle A E F$. 93

Proof. Immediately follows from L 1.2.9.13, L 1.2.21.23.

Corollary 1.2.21.26. If open intervals $(A F),(E B)$ concur in a point G, the points E, F lie on the same side of the line $a_{A B}$. ${ }^{94}$

Proof. Immediately follows from L 1.2.9.13, C 1.2.21.24.

[^31]

Figure 1.49: If C lies inside $\angle A O D$, and B inside an angle $\angle A O C$, then O_{B} lies inside $\angle A O D$, and O_{C} inside $\angle B O D$.

Lemma 1.2.21.27. If a point C lies inside an angle $\angle A O D$, and a point B inside an angle $\angle A O C$, then the ray O_{B} lies inside the angle $\angle A O D$, and the ray O_{C} lies inside the angle $\angle B O D$. In particular, if a point C lies inside an angle $\angle A O D$, any point lying inside $\angle A O C$, as well as any point lying inside $\angle C O D$ lies inside $\angle A O D$. That is, we have Int $\angle A O C \subset$ Int $\angle A O D$, Int $\angle C O D \subset$ Int $\angle A O D$. ${ }^{95}$

Proof. (See Fig. 1.49.) $C \in \operatorname{Int} \angle A O D \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists F[A F D] \& F \in O_{C} . B \in \operatorname{Int} \angle A O C \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists E[A E F] \& E \in O_{B}$. $[A E F] \&[A F D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A E D] \&[E F D]$. Hence, using L 1.2.21.6, L 1.2.21.4, we can write $A \in O_{A} \& E \in O_{B} \& F \in$ $O_{C} \& D \in O_{D} \&[A E D] \&[E F D] \Rightarrow O_{B} \subset \operatorname{Int} \angle A O D \& O_{C} \subset \operatorname{Int} \angle B O D$.

Lemma 1.2.21.28. Given a point C inside an angle $\angle A O D$, any point B lying inside $\angle A O D$ not on the ray O_{C} lies either inside the angle $\angle A O C$ or inside $\angle C O D .{ }^{96}$

Proof. $C \in \operatorname{Int} \angle A O D \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists E E \in O_{C} \cap(A D) . \quad B \in \operatorname{Int} \angle A O D \stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists F F \in O_{B} \cap(A D) . B \notin O_{C} \Rightarrow$ $O_{B} \notin O_{C} \stackrel{\text { L1.2.11.4 }}{\Longrightarrow} O_{B} \cap O_{C}=\emptyset \Rightarrow F \neq E . F \in(A D) \& F \neq E \xrightarrow{\mathrm{~T} 1.2 .5} F \in(A E) \vee F \in(E D)$. Thus, we have $F \in O_{B} \cap(A E) \vee F \in O_{B} \cap(E D) \Rightarrow O_{B} \subset \operatorname{Int} \angle A O C \vee O_{B} \subset$ Int $\angle C O D$, q.e.d.

Lemma 1.2.21.29. If a ray O_{B} lies inside an angle $\angle A O C$, the ray O_{C} lies inside $\angle B O D$, and at least one of the rays O_{B}, O_{C} lies on the same side of the line $a_{O A}$ as the ray O_{D}, then the rays O_{B}, O_{C} both lie inside the angle $\angle A O D$.

Proof. Note that we can assume $O_{B} O_{D} a_{O A}$ without any loss of generality, because by the definition of the interior of an angle $O_{B} \subset \operatorname{Int} \angle A O C \Rightarrow O_{B} O_{C} a_{O A}$, and if $O_{C} O_{D} a_{O A}$, we have $O_{B} O_{C} a_{O A} \& O_{C} O_{D} a_{O A} \stackrel{\text { L1.2.18.2 }}{\Longrightarrow} O_{B} O_{D} a_{O A}$. $O_{B} O_{D} a_{O A} \& O_{B} \neq O_{D} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow} O_{B} \subset \operatorname{Int} \angle A O D \vee O_{D} \subset \operatorname{Int} \angle A O B$. If $O_{B} \subset \operatorname{Int} \angle A O D$ (see Fig. 1.50, a)), by L 1.2.21.27 we immediately obtain $O_{C} \subset \operatorname{Int} \angle A O D$. But if $O_{D} \subset \operatorname{Int} \angle A O B$ (see Fig. 1.50, b)), observing that $O_{B} \subset \operatorname{Int} \angle A O C$, we have by the same lemma $O_{B} \subset \operatorname{Int} \angle D O C$, which, by C 1.2.21.13, contradicts $O_{C} \subset \operatorname{Int} \angle B O D$.

Lemma 1.2.21.30. Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that a point O lies outside the line $a=A_{1} A_{n}{ }^{97}$ Then the rays $O_{A_{1}}, O_{A_{2}}, \ldots, O_{A_{n}}$ are in order $\left[O_{A_{1}} O_{A_{2}} \ldots O_{A_{n}}\right]$, that is, $O_{A_{j}} \subset \operatorname{Int} \angle A_{i} O A_{k}$ whenever either $i<j<k$ or $k<j<i$.

Proof. (See Fig. 1.51.) Follows from L 1.2.7.3, L 1.2.21.6, L 1.2.21.4.

[^32]

Figure 1.50: If O_{B} lies inside $\angle A O C, O_{C}$ lies inside $\angle B O D$, and at least one of O_{B}, O_{C} lies on the same side of the line $a_{O A}$ as O_{D}, then O_{B}, O_{C} both lie inside $\angle A O D$.

Figure 1.51: Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that a point O lies outside the line $a=A_{1} A_{n}$ Then the rays $O_{A_{1}}, O_{A_{2}}, \ldots, O_{A_{n}}$ are in order $\left[O_{A_{1}} O_{A_{2}} \ldots, O_{A_{n}}\right]$.

Figure 1.52: Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that a ray $B_{B_{1}}$ does not meet the ray $A_{1 A_{2}}$ and that the points A_{2}, B_{1} lie on the same side of the line $a_{A_{1} B}$. Then the rays $B_{A_{1}}, B_{A_{2}}, \ldots, B_{A_{n}} B_{B_{1}}$ are in order $\left[B_{A_{1}} B_{A_{2}} \ldots, B_{A_{n}} B_{B_{1}}\right]$.

Lemma 1.2.21.31. Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that a ray $B_{B_{1}}$ does not meet the ray $A_{1 A_{2}}$ and that the points A_{2}, B_{1} lie on the same side of the line $a_{A_{1} B}$. Then the rays $B_{A_{1}}, B_{A_{2}}, \ldots, B_{A_{n}} B_{B_{1}}$ are in order $\left[B_{A_{1}} B_{A_{2}} \ldots B_{A_{n}} B_{B_{1}}\right]$.

Proof. (See Fig. 1.52.) Since, by hypothesis, the ray $A_{1_{2}}$, and thus the open interval $\left(A_{1} A_{2}\right)$, does not meet the ray $B_{B_{1}}$ and, consequently, the line $a_{B B_{1}},{ }^{98}$ the points A_{1}, A_{2} lie on the same side of the line $a_{B B_{1}}$. Since, by hypothesis, the points A_{2}, B_{1} lie on the same side of the line $a_{A_{1} B}$, we have $A_{2} \in \operatorname{Int} \angle A_{1} B B_{1}$. Hence by L 1.2.21.4 we have $A_{i} \in \operatorname{Int} \angle A_{1} B B_{1}$, where $i \in\{3,4, \ldots, n\}$. This, in turn, by L ?? implies that $B_{A_{i}} \subset$ Int $\angle A_{1} B B_{1}$, where $i \in\{3,4, \ldots, n\}$. From the preceding lemma (L 1.2 .21 .30) we know that the rays $B_{A_{1}}, B_{A_{2}}, \ldots, B_{A_{n}}$ are in order $\left[B_{A_{1}} B_{A_{2}} \ldots B_{A_{n}}\right]$. Finally, taking into account $A_{i} \in \operatorname{Int} \angle A_{1} B B_{1}$, where $i \in\{2,3,4, \ldots, n\}$, and using L 1.2.21.27, we conclude that the rays $B_{A_{1}}, B_{A_{2}}, \ldots, B_{A_{n}} B_{B_{1}}$ are in order $\left[B_{A_{1}} B_{A_{2}} \ldots B_{A_{n}} B_{B_{1}}\right.$], q.e.d.

Lemma 1.2.21.32. Suppose rays k, l lie on the same side of a line \bar{h} (containing a third ray h), the rays h, l lie on opposite sides of the line \bar{k}, and the points H, L lie on the rays h, l, respectively. Then the ray k lies inside the angle $\angle(h, l)$ and meets the open interval $(H L)$ at some point K.

Proof. (See Fig. 1.53.) $H \in h \& K \in l \& h \bar{k} l \Rightarrow \exists K K \in \bar{k} \&[H K L]$. [HKL]\& $H \in \bar{h} \xrightarrow{\text { L1.2.19.9 }} K L \bar{h}$. Hence $K \in k$, for, obviously, $K \neq O$, and, assuming $K \in k^{c}$, we would have: $k l \bar{h} \& k \bar{h} k^{c} \xrightarrow{\text { L1.2.18.5 }} l \bar{h} k^{c}$, which, in view of $L \in l$, $K \in k^{c}$, would imply $L \bar{h} K-$ a contradiction. Finally, $H \in h \& L \in l \&[H K L] \stackrel{\text { L1.2.21.6 }}{\Longrightarrow} K \in \operatorname{Int} \angle(h, l) \xrightarrow{\text { L1.2.21.4 }} k \subset$ $\operatorname{Int} \angle(h, l)$.

Lemma 1.2.21.33. Suppose that the rays h, k, l have the same initial point and the rays h, l lie on opposite sides of the line \bar{k} (so that the angles $\angle(h, k), \angle(k, l)$ are adjacent). Then the rays k, l lie on the same side of the line \bar{h} iff the ray llies inside the angle $\angle\left(h^{c}, k\right)$, and the rays k, l lie on opposite sides of the line \bar{h} iff the ray h^{c} lies inside the angle $\angle(k, l)$. Also, the first case takes place iff the ray k lies between the rays h, l, and the second case iff the ray k^{c} lies between the rays h, l.

Proof. Note that $l \bar{k} h \& h^{c} \bar{k} h \stackrel{\text { L1.2.18.4 }}{\Longrightarrow} h^{c} l \bar{k}$. Suppose first that the rays k, l lie on the same side of the line \bar{h} (see Fig. 1.54, a)). Then we can write $h^{c} l \bar{k} \& k l \bar{h} \Rightarrow l \subset \operatorname{Int} \angle\left(h^{c}, k\right)$. Conversely, form the definition of interior we have $l \subset \operatorname{Int} \angle\left(h^{c}, k\right) \Rightarrow k l \bar{h}$. Suppose now that the rays k, l lie on opposite sides of the line \bar{h} (see Fig. 1.54, b)). Then, obviously, the ray l cannot lie inside the angle $\angle\left(h^{c}, k\right)$, for otherwise k, l would lie on the same side of h. Hence by L 1.2.21.21 we have $h^{c} \subset \operatorname{Int} \angle(k, l)$. Conversely, if $h^{c} \subset \operatorname{Int} \angle(k, l)$, the rays k, l lie on opposite sides of the line \bar{l} in

[^33]

Figure 1.53: Suppose rays k, l lie on the same side of a line \bar{h} (containing a third ray h), the rays h, l lie on opposite sides of the line \bar{k}, and the points H, L lie on the rays h, l, respectively. Then the ray k lies inside the angle $\angle(h, l)$ and meets the open interval $(H L)$ at some point K.

Figure 1.54: Suppose that the rays h, k, l have the same initial point and the rays h, l lie on opposite sides of the line \bar{k}. Then the rays k, l lie on the same side of the line \bar{h} iff the ray l lies inside the angle $\angle\left(h^{c}, k\right)$, and the rays k, l lie on opposite sides of the line \bar{h} iff the ray h^{c} lies inside the angle $\angle(k, l)$.
view of L 1.2.21.10. ${ }^{99}$ Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.21.32) and (in the second case) the observation that $l \bar{h} k \& k^{c} \bar{h} k \xrightarrow{\text { L1.2.18.4 }} k^{c} l \bar{h}$. (See also C 1.2.21.11).

Lemma 1.2.21.34. Suppose that the rays h, k, l have the same initial point O and the rays h, l lie on opposite sides of the line \bar{k}. Then either the ray k lies inside the angle $\angle(h, l)$, or the ray k^{c} lies inside the angle $\angle(h, l)$, or $l=h^{c}$. (In the last case we again have either $k \subset \operatorname{Int} \angle\left(h, h^{c}\right)$ or $k^{c} \subset \operatorname{Int} \angle\left(h, h^{c}\right)$ depending on which side of the line \bar{k} (i.e. which of the two half-planes having the line \bar{k} as its edge) is chosen as the interior of the straight angle $\left.\angle\left(h, h^{c}\right)\right)$.

Proof. Take points $H \in h, L \in l$. Then $h \bar{k} l$ implies that there is a point $K \in \bar{k}$ such that [$H K L$]. Then, obviously, either $K \in k$, or $K=O$, or $K \in k^{c}$. If $K=O$ (see Fig. 1.55, a)) then $L \in h^{c}$ and thus $l=h^{c}$ (see L 1.2.11.3). If $K \neq O$ (see Fig. 1.55, b), c)) then the points H, O, L are not collinear, the lines $\bar{k}, a_{H L}$ being different (see L 1.2.1.3, T 1.1.1). Thus, $\angle H O L=\angle(h, l)$ exists (see L 1.2.21.1, L 1.2.21.2). Hence by L 1.2.21.6, L 1.2.21.4 we have either $H \in h \& L \in l \&[H K L] \& K \in k \Rightarrow k \subset \operatorname{Int} \angle(h, l)$, or $H \in h \& L \in l \&[H K L] \& K \in k^{c} \Rightarrow k^{c} \subset \operatorname{Int} \angle(h, l)$, depending on which of the rays k, k^{c} the point K belongs to.

Definition and Basic Properties of Generalized Betweenness Relations

We say that a set \mathfrak{J} of certain geometric objects $\mathcal{A}, \mathcal{B}, \ldots$ admits a weak ${ }^{100}$ generalized betweenness relation, if there is a ternary relation $\rho \subset \mathfrak{J}^{3}=\mathfrak{J} \times \mathfrak{J} \times \mathfrak{J}$, called weak generalized betweenness relation on \mathfrak{J}, whose properties are given by $\operatorname{Pr} 1.2 .1, \operatorname{Pr} 1.2 .3-\operatorname{Pr} 1.2 .7$. If $(\mathcal{A}, \mathcal{B}, \mathcal{C}) \subset \rho$, where $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$, where \mathfrak{J} is some set with a weak generalized betweenness relation defined on it, we write $[\mathcal{A B C}]{ }^{(\mathfrak{J})}$ or (usually) simply $[\mathcal{A B C}],{ }^{101}$ and say that the geometric object \mathcal{B} lies in the set \mathfrak{J} between the geometric objects \mathcal{A} and \mathcal{C}, or that \mathcal{B} divides \mathcal{A} and \mathcal{C}.

[^34]

Figure 1.55: Suppose that the rays h, k, l have the same initial point O and the rays h, l lie on opposite sides of the line \bar{k}. Then either k lies inside $\angle(h, l)$, or k^{c} lies inside $\angle(h, l)$, or $l=h^{c}$.

We say that a set \mathfrak{J} of certain geometric objects $\mathcal{A}, \mathcal{B}, \ldots$ admits a strong, linear, or open ${ }^{102}$ generalized betweenness relation, if there is a ternary relation $\rho \subset \mathfrak{J}^{3}=\mathfrak{J} \times \mathfrak{J} \times \mathfrak{J}$, called strong generalized betweenness relation on \mathfrak{J}, whose properties are given by $\operatorname{Pr} 1.2 .1-\operatorname{Pr} 1.2 .7$.
Property 1.2.1. If geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$ and \mathcal{B} lies between \mathcal{A} and \mathcal{C}, then $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are distinct geometric objects, and \mathcal{B} lies between C and A.
Property 1.2.2. For every two geometric objects $\mathcal{A}, \mathcal{B} \in \mathfrak{J}$ there is a geometric object $C \in \mathfrak{J}$ such that \mathcal{B} lies between \mathcal{A} and C.

Property 1.2.3. If a geometric object $\mathcal{B} \in \mathfrak{J}$ lies between geometric objects $\mathcal{A}, \mathcal{C} \in \mathfrak{J}$, then the object C cannot lie between the objects \mathcal{A} and \mathcal{B}.

Property 1.2.4. For any two geometric objects $\mathcal{A}, \mathcal{C} \in \mathfrak{J}$ there is a geometric object $\mathcal{B} \in \mathfrak{J}$ between them.
Property 1.2.5. Among any three distinct geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$ one always lies between the others.
Property 1.2.6. If a geometric object $\mathcal{B} \in \mathfrak{J}$ lies between geometric objects $\mathcal{A}, \mathcal{C} \in \mathfrak{J}$, and the geometric object \mathcal{C} lies between \mathcal{B} and $\mathcal{D} \in \mathfrak{J}$, then both \mathcal{B} and \mathcal{C} lie between \mathcal{A} and \mathcal{D}. ${ }^{103}$

Property 1.2.7. If a geometric object $\mathcal{B} \in \mathfrak{J}$ lies between geometric objects $\mathcal{A}, \mathcal{C} \in \mathcal{J}$, and the geometric object C lies between \mathcal{A} and $\mathcal{D} \in \mathfrak{J}$, then \mathcal{B} lies also between \mathcal{A} and \mathcal{D} and \mathcal{C} lies between \mathcal{B} and \mathcal{D}.
Lemma 1.2.21.35. The converse is also true. That is, $\forall \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in \mathfrak{J}([\mathcal{A B C}] \&[\mathcal{A C D}] \Leftrightarrow[\mathcal{A B D}] \&[\mathcal{B C D}])$.
Given a set \mathfrak{J} with a weak (and, in particular, strong) generalized betweenness relation, define the following subsets of \mathfrak{J} :
generalized abstract intervals, which are simply two - element subsets of $\mathfrak{J}: \mathcal{A B} \rightleftharpoons\{\mathcal{A}, \mathcal{B}\}$
generalized open intervals, called also open generalized intervals $(\mathcal{A B}) \rightleftharpoons\{\mathcal{X} \mid[\mathcal{A X B}], \mathcal{X} \in \mathfrak{J}\}$;
generalized half-open (called also generalized half-closed) intervals $[\mathcal{A B}) \rightleftharpoons\{A\} \cup(\mathcal{A B})$ and $(\mathcal{A B}] \rightleftharpoons(\mathcal{A B} \cup B)$;
For definiteness, in the future we shall usually refer to sets of the form $[\mathcal{A B})$ as the generalized half-open intervals, and to those of the form $(\mathcal{A B}]$ as the generalized half-closed ones.
generalized closed intervals, also called generalized segments, $[\mathcal{A B}] \rightleftharpoons(\mathcal{A B}) \cup\{A\} \cup\{B\}$.
As in the particular case of points, generalized open, generalized half-open, generalized half-closed and generalized closed intervals thus defined are collectively called generalized interval - like sets, joining their ends \mathcal{A}, \mathcal{B}.
Proposition 1.2.21.36. The set of points \mathcal{P}_{a} of any line a admits a strong generalized betweenness relation.
Proof. Follows from A 1.1.1 - A 1.1.3, T 1.2.1, T 1.2.2, L 1.2.3.1, L 1.2.3.2.
We say that a set \mathfrak{J} of certain geometric objects $\mathcal{A}, \mathcal{B}, \ldots$ admits an angular, or closed, ${ }^{104}$ generalized betweenness relation, if there is a ternary relation $\rho \subset \mathfrak{J}^{3}=\mathfrak{J} \times \mathfrak{J} \times \mathfrak{J}$, called angular generalized betweenness relation on \mathfrak{J}, whose properties are given by Pr 1.2.1, $\operatorname{Pr} 1.2 .3-\operatorname{Pr} 1.2 .7, \operatorname{Pr} 1.2 .8$.

Property 1.2.8. The set \mathfrak{J} is a generalized closed interval, i.e. there are two geometric objects $\mathcal{A}_{0}, \mathcal{B}_{0} \in \mathfrak{J}$ such that any other geometric object of the set \mathfrak{J} lies between $\mathcal{A}_{0}, \mathcal{B}_{0} .{ }^{105}$

We shall refer to a collection of rays emanating from a common initial point O as a pencil of rays or a ray pencil, which will be written sometimes as $\mathcal{P}^{(O)}$. The point O will, naturally, be called the initial point, origin, or vertex of the pencil. A ray pencil whose rays all lie in one plane is called a planar pencil (of rays). If two or more rays lie in the same pencil, they will sometimes be called equioriginal (to each other).

Theorem 1.2.21. Given a line a in plane α, a point Q lying in α outside a, and a point $O \in a$, the set (pencil) \mathfrak{J} of all rays with the initial point O, lying in α on the same side of the line a as the point Q^{106}, admits a strong generalized betweenness relation.

To be more precise, we say that a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A} \in \mathfrak{J}$ and $O_{C} \in \mathfrak{J}$ iff O_{B} lies inside the angle $\angle A O C$, i.e. iff $O_{B} \subset$ Int $\angle A O C$. ${ }^{107}$ Then the following properties hold, corresponding to $\operatorname{Pr} 1.2 .1$ - $\operatorname{Pr} 1.2 .7$ in the definition of strong generalized betweenness relation:

1. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A} \in \mathfrak{J}$ and $O_{C} \in \mathfrak{J}$, then O_{B} also lies between O_{C} and O_{A}, and O_{A}, O_{B}, O_{C} are distinct rays.
2. For every two rays $O_{A}, O_{B} \in \mathfrak{J}$ there is a ray $O_{C} \in \mathfrak{J}$ such that O_{B} lies between O_{A} and O_{C}.
3. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, the ray O_{C} cannot lie between the rays O_{A} and O_{B}.

[^35]4. For any two rays $O_{A}, O_{C} \in \mathfrak{J}$ there is a ray $O_{B} \in \mathfrak{J}$ between them.
5. Among any three distinct rays $O_{A}, O_{B}, O_{C} \in \mathfrak{J}$ one always lies between the others.
6. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies between O_{B} and $O_{D} \in \mathfrak{J}$, both O_{B}, O_{C} lie between O_{A} and O_{D}.
7. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies between O_{A} and $O_{D} \in \mathfrak{J}$, then O_{B} lies also between O_{A}, O_{D}, and O_{C} lies between O_{B} and O_{D}. The converse is also true. That is, for all rays of the pencil \mathfrak{J} we have $\left[O_{A} O_{B} O_{C}\right] \&\left[O_{A} O_{C} O_{D}\right] \Leftrightarrow\left[O_{A} O_{B} O_{D}\right] \&\left[O_{B} O_{C} O_{D}\right]$.

The statements of this theorem are easier to comprehend and prove when given the following formulation in "native" terms.

1. If a ray $O_{B} \in \mathfrak{J}$ lies inside an angle $\angle A O C$, where $O_{A}, O_{C} \in \mathfrak{J}$, it also lies inside the angle $\angle C O A$, and the rays O_{A}, O_{B}, O_{C} are distinct.
2. For every two rays $O_{A}, O_{B} \in \mathfrak{J}$ there is a ray $O_{C} \in \mathfrak{J}$ such that the ray O_{B} lies inside the angle $\angle A O C$.
3. If a ray $O_{B} \in \mathfrak{J}$ lies inside an angle $\angle A O C$, where $O_{A}, O_{C} \in \mathfrak{J}$, the ray O_{C} cannot lie inside the angle $\angle A O B$.
4. For any two rays $O_{A}, O_{C} \in \mathfrak{J}$, there is a ray $O_{B} \in \mathfrak{J}$ which lies inside the angle $\angle A O C$.
5. Among any three distinct rays $O_{A}, O_{B}, O_{C} \in \mathfrak{J}$ one always lies inside the angle formed by the other two.
6. If a ray $O_{B} \in \mathfrak{J}$ lies inside an angle $\angle A O C$, where $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies inside $\angle B O D$, then both O_{B} and O_{C} lie inside the angle $\angle A O D$.
7. If a ray $O_{B} \in \mathfrak{J}$ lies inside an angle $\angle A O C$, where $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies inside $\angle A O D$, then O_{B} also lies inside $\angle A O D$, and the ray O_{C} lies inside the angle $\angle B O D$. The converse is also true. That is, for all rays of the pencil \mathfrak{J} we have $O_{B} \subset \operatorname{Int} \angle A O C \& O_{C} \subset \operatorname{Int} \angle A O D \Leftrightarrow O_{B} \subset$ Int $\angle A O D \& O_{C} \subset \operatorname{Int} \angle B O D$.

Proof. 1. Follows from the definition of $\operatorname{Int} \angle A O C$.
2. See L 1.2.21.18.
3. See C 1.2.21.13.
4. See L 1.2.21.19.
5. By A 1.1.3 $\exists D D \in a \& D \neq O$. By A 1.1.2 $a=a_{O D}$. Then $O_{A} O_{B} a \& O_{A} \neq O_{B} \& O_{A} O_{C} a \& O_{A} \neq$ $O_{C} \& O_{B} O_{C} a \& O_{B} \neq O_{C} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow}\left(O_{A} \subset \operatorname{Int} \angle D O B \vee O_{B} \subset \operatorname{Int} \angle D O A\right) \&\left(O_{A} \subset \operatorname{Int} \angle D O C \vee O_{C} \subset \operatorname{Int} \angle D O A\right) \&\left(O_{B} \subset\right.$ Int $\angle D O C \vee O_{C} \subset \operatorname{Int} \angle D O B$). Suppose $O_{A} \subset \operatorname{Int} \angle D O B$. 108 If $O_{B} \subset \operatorname{Int} \angle D O C$ (see Fig. 1.56, a) then $O_{A} \subset \operatorname{Int} \angle D O B \& O_{B} \subset \operatorname{Int} \angle D O C \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} O_{B} \subset$ Int $\angle A O C$. Now suppose $O_{C} \subset$ Int $\angle D O B$. If $O_{C} \subset$ Int $\angle D O A$ (see Fig. 1.56, b) then $O_{C} \subset \operatorname{Int} \angle D O A \& O_{A} \subset \operatorname{Int} \angle D O B \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} O_{A} \subset \operatorname{Int} \angle B O C$. Finally, if $O_{A} \subset \operatorname{Int} \angle D O C$ (see Fig. 1.56, c) then $O_{A} \subset \operatorname{Int} \angle D O C \& O_{C} \subset \operatorname{Int} \angle D O B \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} O_{C} \subset \operatorname{Int} \angle A O B$.
6. (See Fig 1.57.) Choose a point $E \in a, E \neq O$, so that $O_{B} \subset \operatorname{Int} \angle E O D .{ }^{109} O_{B} \subset$ Int $\angle E O D \& O_{C} \subset$ Int $\angle B O D \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} O_{C} \subset \operatorname{Int} \angle E O D \& O_{B} \subset$ Int $\angle E O C$. Using the definition of interior, and then L 1.2.16.1, L 1.2.16.2, we can write $O_{B} \subset \operatorname{Int} \angle E O C \& O_{B} \subset \operatorname{Int} \angle A O C \Rightarrow O_{B} O_{E} a_{O C} \& O_{B} O_{A} a_{O C} \Rightarrow O_{A} O_{C} a_{O C}$. Using the definition of the interior of $\angle E O C$, we have $O_{A} O_{E} a_{O C} \& O_{A} O_{C} a_{O E} \Rightarrow O_{A} \subset$ Int $\angle E O C . O_{A} \subset$ Int $\angle E O C \& O_{C} \subset$ Int $\angle E O D \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} O_{C} \subset$ Int $\angle A O D$. Finally, $O_{C} \subset$ Int $\angle A O D \& O_{B} \subset$ Int $\angle A O C \xrightarrow{\text { L1.2.21.27 }} O_{B} \subset$ Int $\angle A O D$.
7. See L 1.2.21.27.

At this point it is convenient to somewhat extend our concept of an angle.
A pair $\angle\left(h, h^{c}\right)$ of mutually complementary rays h, h^{c} is traditionally referred to as a straight angle. The rays h, h^{c} are, naturally, called its sides. Observe that, according to our definitions, a straight angle is not, strictly speaking, an angle. We shall refer collectively to both the (conventional) and straight angles as extended angles.

Given a line a in plane α, a point Q lying in α outside a, and a point $O \in a$, consider the set (pencil), which we denote here by \mathfrak{J}_{0}, of all rays with the initial point O, lying in α on the same side of the line a as the point $Q .{ }^{110}$ Taking a point $P \in a, P \neq O$ (see A 1.1.3), we let $h \rightleftharpoons O_{P}$. Denote by \mathfrak{J} the set obtained as the union of \mathfrak{J}_{0} with the pair of sides of the straight angle $\angle\left(h, h^{c}\right)$ (viewed as a two-element set): $\mathfrak{J} \rightleftharpoons \mathfrak{J}_{0} \cup\left\{h, h^{c}\right\}$. We shall say that that a ray O_{C} lies between the rays h, h^{c}, or, worded another way, a ray O_{C} lies inside the straight angle $\angle\left(h, h^{c}\right)$, if $O_{C} \subset a_{Q}$. With the other cases handled traditionally, ${ }^{111}$ we can formulate the following proposition:

Proposition 1.2.21.29. Given a line a in plane α, a point Q lying in α outside a, and two distinct points $O \in a$, $P \in a, P \neq O$, the set (pencil) \mathfrak{J}, composed of all rays with the initial point O, lying in α on the same side of the line a as the point Q, plus the rays $h \rightleftharpoons O_{P}$ and h^{c}, 112 admits an angular generalized betweenness relation, i.e. the rays in the set \mathfrak{J} thus defined satisfy 1, 3-8 below, corresponding to $\operatorname{Pr} 1.2 .1$, $\operatorname{Pr} 1.2 .3-\operatorname{Pr}$ 1.2.7, Pr 1.2.8:

1. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A} \in \mathfrak{J}$ and $O_{C} \in \mathfrak{J}$, then O_{B} also lies between O_{C} and O_{A}, and O_{A}, O_{B}, O_{C} are distinct rays.
2. For every two rays $O_{A}, O_{B} \in \mathfrak{J}$ there is a ray $O_{C} \in \mathfrak{J}$ such that O_{B} lies between O_{A} and O_{C}.
3. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, the ray O_{C} cannot lie between the rays O_{A} and O_{B}.

[^36]

Figure 1.56: Among any three distinct rays $O_{A}, O_{B}, O_{C} \in \mathfrak{J}$ one always lies inside the angle formed by the other two.

Figure 1.57: If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies between O_{B} and $O_{D} \in \mathfrak{J}$, both O_{B}, O_{C} lie between O_{A} and O_{D}.
4. For any two rays $O_{A}, O_{C} \in \mathfrak{J}$ there is a ray $O_{B} \in \mathfrak{J}$ between them.
5. Among any three distinct rays $O_{A}, O_{B}, O_{C} \in \mathfrak{J}$ one always lies between the others.
6. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies between O_{B} and $O_{D} \in \mathfrak{J}$, both O_{B}, O_{C} lie between O_{A} and O_{D}.
7. If a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$, and the ray O_{C} lies between O_{A} and $O_{D} \in \mathfrak{J}$, then O_{B} lies also between O_{A}, O_{D}, and O_{C} lies between O_{B} and O_{D}. The converse is also true. That is, for all rays of the pencil \mathfrak{J} we have $\left[O_{A} O_{B} O_{C}\right] \&\left[O_{A} O_{C} O_{D}\right] \Leftrightarrow\left[O_{A} O_{B} O_{D}\right] \&\left[O_{B} O_{C} O_{D}\right]$.
8. The set \mathfrak{J} coincides with the generalized closed interval $\left[h h^{c}\right]$.

In addition, we have the following property:
9. The ray h cannot lie between any two other rays of the set \mathfrak{J}. Neither can h^{c}.

Proof. 1. For the cases when both $O_{A} \in \mathfrak{J}_{0}, O_{C} \in \mathfrak{J}_{0}$ (where \mathfrak{J}_{0} is the pencil of rays with the initial point O, lying in α on the same side of the line a as the point Q) or one of O_{A}, O_{C} lies in \mathfrak{J}_{0} and the other coincides with $h=O_{P}$ or $h^{c},{ }^{113}$ the result follows from the definitions of the corresponding angles and their interiors. When one of the rays O_{A}, O_{C} coincides with h, and the other - with h^{c}, it is a trivial consequence of the definition of the interior of the straight angle $\angle\left(h, h^{c}\right)$ for our case as the half-plane a_{Q}.
9. In fact, $h \subset \operatorname{Int} \angle B O C$, where $O_{B} \in \mathfrak{J}_{0}, O_{C} \in \mathfrak{J}_{0}$, would imply (by L 1.2.21.21, 2) $h B \bar{h}$, which is absurd. This contradiction shows that the ray h cannot lie between two rays from \mathfrak{J}_{0}. Also, $\forall k \in \mathfrak{J}_{0}$ we can write $\angle\left(k, h^{c}\right)=$ $\operatorname{adj} \angle(h, k) \xrightarrow{\text { L1.2.21.12 }} h^{c} \subset E x t \angle(h, k)$, whence the result.
8. According to our definition of the interior of the straight angle $\angle\left(h, h^{c}\right)$ we have [$h k h^{c}$] for all $k \in \mathfrak{J}_{0}$.
3. By hypothesis, $O_{B} \in \mathfrak{J}$ lies between rays $O_{A}, O_{C} \in \mathfrak{J}$. From 9 necessarily $O_{B} \mathfrak{J}_{0}$. If $O_{C}=h$ the result again follows from 9. If $O_{C} \neq h$, the rays O_{A}, O_{C} form an angle (i.e. the angle $\angle A O C$ necessarily exists), and by C 1.2.21.13 O_{C} cannot lie inside the angle $\angle A O B$.
4. If at least one of the rays O_{A}, O_{C} is distinct from h, h^{c}, then the angle $\angle A O C$ exists, and the result follows from L 1.2.21.19. If one of the rays O_{A}, O_{C} coincides with h, and the other with h^{c}, we can let $B \rightleftharpoons Q$.
5. For $O_{A}, O_{B}, O_{C} \in \mathfrak{J}_{0}$ see T 1.2.21, 5. If one of the rays O_{A}, O_{C} coincides with h, and the other with h^{c}, then the ray O_{B} lies in \mathfrak{J}_{0} and thus lies inside the straight angle $\angle\left(h, h^{c}\right)$. Now suppose that only one of the rays O_{A}, O_{C} coincides with either h or h^{c}. Due to symmetry, in this case we can assume without loss of generality that $O_{A}=h$. 114 The result then follows from L 1.2.21.21.
7. Observe that by 9 . the rays O_{B}, O_{C} necessarily lie in \mathfrak{J}_{0}. Suppose one of the rays O_{A}, O_{D} coincides with h and the other with h^{c}. We can assume without loss of generality that $O_{A}=h, O_{D}=h^{c} .{ }^{115}$ This already means that the ray O_{B} lies inside the straight angle $\angle\left(h, h^{c}\right)$, i.e. O_{B} lies between O_{A} and O_{D}. Since the rays O_{B}, O_{C} both lie in \mathfrak{J}_{0}, i.e. on the same side of a and, by hypothesis, O_{B} lies between $O_{A}=h$ and O_{C}, from L 1.2.21.22 we conclude that the ray O_{C} lies between O_{B} and $O_{D}=h^{c}$.

Suppose now that only no more than one of the rays $O_{A}, O_{B}, O_{C}, O_{D}$ can coincide with h, h^{c}. Then, obviously, the rays O_{A}, O_{D} necessarily form an angle (in the conventional sense, not a straight angle), and the required result follows from L 1.2.21.27.
6. For $O_{A}, O_{B}, O_{C}, O_{D} \in \mathfrak{J}_{0}$ see T 1.2.21, 6 . Observe that by 9 . the rays O_{B}, O_{C} necessarily lie in \mathfrak{J}_{0}. If one of the rays O_{A}, O_{D} coincides with h and the other with h^{c}, we immediately conclude that O_{B}, O_{C} lie inside the straight

[^37]angle $\angle\left(h, h^{c}\right)$. Now suppose that only one of the rays O_{A}, O_{D} coincides with one of the rays h, h^{c}. As in our proof of 5 , we can assume without loss of generality that $O_{A}=h .{ }^{116}$ Then both O_{B} and O_{D} lie in \mathfrak{J}_{0}, i.e. on one side of a. Hence by L 1.2.21.21 either the ray O_{D} lies inside the angle $\angle A O B$, or the ray O_{B} lies inside the angle $\angle A O D$. To disprove the first of these alternatives, suppose $O_{D} \subset I n t \angle A O B$. Taking into account that, by hypothesis, $O_{C} \subset \operatorname{Int} \angle B O D$, L 1.2.21.27 gives $O_{C} \subset \operatorname{Int} \angle A O B$, which contradicts $O_{B} \subset \operatorname{Int} \angle A O C$ in view of C 1.2.21.13. Thus, we have shown that $O_{B} \subset \operatorname{Int} \angle A O D$. Finally, $O_{B} \subset \operatorname{Int} \angle A O D \& O_{C} \subset \operatorname{Int} \angle B O D \xrightarrow{\text { L1.2.21.12 }} O_{C} \subset \operatorname{Int} \angle A O D$.

Proposition 1.2.21.30. If \mathcal{A}, \mathcal{B} are two elements of a set \mathfrak{J} with weak generalized betweenness relation, the generalized open interval $(\mathcal{A B})$ is a set with linear generalized betweenness relation, and the generalized closed interval $[\mathcal{A B}]$ is a set with angular generalized betweenness relation.

Proof.
Lemma 1.2.21.31. Let the vertex O of an angle $\angle(h, k)$ lies in a half-plane a_{A}. Suppose further that the sides h, k of $\angle(h, k)$ lie in the plane $\alpha_{a A}{ }^{117}$ and have no common points with a. Then the interior of the angle $\angle(h, k)$ lies completely in the half-plane $a_{A}: \operatorname{Int} \angle(h, k) \subset a_{A}$.
Proof.
Lemma 1.2.21.32. Given an angle $\angle(h, k)$ and points $B \in h, C \in k$, there is a bijection between the open interval $(B C)$ and the open angular interval $(h k) .{ }^{118}$

Proof.

Corollary 1.2.21.33. There is an infinite number of rays inside a given angle.
Proof.
Lemma 1.2.21.34. Suppose that lines b, c lie on the same side of a line a and $a\|b, a\| c, b \| c$. Then either the line b lies inside the strip ac, or the line c lies inside the strip $a b$.
Proof. Take points $A \in a, B \in b, C \in c$. Consider first the case where A, B, C are collinear. By T 1.2 .2 we have either $[B A C]$, or $[A B C]$, or $[A C B]$. ${ }^{119}$ But $[B A C]$ would imply that the lines a, c lie on opposite sides of the line b contrary to hypothesis. $[A B C]$ (in view of C 1.2 .19 .21) implies that b lies inside the strip ($a c$). Similarly, $[A C B]$ implies that c lies inside the strip ($a b$) (note the symmetry!).

Suppose now that the points A, B, C do not lie on one line. The point B divides the line b into two rays, h and h^{c}, with initial point B. If one of these rays, say, h, lies inside the angle $\angle A B C$ then in view of L 1.2 .21 .10 it is bound to meet the open interval $(A C)$ in some point H, and we see from C 1.2.19.21 that the line b lies inside the strip ($a c$). Similarly, the point C divides the line c into two rays, k and k^{c}, with initial point C. If one of these rays, say, k, lies inside the angle $\angle A C B$ then the line c lies inside the strip $(a b)$. Suppose now that neither of the rays h, h^{c} lies inside the angle $\angle A B C$ and neither of the rays k, k^{c} lies inside the angle $\angle A C B$. Then using L 1.2 .21 .34 we find that the points A, C lie on the same side of the line b and the points A, B lie on the same side of the line $c .{ }^{120}$ Thus, we see that the lines a, c lie on the same side of the line b and the lines a, b lie on the same side of the line c, as required.

Further Properties of Generalized Betweenness Relations

In the following we assume that \mathfrak{J} is a set of geometric objects which admits a generalized betweenness relation.
Lemma 1.2.22.2. If a geometric object $\mathcal{B} \in \mathfrak{J}$ lies between geometric objects \mathcal{A}, \mathcal{C}, then the geometric object \mathcal{A} cannot lie between \mathcal{B} and \mathcal{C}.

Lemma 1.2.22.3. Suppose each of the geometric objects $\mathcal{C}, \mathcal{D} \in \mathfrak{J}$ lies between geometric objects $\mathcal{A}, \mathcal{B} \in \mathfrak{J}$. If a geometric object $\mathcal{M} \in \mathfrak{J}$ lies between \mathcal{C} and \mathcal{D}, it also lies between \mathcal{A} and \mathcal{B}. In other words, if geometric objects $\mathcal{C}, \mathcal{D} \in \mathfrak{J}$ lie between geometric objects $\mathcal{A}, \mathcal{B} \in \mathfrak{J}$, the generalized open interval $(\mathcal{C D})$ lies inside the generalized open interval $(\mathcal{A B})$, that is, $(\mathcal{C D}) \subset(\mathcal{A B})$.

Proof. $[\mathcal{A C B}] \&[\mathcal{A D B}] \&[\mathcal{C M D}] \stackrel{\text { Pr1.2. }}{\Longrightarrow} \mathcal{A} \neq \mathcal{C} \neq \mathcal{D} \stackrel{\text { Pr1.2.5 }}{\Longrightarrow}[\mathcal{A C D}] \vee[\mathcal{A D C}] \vee[\mathcal{C A D}]$. But $\neg[\mathcal{C A D}]$, because otherwise $[\mathcal{C A D}] \&[\mathcal{A D B}] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}[\mathcal{C A B}] \stackrel{\text { Pr1.2.3 }}{\Longrightarrow} \neg[\mathcal{A C B}]$ a contradiction. Finally, $[\mathcal{A C D}] \&[\mathcal{C M D}] \stackrel{\text { Pr1.2. } 7}{\Longrightarrow}[\mathcal{A M D}]$ and $[\mathcal{A M D}] \&[\mathcal{A D B}] \stackrel{\text { Pr1.2. }}{\Longrightarrow}[\mathcal{A M B}]$.

[^38]Lemma 1.2.22.4. If both ends of a generalized interval $\mathcal{C D}$ lie on a generalized closed interval $[\mathcal{A B}]$, the generalized open interval $(\mathcal{C D})$ is included in the generalized open interval $(\mathcal{A B})$.

Proof. Follows immediately from $\operatorname{Pr} 1.2 .6$, L 1.2.22.3.
Lemma 1.2.22.5. If a geometric object $\mathcal{C} \in \mathfrak{J}$ lies between geometric objects \mathcal{A} and \mathcal{B}, none of the geometric objects of the generalized open interval $(\mathcal{A C})$ lie on the generalized open interval $(\mathcal{C B})$.

Proof. $[\mathcal{A M C}] \&[\mathcal{A C B}] \stackrel{\text { Pr1.2. } 7}{\Longrightarrow}[\mathcal{M C B}] \stackrel{\text { Pr1.2 } 3}{\Longrightarrow} \neg[\mathcal{C M B}]$.
Proposition 1.2.22.6. If two (distinct) geometric objects \mathcal{E}, \mathcal{F} lie on an generalized open interval $(\mathcal{A B})$ (i.e., between geometric objects \mathcal{A}, \mathcal{B}), then either \mathcal{E} lies between \mathcal{A} and \mathcal{F} or \mathcal{F} lies between \mathcal{A} and \mathcal{E}.

Proof. By $\operatorname{Pr} 1.2 .1[\mathcal{A E B}] \&[\mathcal{A F B}] \Rightarrow \mathcal{A} \neq \mathcal{E} \& \mathcal{A} \neq \mathcal{F}$. Also, by hypothesis, $\mathcal{E} \neq \mathcal{F}$. Therefore, by $\operatorname{Pr} 1.2 .5$ $[\mathcal{E} \mathcal{A} \mathcal{F}] \vee[\mathcal{A E} \mathcal{F}] \vee[\mathcal{A} \mathcal{F} \mathcal{E}]$. But $[\mathcal{E} \mathcal{A} \mathcal{F}] \& \mathcal{E} \in(\mathcal{A B}) \& \mathcal{F} \in(\mathcal{A B}) \stackrel{\text { L1.2.22.5 }}{\Longrightarrow} \mathcal{A} \in(\mathcal{A B})$, which is absurd as it contradicts Pr 1.2.1. We are left with $[\mathcal{A E \mathcal { F }}] \vee[\mathcal{A F E}]$, q.e.d.

Lemma 1.2.22.7. Both ends of a generalized interval $\mathcal{C D}$ lie on a generalized closed interval $[\mathcal{A B}]$ iff the open interval $(\mathcal{C D})$ is included in the generalized open interval $(\mathcal{A B})$.

Proof. Follows immediately from $\operatorname{Pr} 1.2 .6$, L 1.2.22.4.
Lemma 1.2.22.8. If a geometric object $\mathcal{C} \in \mathfrak{J}$ lies between geometric objects $\mathcal{A}, \mathcal{B} \in \mathfrak{J}$, any geometric object of the open interval $(\mathcal{A B})$, distinct from \mathcal{C}, lies either on $(\mathcal{A C})$ or on $(\mathcal{C B})$. ${ }^{121}$

Proof. Suppose $[\mathcal{A M B}], \mathcal{M} \neq \mathcal{C}$. Since also $[\mathcal{A C B}] \&[\mathcal{A M B}] \stackrel{\operatorname{Pr1.2.1}}{\Longrightarrow} \mathcal{C} \neq \mathcal{B} \& \mathcal{M} \neq \mathcal{B}$, by $\operatorname{Pr} 1.2 .5[\mathcal{C B M}] \vee[\mathcal{C M B}] \vee$ $[\mathcal{M C B}]$. But $\neg[\mathcal{C B M}]$, because otherwise $[\mathcal{A C B}] \&[\mathcal{C B M}] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}[\mathcal{A B M}] \stackrel{\text { Pr1.2.3 }}{\Longrightarrow} \neg[\mathcal{A M B}]$ - a contradiction. Finally, $[\mathcal{A M B}] \&[\mathcal{M C B}] \xrightarrow{\text { Pr1.2. } 7}[\mathcal{A M C}] . \square$

Lemma 1.2.22.9. If a geometric object $\mathcal{O} \in \mathfrak{J}$ divides geometric objects $\mathcal{A} \in \mathfrak{J}$ and $\mathcal{C} \in \mathfrak{J}$, as well as $\mathcal{A}, \mathcal{D} \in \mathfrak{J}$, it does not divide \mathcal{C} and \mathcal{D}.

Proof. $[\mathcal{A O C}] \&[\mathcal{A O D}] \stackrel{\text { Pr1.2.1 }}{\Longrightarrow} \mathcal{A} \neq \mathcal{C} \& \mathcal{A} \neq \mathcal{D}$. If also $\mathcal{C} \neq \mathcal{D}^{122}$, from Pr 1.2 .5 we have $[\mathcal{C A D}] \&[\mathcal{A C D}] \&[\mathcal{A D C}]$. But $\neg[\mathcal{C A D}]$, because $[\mathcal{C \mathcal { A D }}] \&[\mathcal{A O D}] \stackrel{\text { Pr1.2. }}{\Longrightarrow}[\mathcal{C} \mathcal{A O}] \stackrel{\text { Pr1.2.3 }}{\Longrightarrow} \neg[\mathcal{A O C}]$. Hence by L 1.2.22.5 $([\mathcal{A C D}] \vee[\mathcal{A D C}]) \&[\mathcal{A O C}] \&[\mathcal{A O D}] \Rightarrow$ $\neg[\mathcal{C O D}]$.

Generalized Betweenness Relation for n Geometric Objects

Lemma 1.2.22.10. Suppose $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n},(\ldots)$ is a finite (countably infinite) sequence of geometric objects of the set \mathfrak{J} with the property that a geometric object of the sequence lies between two other geometric objects of the sequence if its number has an intermediate value between the numbers of these geometric objects. Then the converse of this property is true, namely, that if a geometric object of the sequence lies between two other geometric objects of the sequence, its number has an intermediate value between the numbers of these two geometric objects. That is, $\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, $\left.\left.\mathbb{N}\right)\left((i<j<k) \vee(k<j<i) \Rightarrow\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k}\right]\right)\right) \Rightarrow\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, \mathbb{N}) $\left.\left(\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k}\right] \Rightarrow(i<j<k) \vee(k<j<i)\right)\right)$.

Let an infinite (finite) sequence of geometric objects $\mathcal{A}_{i} \in \mathfrak{J}$, where $i \in \mathbb{N}\left(i \in \mathbb{N}_{n}, n \geq 4\right)$, be numbered in such a way that, except for the first and the last, every geometric object lies between the two geometric objects of the sequence with numbers, adjacent (in \mathbb{N}) to the number of the given geometric object. Then:

Lemma 1.2.22.11. - A geometric object from this sequence lies between two other members of this sequence iff its number has an intermediate value between the numbers of these two geometric objects.

Proof. By induction. $\quad\left[\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3}\right] \&\left[\mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}\right] \stackrel{\operatorname{Pr1.2.6}}{\Longrightarrow}\left[\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{4}\right] \&\left[\mathcal{A}_{1} \mathcal{A}_{3} \mathcal{A}_{4}\right] \quad\left(\begin{array}{lll}n & = & 4)\end{array} \quad\left[\mathcal{A}_{i} \mathcal{A}_{n-2} \mathcal{A}_{n-1}\right]\right.$ $\&\left[\mathcal{A}_{n-2} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \stackrel{\operatorname{Pr1.2.6}}{\Longrightarrow}\left[\mathcal{A}_{i} \mathcal{A}_{n-1} \mathcal{A}_{n}\right],\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{n-1}\right] \&\left[\mathcal{A}_{j} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{n}\right]$.

Lemma 1.2.22.12. - An arbitrary geometric object from the set \mathfrak{J} cannot lie on more than one of the generalized open intervals formed by pairs of geometric objects of the sequence having adjacent numbers in the sequence.

Proof. Suppose $\left[\mathcal{A}_{i} \mathcal{B} \mathcal{A}_{i+1}\right],\left[\mathcal{A}_{j} \mathcal{B} \mathcal{A}_{j+1}\right], i<j$. By L 1.2.22.11 $\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{j+1}\right]$, whence $\left[\mathcal{A}_{i} \mathcal{B} \mathcal{A}_{i+1}\right] \&\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{j+1}\right] \stackrel{\text { L1.2.22.5 }}{\Longrightarrow}$ $\neg\left[\mathcal{A}_{i+1} \mathcal{B} \mathcal{A}_{j+1}\right] \Rightarrow j \neq i+1$. But if $j>i+1$, we have $\left[\mathcal{A}_{i+1} \mathcal{A}_{j} \mathcal{A}_{j+1}\right] \&\left[\mathcal{A}_{j} \mathcal{B} \mathcal{A}_{j+1}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}\left[\mathcal{A}_{i+1} \mathcal{B} \mathcal{A}_{j+1}\right]-$ a contradiction.

[^39]Lemma 1.2.22.13. - In the case of a finite sequence, a geometric object which lies between the end (the first and the last, $\left.n^{\text {th }}\right)$, geometric objects of the sequence, and does not coincide with the other geometric objects of the sequence, lies on at least one of the generalized open intervals, formed by pairs of geometric objects with adjacent numbers.

Proof. By induction. For $n=3$ see L 1.2.22.8. $\left[\mathcal{A}_{1} \mathcal{B} \mathcal{A}_{n}\right] \& \mathcal{B} \notin\left\{\mathcal{A}_{2}, \ldots, \mathcal{A}_{n-1}\right\} \stackrel{\text { L1.2.22.8 }}{\Longrightarrow}\left(\left[\mathcal{A}_{1} \mathcal{B} \mathcal{A}_{n-1}\right] \vee\left[\mathcal{A}_{n-1} \mathcal{B} \mathcal{A}_{n}\right]\right) \& \mathcal{B} \notin$ $\left\{\mathcal{A}_{2}, \ldots, \mathcal{A}_{n-2}\right\} \Rightarrow\left(\exists i i \in \mathbb{N}_{n-2} \&\left[\mathcal{A}_{i} \mathcal{B} \mathcal{A}_{i+1}\right) \vee\left[\mathcal{A}_{n-1} \mathcal{B} \mathcal{A}_{n}\right] \Rightarrow \exists i i \in \mathbb{N}_{n-1} \&\left[\mathcal{A}_{i} \mathcal{B} \mathcal{A}_{i+1}\right]\right.$.

Lemma 1.2.22.14. - All of the generalized open intervals $\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right)$, where $i=1,2, \ldots, n-1$, lie inside the generalized open interval $\left(\mathcal{A}_{1} \mathcal{A}_{n}\right)$, i.e. $\forall i \in\{1,2, \ldots, n-1\}\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right) \subset\left(\mathcal{A}_{1} \mathcal{A}_{n}\right)$.

Proof. By induction. For $n=4\left(\left[\mathcal{A}_{1} \mathcal{M} \mathcal{A}_{2}\right] \vee\left[\mathcal{A}_{2} \mathcal{M} \mathcal{A}_{3}\right]\right) \&\left[\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}\left[\mathcal{A}_{1} \mathcal{M} \mathcal{A}_{3}\right]$. If $\mathcal{M} \in\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right), i \in$ $\{1,2, \ldots, n-2\}$, then by the induction hypothesis $\mathcal{M} \in\left(A_{1} A_{n-1}\right)$, by L 1.2 .22 .11 we have $\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right]$, therefore $\left[\mathcal{A}_{1} \mathcal{M} \mathcal{A}_{n-1}\right] \&\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \stackrel{\operatorname{Pr1.2} \cdot 7}{\Longrightarrow}\left[\mathcal{A}_{1} \mathcal{M} \mathcal{A}_{n}\right]$; if $\mathcal{M} \in\left(\mathcal{A}_{n-1} \mathcal{A}_{n}\right)$ then $\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \&\left[\mathcal{A}_{n-1} \mathcal{M} \mathcal{A}_{n}\right] \stackrel{\operatorname{Pr} 1.2 .7}{\Longrightarrow}\left[\mathcal{A}_{1} \mathcal{M} \mathcal{A}_{n}\right]$.

Lemma 1.2.22.15. - The generalized half-open interval $\left[\mathcal{A}_{1} \mathcal{A}_{n}\right)$ is a disjoint union of the generalized half-open intervals $\left[\mathcal{A}_{i} \mathcal{A}_{i+1}\right)$, where $i=1,2, \ldots, n-1$:

$$
\left[\mathcal{A}_{1} \mathcal{A}_{n}\right)=\bigcup_{i=1}^{n-1}\left[\mathcal{A}_{i} \mathcal{A}_{i+1}\right)
$$

Also,
The generalized half-closed interval $\left(\mathcal{A}_{1} \mathcal{A}_{n}\right]$ is a disjoint union of the generalized half-closed intervals $\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right]$, where $i=1,2, \ldots, n-1$:
$\left(\mathcal{A}_{1} \mathcal{A}_{n}\right]=\bigcup_{i=1}^{n-1}\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right]$.
In particular, if $\mathfrak{J}=\left[\mathcal{A}_{1} \mathcal{A}_{n}\right]$ is a set with angular generalized betweenness relation then we have
$\mathfrak{J}=\bigcup_{i=1}^{n-1}\left[\mathcal{A}_{i} \mathcal{A}_{i+1}\right]$.
Proof. Use L 1.2.22.13, L 1.2.22.11, L 1.2.22.14.

If a finite (infinite) sequence of geometric objects $A_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4(n \in \mathbb{N})$ has the property that a geometric object from the sequence lies between two other geometric objects of the sequence iff its number has an intermediate value between the numbers of these two geometric objects, we say that the geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}(, \ldots)$ are in order $\left[\mathcal{A}_{1} \mathcal{A}_{2} \ldots \mathcal{A}_{n}(\ldots)\right]$.

Theorem 1.2.22. Any finite sequence of geometric objects $\mathcal{A}_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4$ can be renumbered in such a way that a geometric object from the sequence lies between two other geometric objects of the sequence iff its number has an intermediate value between the numbers of these two geometric objects. In other words, any finite sequence of geometric objects $\mathcal{A}_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4$ can be put in order $\left[\mathcal{A}_{1} \mathcal{A}_{2} \ldots \mathcal{A}_{n}\right]$.

By a renumbering of a finite (infinite) sequence of geometric objects $\mathcal{A}_{i}, i \in \mathbb{N}_{n}, n \geq 4$, we mean a bijective mapping (permutation) $\sigma: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$, which induces a bijective transformation $\left\{\sigma_{S}: \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right\} \rightarrow\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right\}$ of the set of geometric objects of the sequence by $\mathcal{A}_{i} \mapsto \mathcal{A}_{\sigma(i)}, i \in \mathbb{N}_{n}$.

The theorem then asserts that for any finite sequence of distinct geometric objects $\mathcal{A}_{i}, i \in \mathbb{N}_{n}, n \geq 4$ there is a bijective mapping (permutation) of renumbering $\sigma: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$ such that $\forall i, j, k \in \mathbb{N}_{n}(i<j<k) \vee(k<j<i) \Leftrightarrow$ $\left[\mathcal{A}_{\sigma(i)} \mathcal{A}_{\sigma(j)} \mathcal{A}_{\sigma(k)}\right]$.

Proof. Let $\left[\mathcal{A}_{l} \mathcal{A}_{m} \mathcal{A}_{n}\right], l \neq m \neq n, l \in \mathbb{N}_{4}, m \in \mathbb{N}_{4}, n \in \mathbb{N}_{4}$ (see Pr 1.2.5). If $p \in \mathbb{N}_{4} \& p \neq l \& p \neq m \& p \neq n$, then by $\operatorname{Pr} 1.2 .5, \mathrm{~L} 1.2 .22 .8\left[\mathcal{A}_{p} \mathcal{A}_{l} \mathcal{A}_{n}\right] \vee\left[\mathcal{A}_{l} \mathcal{A}_{p} \mathcal{A}_{m}\right] \vee\left[\mathcal{A}_{m} \mathcal{A}_{p} \mathcal{A}_{n}\right] \vee\left[\mathcal{A}_{l} \mathcal{A}_{p} \mathcal{A}_{n}\right] \vee\left[\mathcal{A}_{l} \mathcal{A}_{n} \mathcal{A}_{p}\right]$.

Define the values of the function σ by
for $\left[\mathcal{A}_{p} \mathcal{A}_{l} \mathcal{A}_{n}\right]$ let $\sigma(1)=p, \sigma(2)=l, \sigma(3)=m, \sigma(4)=n$;
for $\left[\mathcal{A}_{l} \mathcal{A}_{p} \mathcal{A}_{m}\right]$ let $\sigma(1)=l, \sigma(2)=p, \sigma(3)=m, \sigma(4)=n$;
for $\left[\mathcal{A}_{m} \mathcal{A}_{p} \mathcal{A}_{n}\right]$ let $\sigma(1)=l, \sigma(2)=m, \sigma(3)=p, \sigma(4)=n$;
for $\left[\mathcal{A}_{l} \mathcal{A}_{n} \mathcal{A}_{p}\right]$ let $\sigma(1)=l, \sigma(2)=m, \sigma(3)=n, \sigma(4)=p$.
Now suppose that $\exists \tau \tau: \mathbb{N}_{n-1} \rightarrow \mathbb{N}_{n-1}$ such that $\forall i, j, k \in \mathbb{N}_{n-1}(i<j<k) \vee(k<j<i) \Leftrightarrow\left[\mathcal{A}_{\tau(i)} \mathcal{A}_{\tau(j)} \mathcal{A}_{\tau(k)}\right]$.
By $\operatorname{Pr} 1.2 .5$, L 1.2.22.13 $\left[\mathcal{A}_{n} \mathcal{A}_{\tau(1)} \mathcal{A}_{\tau(n-1)}\right] \vee\left[\mathcal{A}_{\tau(1)} \mathcal{A}_{\tau(n-1)} \mathcal{A}_{\tau(n)}\right] \vee \exists i i \in \mathbb{N}_{n-2} \&\left[\mathcal{A}_{\tau(i)} \mathcal{A}_{n} \mathcal{A}_{\tau(n+1)}\right]$.
The values of σ are now given
for $\left[\mathcal{A}_{n} \mathcal{A}_{\sigma(1)} \mathcal{A}_{\sigma(n-1)}\right]$ by $\sigma(1)=n$ and $\sigma(i+1)=\tau(i)$, where $i \in \mathbb{N}_{n-1}$;
for $\left[\mathcal{A}_{\sigma(i)} \mathcal{A}_{\sigma(n-1)} \mathcal{A}_{\sigma(n)}\right]$ by $\sigma(i)=\tau(i)$, where $i \in \mathbb{N}_{n-1}$, and $\sigma(n)=n$;
for $\left[\mathcal{A}_{\sigma(i)} \mathcal{A}_{n} \mathcal{A}_{\sigma(i+1)}\right]$ by $\sigma(j)=\tau(j)$, where $j \in\{1,2, \ldots, i\}, \sigma(i+1)=n$, and $\sigma(j+1)=\tau(j)$, where $j \in$ $\{i+1, i+2, \ldots, n-1\}$. See L 1.2.22.11.

Some Properties of Generalized Open Intervals

Lemma 1.2.23.1. For any finite set of geometric objects $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right\}$ of a generalized open interval $(\mathcal{A B}) \subset \mathfrak{J}$ there is a geometric object \mathcal{C} on $(\mathcal{A B})$ not in that set.

Proof. Using T 1.2.22, put the geometric objects of the set $\left\{\mathcal{A}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}, \mathcal{B}\right\}$ in order $\left[\mathcal{A}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}, \mathcal{B}\right]$. By $\operatorname{Pr} 1.2 .5 \exists \mathcal{C}\left[\mathcal{A}_{1} \mathcal{C} \mathcal{A}_{2}\right]$. By L $1.2 .22 .3[\mathcal{A C B}]$ and $\mathcal{C} \neq \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$, because by $\operatorname{Pr} 1.2 .3\left[\mathcal{A}_{1} \mathcal{C} \mathcal{A}_{2}\right] \Rightarrow \neg\left[\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{C}\right]$ and by $\operatorname{Pr} 1.2 .1 \mathcal{C} \neq \mathcal{A}_{1}, \mathcal{A}_{2}$.

Theorem 1.2.23. Every generalized open interval in \mathfrak{J} contains an infinite number of geometric objects.
Corollary 1.2.23.2. Any generalized interval-like set in \mathfrak{J} contains infinitely many geometric objects.
Lemma 1.2.24.3. Let \mathcal{A}_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, be a finite sequence of geometric objects with the property that every geometric object of the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in \mathbb{N}) numbers. Then if $i \leq j \leq l, i \leq k \leq l, i, j, k, l \in \mathbb{N}_{n}(i, j, k, l \in \mathbb{N})$, the generalized open interval $\left(\mathcal{A}_{j} \mathcal{A}_{k}\right)$ is included in the generalized open interval $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$. ${ }^{123}$ Furthermore, if $i<j<k<l$ and $\mathcal{B} \in\left(\mathcal{A}_{j} \mathcal{A}_{k}\right)$ then $\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{B}\right]$. 124

Proof. Assume $j<k$. ${ }^{125}$ Then $\left.i=j \& k=l \Rightarrow\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)=\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) ; i=j \& k<l \Rightarrow\left[\mathcal{A}_{i} \mathcal{A}_{k} \mathcal{A}_{l}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow} \mathcal{A}_{j} \mathcal{A}_{k}\right) \subset$ $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right) ; i<j \& k=l \Rightarrow\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset\left(\mathcal{A}_{i} \mathcal{A}_{l}\right) . i<j \& k<l \Rightarrow\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{i} \mathcal{A}_{k} \mathcal{A}_{l}\right] \xrightarrow{\text { Pr1.2.7 }}\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset$ $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$.

The second part follows from $\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k}\right] \&\left[\mathcal{A}_{j} \mathcal{B} \mathcal{A}_{k}\right] \xrightarrow{\operatorname{Pr} 1.2} \cdot 7\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{B}\right]$. \square
Let a generalized interval $\mathcal{A}_{0} \mathcal{A}_{n}$ be divided into generalized intervals $\mathcal{A}_{0} \mathcal{A}_{1}, \mathcal{A}_{1} \mathcal{A}_{2}, \ldots \mathcal{A}_{n-1} \mathcal{A}_{n}$. Then
Lemma 1.2.24.4. - If $\mathcal{B}_{1} \in\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, $\mathcal{B}_{2} \in\left(\mathcal{A}_{l-1} \mathcal{A}_{l}\right)$, $k<l$ then $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$. Furthermore, if $\mathcal{B}_{2} \in\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$ and $\left[\mathcal{A}_{k-1} \mathcal{B}_{1} \mathcal{B}_{2}\right]$, then $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$.

Proof. By L 1.2.22.11 $\left[\mathcal{A}_{0} \mathcal{A}_{k} \mathcal{A}_{m}\right]$. Using L 1.2 .24 .3 (since $0 \leq k-1, k \leq l-1<n$), we obtain $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{A}_{k}\right]$, $\left[\mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{n}\right]$. Hence $\left[\mathcal{B}_{1} \mathcal{A}_{k} \mathcal{A}_{m}\right] \&\left[\mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{m}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}\left[\mathcal{B}_{1} \mathcal{A}_{k} \mathcal{B}_{2}\right],\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{A}_{k}\right] \&\left[\mathcal{B}_{1} \mathcal{A}_{k} \mathcal{B}_{2}\right] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$. To show the second part, observe that for $0<k-1$ we have by the preceding lemma (the second part of L1.2.24.3) [$\left.\mathcal{A}_{0} \mathcal{A}_{k-1} \mathcal{B}_{2}\right]$, whence $\left[\mathcal{A}_{0} \mathcal{A}_{k-1} \mathcal{B}_{2}\right] \&\left[\mathcal{A}_{k-1} \mathcal{B}_{1} \mathcal{B}_{2}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$.

Corollary 1.2.24.5. - If $\mathcal{B}_{1} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right), \mathcal{B}_{2} \in\left[\mathcal{A}_{l-1} \mathcal{A}_{l}\right), k<l$, then $\left[\mathcal{A} \mathcal{B}_{1} \mathcal{B}_{2}\right]$.
Proof. Follows from the preceding lemma (L 1.2.24.4) and L 1.2.24.3.
Lemma 1.2.24.6. - If $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$ and $\mathcal{B}_{2} \in\left(\mathcal{A}_{0} \mathcal{A}_{n}\right)$, then either $\mathcal{B}_{1} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, $\mathcal{B}_{2} \in\left[\mathcal{A}_{l-1} \mathcal{A}_{l}\right)$, where $0<k<l \leq n$, or $\mathcal{B}_{1} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, $\mathcal{B}_{2} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, in which case either $\mathcal{B}_{1}=\mathcal{A}_{k-1}$ and $\mathcal{B}_{2} \in\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, or $\left[\mathcal{A}_{k-1} \mathcal{B}_{1} \mathcal{B}_{2}\right]$, where $\mathcal{B}_{1}, \mathcal{B}_{2} \in\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$.

Proof. $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right] \&\left[\mathcal{A}_{0} \mathcal{B}_{2} \mathcal{A}_{n}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{A}_{k}\right]$. By L 1.2 .22 .15 we have $\mathcal{B}_{1} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right), \mathcal{B}_{2} \in\left[\mathcal{A}_{l-1} \mathcal{A}_{l}\right)$, where $k, l \in \mathbb{N}_{n}$. Show $k \leq l$. In fact, otherwise $\mathcal{B}_{1} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right), \mathcal{B}_{2} \in\left[\mathcal{A}_{l-1} \mathcal{A}_{l}\right), k>l$ would imply $\left[\mathcal{A}_{0} \mathcal{B}_{2} \mathcal{B}_{1}\right]$ by the preceding corollary, which, according to Pr 1.2.3, contradicts $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right]$. Suppose $k=l$. Note that $\left[\mathcal{A}_{0} \mathcal{B}_{1} \mathcal{B}_{2}\right] \xrightarrow{\text { Pr1.2. }}$ $\mathcal{B}_{1} \neq \mathcal{B}_{2} \neq \mathcal{A}_{0}$. The assumption $\mathcal{B}_{2}=\mathcal{A}_{k-1}$ would (by L 1.2.24.3; we have in this case $0<k-1$, because $\mathcal{B}_{2} \neq \mathcal{A}_{0}$) imply $\left[\mathcal{A}_{0} \mathcal{B}_{2} \mathcal{B}_{1}\right]$ - a contradiction. Finally, if $\mathcal{B}_{1}, \mathcal{B}_{2} \in\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$ then by P 1.2.3.4 either $\left[\mathcal{A}_{k-1} \mathcal{B}_{1} \mathcal{B}_{2}\right]$ or $\left[\mathcal{A}_{k-1} \mathcal{B}_{2} \mathcal{B}_{1}\right]$. But $\left[\mathcal{A}_{k-1} \mathcal{B}_{2} \mathcal{B}_{1}\right]$ would give $\left[\mathcal{A}_{0} \mathcal{B}_{2} \mathcal{B}_{1}\right]$ by (the second part of) L 1.2.24.4. Thus, we have $\left[\mathcal{A}_{k-1} \mathcal{B}_{1} \mathcal{B}_{2}\right]$. There remains also the possibility that $\mathcal{B}_{1}=\mathcal{A}_{k-1}$ and $\mathcal{B}_{2} \in\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$.

Lemma 1.2.24.7. - If $0 \leq j<k \leq l-1<n$ and $\mathcal{B} \in\left(\mathcal{A}_{l-1} \mathcal{A}_{l}\right)$ then $\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{B}\right]$. ${ }^{126}$
Proof. By L 1.2.22.15 $\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{A}_{l}\right]$. By L 1.2.24.3 $\left[\mathcal{A}_{k} \mathcal{B} \mathcal{A}_{l}\right]$. Therefore, $\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{k} \mathcal{B} \mathcal{A}_{l}\right] \stackrel{\operatorname{Pr} 1.2 .7}{\Longrightarrow}\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{B}\right]$. \square
Lemma 1.2.24.8. - If $\mathcal{D} \in\left(\mathcal{A}_{j-1} \mathcal{A}_{j}\right), \mathcal{B} \in\left(\mathcal{A}_{l-1} \mathcal{A}_{l}\right), 0<j \leq k \leq l-1<n$, then $\left[\mathcal{D} \mathcal{A}_{k} \mathcal{B}\right]$.
Proof. Since $j \leq k \Rightarrow j-1<k$, we have from the preceding lemma (L1.2.24.7) $\left[\mathcal{A}_{j-1} \mathcal{A}_{k} \mathcal{B}\right]$ and from L 1.2.24.3 $\left[\mathcal{A}_{j-1} \mathcal{D} \mathcal{A}_{k}\right]$. Hence by $\operatorname{Pr} 1.2 .7\left[\mathcal{D} \mathcal{A}_{k} \mathcal{B}\right]$.

Lemma 1.2.24.9. - If $\mathcal{B}_{1} \in\left(\mathcal{A}_{i} \mathcal{A}_{j}\right)$, $\mathcal{B}_{2} \in\left(\mathcal{A}_{k} \mathcal{A}_{l}\right), 0 \leq i<j<k<l \leq n$ then $\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset\left(\mathcal{B}_{1} \mathcal{A}_{k}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset$ $\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \subset\left(\mathcal{A}_{i} \mathcal{A}_{l}\right),\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \neq\left(\mathcal{B}_{1} \mathcal{A}_{k}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \neq\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$ and $\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) \subset$ $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right),\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \neq\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$.

[^40]Proof. ${ }^{127}$ Using the properties Pr 1.2.6, $\operatorname{Pr} 1.2 .7$ and the results following them (summarized in the footnote accompanying T ??), we can write $\left[\mathcal{A}_{i} \mathcal{B}_{1} \mathcal{A}_{j}\right] \&\left[\mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k}\right] \stackrel{\operatorname{Pr1.2} \cdot 7}{\Longrightarrow}\left[\mathcal{B}_{1} \mathcal{A}_{j} \mathcal{A}_{k}\right] \Rightarrow\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset\left(\mathcal{B}_{1} \mathcal{A}_{k}\right) \&\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \neq\left(\mathcal{B}_{1} \mathcal{A}_{k}\right)$. Also, $\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{l}\right] \Rightarrow\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{B}_{2}\right] \Rightarrow\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \subset\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{j} \mathcal{A}_{k}\right) \neq\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) . \quad\left[\mathcal{B}_{1} \mathcal{A}_{j} \mathcal{A}_{k}\right] \&\left[\mathcal{A}_{j} \mathcal{A}_{k} \mathcal{B}_{2}\right] \xrightarrow{\operatorname{Pr} 1.2 .6}$ $\left[\mathcal{B}_{1} \mathcal{A}_{j} \mathcal{B}_{2}\right] \&\left[\mathcal{B}_{1} \mathcal{A}_{k} \mathcal{B}_{2}\right] \Rightarrow\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{j} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{k}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{k}\right) \quad \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right)$. $\left[\mathcal{B}_{1} \mathcal{A}_{k} \mathcal{B}_{2}\right] \&\left[\mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{l}\right] \Rightarrow\left[\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{A}_{l}\right] \Rightarrow\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \Rightarrow\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) .\left[\mathcal{A}_{i} \mathcal{B}_{1} \mathcal{A}_{j}\right] \&\left[\mathcal{B}_{1} \mathcal{A}_{j} \mathcal{B}_{2}\right] \Rightarrow\left[\mathcal{A}_{i} \mathcal{B}_{1} \mathcal{B}_{2}\right] \Rightarrow$ $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) \Rightarrow\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) .\left[\mathcal{A}_{i} \mathcal{B}_{1} \mathcal{B}_{2}\right] \&\left[\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{A}_{l}\right] \Rightarrow\left[\mathcal{A}_{i} \mathcal{B}_{1} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{i} \mathcal{B}_{2} \mathcal{A}_{l}\right] \Rightarrow\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \subset\left(\mathcal{A}_{i} \mathcal{A}_{l}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \neq$ $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right) \&\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{i} \mathcal{A}_{l}\right) \&\left(\mathcal{A}_{i} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$.

Lemma 1.2.24.10. - Suppose $B_{1} \in\left[A_{k} A_{k+1}\right), B_{2} \in\left[A_{l} A_{l+1}\right)$, where $0<k+1<l<n$. Then $\left(A_{k+1} A_{l}\right) \subset$ $\left(B_{1} B_{2}\right) \subset\left(A_{k} A_{l+1}\right),\left(A_{k+1} A_{l}\right) \neq\left(B_{1} B_{2}\right) \neq\left(A_{k} A_{l+1}\right)$.

Proof. ${ }^{128}$ Suppose $\mathcal{B}_{1}=\mathcal{A}_{k}, \mathcal{B}_{2}=\mathcal{A}_{l}$. Then $\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \Rightarrow\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset\left(\mathcal{A}_{k} \mathcal{A}_{l}\right)=\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq$ $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right)$. Also, in view of $k<k+1<l<l+1$, taking into account L 1.2.24.3, we have $\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset$ $\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right)$. Suppose now $\mathcal{B}_{1}=\mathcal{A}_{k}, \mathcal{B}_{2} \in\left(\mathcal{A}_{l} \mathcal{A}_{l+1}\right)$. Then $\left[\mathcal{A}_{k} \mathcal{A}_{l} \mathcal{A}_{l+1}\right] \&\left[\mathcal{A}_{l} \mathcal{B}_{2} \mathcal{A}_{l+1}\right] \Rightarrow$ $\left[\mathcal{A}_{k} \mathcal{A}_{l} \mathcal{B}_{2}\right] \&\left[\mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{l+1}\right] \Rightarrow\left[\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{A}_{l+1} \Rightarrow\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) .\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{k+1} \mathcal{A}_{l} \mathcal{B}_{2}\right] \Rightarrow\right.$ $\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{B}_{2}\right] \Rightarrow\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{k} \mathcal{B}_{2}\right)=\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) . \quad\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq$ $\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \Rightarrow\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right)$. Now consider the case $\mathcal{B}_{1} \in\left(\mathcal{A}_{k} \mathcal{A}_{k+1}\right)$, $\mathcal{B}_{2}=\mathcal{A}_{l}$. We have $\left[\mathcal{A}_{k} \mathcal{B}_{1} \mathcal{A}_{k+1}\right] \&\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \Rightarrow\left[\mathcal{A}_{1} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \Rightarrow\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset$ $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) . \quad\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{k} \mathcal{B}_{1} \mathcal{A}_{k+1}\right] \Rightarrow\left[\mathcal{B}_{1} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \Rightarrow\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \subset\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \&\left(\mathcal{A}_{k+1} \mathcal{A}_{l}\right) \neq$ $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) . \quad\left[\mathcal{B}_{1} \mathcal{A}_{k+1} \mathcal{A}_{l}\right] \&\left[\mathcal{A}_{k+1} \mathcal{A}_{l} \mathcal{A}_{l+1}\right] \Rightarrow\left[\mathcal{B}_{1} \mathcal{A}_{l} \mathcal{A}_{l+1}\right] \Rightarrow\left(\mathcal{B}_{1} \mathcal{B}_{2}\right)=\left(\mathcal{B}_{1} \mathcal{A}_{l}\right) \subset\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right)$. $\left[\mathcal{A}_{k} \mathcal{B} \mathcal{A}_{k+1}\right] \&\left[\mathcal{A}_{k} \mathcal{A}_{k+1} \mathcal{A}_{l+1}\right] \Rightarrow\left[\mathcal{A}_{k} \mathcal{B}_{1} \mathcal{A}_{l+1}\right] \Rightarrow\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \quad \subset \quad\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \quad \neq \quad\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right)$. $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \quad \neq\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \quad \subset \quad\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{A}_{l+1}\right) \quad \neq \quad\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \quad \Rightarrow$ $\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \subset\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right) \&\left(\mathcal{B}_{1} \mathcal{B}_{2}\right) \neq\left(\mathcal{A}_{k} \mathcal{A}_{l+1}\right)$. Finally, in the case when $\mathcal{B}_{1} \in\left(\mathcal{A}_{k} \mathcal{A}_{k+1}\right), \mathcal{B}_{2} \in\left(\mathcal{A}_{l} \mathcal{A}_{l+1}\right)$ the result follows immediately from the preceding lemma (L 1.2.24.9).

Theorem 1.2.24.

Basic Properties of Generalized Rays

Given a set \mathfrak{J}, which admits a generalized betweenness relation, a geometric objects $\mathcal{O} \in \mathfrak{J}$ and another geometric object $\mathcal{A} \in \mathfrak{J}$, define the generalized ray $\mathcal{O}_{\mathcal{A}}^{(\mathfrak{J})},{ }^{129}$ emanating from its origin \mathcal{O}, as the set $\mathcal{O}_{\mathcal{A}}^{(\mathfrak{J})} \rightleftharpoons\{\mathcal{B} \mid \mathcal{B} \in \mathfrak{J} \& \mathcal{B} \neq$ $\mathcal{O} \& \neg[\mathcal{A O B}]\} .{ }^{130}$

Lemma 1.2.25.1. Any geometric object \mathcal{A} lies on the ray $\mathcal{O}_{\mathcal{A}}$.
Proof. Follows immediately from $\operatorname{Pr} 1.2 .1$.
Lemma 1.2.25.2. If a geometric object \mathcal{B} lies on a generalized ray $\mathcal{O}_{\mathcal{A}}$, the geometric object \mathcal{A} lies on the generalized ray $\mathcal{O}_{\mathcal{B}}$, that is, $\mathcal{B} \in \mathcal{O}_{\mathcal{A}} \Rightarrow \mathcal{A} \in \mathcal{O}_{\mathcal{B}}$.

Proof. From Pr 1.2.1 $\mathcal{O} \in \mathfrak{J} \& \mathcal{A} \in \mathfrak{J} \& \mathcal{B} \in \mathfrak{J} \& \neg[\mathcal{A O B}] \Rightarrow \neg[\mathcal{B O \mathcal { A }}]$
Lemma 1.2.25.3. If a geometric object \mathcal{B} lies on a generalized ray $\mathcal{O}_{\mathcal{A}}$, then the ray $\mathcal{O}_{\mathcal{A}}$ is equal to the ray $\mathcal{O}_{\mathcal{B}}$.
Proof. Let $\mathcal{C} \in \mathcal{O}_{\mathcal{A}}$. If $\mathcal{C}=\mathcal{A}$, then by $\mathrm{L} 1.2 .25 .2 \mathcal{C} \in \mathcal{O}_{\mathcal{B}} . \mathcal{C} \neq \mathcal{O} \neq \mathcal{A} \& \neg[\mathcal{A O C}] \stackrel{\text { Pr1.2.5 }}{\Longrightarrow}[\mathcal{O} \mathcal{A C}] \vee[\mathcal{O C} \mathcal{A}]$. Hence $\neg[\mathcal{B O C}]$, because from $\operatorname{Pr} 1.2 .6, \operatorname{Pr} 1.2 .7 \quad[\mathcal{B O C}] \&([\mathcal{O} \mathcal{A C}] \vee[\mathcal{O C A}]) \Rightarrow[\mathcal{B O \mathcal { A }}]$.

Lemma 1.2.25.4. If generalized rays $\mathcal{O}_{\mathcal{A}}$ and $\mathcal{O}_{\mathcal{B}}$ have common points, they are equal.
Proof. $\mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}} \neq \emptyset \Rightarrow \exists \mathcal{C} \mathcal{C} \in \mathcal{O}_{\mathcal{A}} \& \mathcal{C} \in \mathcal{O}_{\mathcal{B}} \stackrel{\mathrm{L} 1.2 .25 .3}{\Longrightarrow} \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{C}}=\mathcal{O}_{\mathcal{B}}$.
If $\mathcal{B} \in \mathcal{O}_{\mathcal{A}}\left(\mathcal{B} \in \mathfrak{J} \& \mathcal{B} \notin \mathcal{O}_{\mathcal{A}} \& \mathcal{B} \neq \mathcal{O}\right)$, we say that the geometric object \mathcal{B} lies in the set \mathfrak{J} on the same side (on the opposite side) of the given geometric object \mathcal{O} as (from) the geometric object \mathcal{A}.

[^41]Lemma 1.2.25.5. The relation "to lie in the set \mathfrak{J} on the same side of the given geometric object $\mathcal{O} \in \mathfrak{J}$ as" is an equivalence relation on $\mathfrak{J} \backslash\{\mathcal{O}\}$. That is, it possesses the properties of:

1) Reflexivity: A geometric object \mathcal{A} always lies on the same side of the geometric object \mathcal{O} as itself;
2) Symmetry: If a geometric object \mathcal{B} lies on the same side of the geometric object \mathcal{O} as \mathcal{A}, the geometric object \mathcal{A} lies on the same side of \mathcal{O} as \mathcal{B}.
3) Transitivity: If a geometric object \mathcal{B} lies on the same side of the geometric object \mathcal{O} as the geometric object \mathcal{A}, and a geometric object \mathcal{C} lies on the same side of \mathcal{O} as \mathcal{B}, then \mathcal{C} lies on the same side of \mathcal{O} as \mathcal{A}.

Proof. 1) and 2) follow from L 1.2.25.1, L 1.2.25.2. Show 3): $\mathcal{B} \in \mathcal{O}_{\mathcal{A}} \& \mathcal{C} \in \mathcal{O}_{\mathcal{B}} \stackrel{\text { L1.2.25.3 }}{\Longrightarrow} \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{B}}=\mathcal{O}_{\mathcal{C}} \Rightarrow \mathcal{C} \in \mathcal{O}_{\mathcal{A}}$.

Lemma 1.2.25.6. A geometric object \mathcal{B} lies on the opposite side of \mathcal{O} from \mathcal{A} iff \mathcal{O} divides \mathcal{A} and \mathcal{B}.
Proof. By the definition of the generalized ray $\mathcal{O}_{\mathcal{A}}$ we have $\mathcal{B} \in \mathfrak{J} \& \mathcal{B} \notin \mathcal{O}_{\mathcal{A}} \& \mathcal{B} \neq \mathcal{O} \Rightarrow[\mathcal{A O B}]$. Conversely, from $\operatorname{Pr} 1.2 .1 \mathcal{O} \in \mathfrak{J} \& \mathcal{A} \in \mathfrak{J} \& \mathcal{B} \in \mathfrak{J} \&[\mathcal{A O B}] \Rightarrow \mathcal{B} \neq \mathcal{O} \& \mathcal{B} \notin \mathcal{O}_{\mathcal{A}}$.

Lemma 1.2.25.7. The relation "to lie in the set \mathfrak{J} on the opposite side of the given geometric object \mathcal{O} from" is symmetric.

Proof. Follows from L 1.2.25.6 and $[\mathcal{A O B}] \stackrel{\text { Pr1.2.1 }}{\Longrightarrow}[\mathcal{B O} \mathcal{A}]$.
If a geometric object \mathcal{B} lies in the set \mathfrak{J} on the same side (on the opposite side) of the geometric object \mathcal{O} as (from) a geometric object \mathcal{A}, in view of symmetry of the relation we say that the geometric objects \mathcal{A} and \mathcal{B} lie in the set \mathfrak{J} on the same side (on opposite sides) of \mathcal{O}.

Lemma 1.2.25.8. If geometric objects \mathcal{A} and \mathcal{B} lie on one generalized ray $\mathcal{O}_{\mathcal{C}} \subset \mathfrak{J}$, they lie in the set \mathfrak{J} on the same side of the geometric object \mathcal{O}. If, in addition, $\mathcal{A} \neq \mathcal{B}$, then either \mathcal{A} lies between \mathcal{O} and \mathcal{B}, or \mathcal{B} lies between \mathcal{O} and \mathcal{A}.
Proof. $\mathcal{A} \in \mathcal{O}_{\mathcal{C}} \stackrel{\text { L1.2.25.3 }}{\Longrightarrow} \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{C}} \cdot \mathcal{B} \in \mathcal{O}_{\mathcal{A}} \Rightarrow \mathcal{B} \neq \mathcal{O} \& \neg[\mathcal{B O} \mathcal{A}]$. When also $\mathcal{B} \neq \mathcal{A}$, from $\operatorname{Pr} 1.2 .5[\mathcal{O} \mathcal{A B}] \vee[\mathcal{O B A}]$.
Lemma 1.2.25.9. If a geometric object \mathcal{C} lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as a geometric object \mathcal{A}, and a geometric object \mathcal{D} lies on the opposite side of \mathcal{O} from \mathcal{A}, then the geometric objects C and D lie on opposite sides of $O .^{131}$

Proof. $\mathcal{C} \in \mathcal{O}_{\mathcal{A}} \Rightarrow \neg[\mathcal{A O C}] \& \mathcal{C} \neq \mathcal{O}$. If also $\mathcal{C} \neq \mathcal{A}^{132}$, from $\operatorname{Pr} 1.2 .5[\mathcal{A C O}]$ or $[\mathcal{C} \mathcal{A O}]$, whence by $\operatorname{Pr} 1.2 .6, \operatorname{Pr} 1.2 .7$ $([\mathcal{A C O}] \vee[\mathcal{C A O}]) \&[\mathcal{A O D}] \Rightarrow[\mathcal{C O D}]$.

Lemma 1.2.25.10. If geometric objects \mathcal{C} and \mathcal{D} lie in the set \mathfrak{J} on the opposite side of the geometric object \mathcal{O} from a geometric object $\mathcal{A},{ }^{133}$ then \mathcal{C} and \mathcal{D} lie on the same side of \mathcal{O}.

Proof. By Pr 1.2.1, L 1.2.22.9 $[\mathcal{A O C}] \&[\mathcal{A O D}] \Rightarrow \mathcal{O} \neq \mathcal{C} \& \neg[\mathcal{C O D}] \Rightarrow \mathcal{D} \in \mathcal{O}_{\mathcal{C}}$.
Lemma 1.2.25.11. Suppose a geometric object \mathcal{C} lies on a generalized ray $\mathcal{O}_{\mathcal{A}}$, a geometric object \mathcal{D} lies on a generalized ray $\mathcal{O}_{\mathcal{B}}$, and \mathcal{O} lies between \mathcal{A} and \mathcal{B}. Then \mathcal{O} also lies between \mathcal{C} and \mathcal{D}.

Proof. Observe that $\mathcal{D} \in \mathcal{O}_{\mathcal{B}} \xrightarrow{\text { L1.2.25.3 }} \mathcal{O}_{\mathcal{B}}=\mathcal{O}_{\mathcal{D}}$ and use L 1.2.25.9.
Lemma 1.2.25.12. A geometric object $\mathcal{O} \in \mathfrak{J}$ divides geometric objects $\mathcal{A} \in \mathfrak{J}$ and $\mathcal{B} \in \mathfrak{J}$ iff the generalized rays $\mathcal{O}_{\mathcal{A}}$ and $\mathcal{O}_{\mathcal{B}}$ are disjoint, $\mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}}=\emptyset$, and their union, together with the geometric object \mathcal{O}, gives the set \mathfrak{J}, i.e. $\mathfrak{J}=\mathcal{O}_{\mathcal{A}} \cup \mathcal{O}_{\mathcal{B}} \cup\{\mathcal{O}\}$. That is,

$$
[\mathcal{A O B}] \Leftrightarrow\left(\mathfrak{J}=\mathcal{O}_{\mathcal{A}} \cup \mathcal{O}_{\mathcal{B}} \cup\{\mathcal{O}\}\right) \&\left(\mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}}=\emptyset\right)
$$

Proof. Suppose $[\mathcal{A O B}]$. If $\mathcal{C} \in \mathfrak{J}$ and $\mathcal{C} \notin \mathcal{O}_{\mathcal{B}}, \mathcal{C} \neq \mathcal{O}$ then $[\mathcal{C O B}]$ by the definition of the generalized ray $\mathcal{O}_{\mathcal{B}}$. $[\mathcal{C O B}] \&[\mathcal{A O B}] \stackrel{\text { L1.2.25.5 }}{\Longrightarrow} \neg[\mathcal{C O \mathcal { A }}] \Rightarrow \mathcal{C} \in \mathcal{O}_{\mathcal{A}} . \mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}}=\emptyset$, because otherwise $\mathcal{C} \in \mathcal{O}_{\mathcal{A}} \& \mathcal{C} \in \mathcal{O}_{\mathcal{B}} \stackrel{\text { L1.2.25.4 }}{\Longrightarrow} \mathcal{B} \in \mathcal{O}_{\mathcal{A}} \Rightarrow$ $\neg[\mathcal{A O B}]$.

Now suppose $\left.\mathfrak{J}=\mathcal{O}_{\mathcal{A}} \cup \mathcal{O}_{\mathcal{B}} \cup\{\mathcal{O}\}\right)$ and $\left(\mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}}=\emptyset\right)$. Then $\mathcal{B} \in \mathcal{O}_{\mathcal{B}} \& \mathcal{O}_{\mathcal{A}} \cap \mathcal{O}_{\mathcal{B}}=\emptyset \Rightarrow \mathcal{B} \notin \mathcal{O}_{\mathcal{A}}$, and $\mathcal{B} \in \mathfrak{J} \& \mathcal{B} \neq \mathcal{O} \& \mathcal{B} \notin \mathcal{O}_{\mathcal{A}} \Rightarrow[\mathcal{A O B}]$.

Lemma 1.2.25.13. A generalized ray $\mathcal{O}_{\mathcal{A}}$ contains the generalized open interval $(\mathcal{O} \mathcal{A})$.
Proof. If $\mathcal{B} \in(\mathcal{O} \mathcal{A})$ then from $\operatorname{Pr} 1.2 .1 \mathcal{B} \neq \mathcal{O}$ and from $\operatorname{Pr} 1.2 .3 \neg[\mathcal{B O} \mathcal{A}]$. We thus have $\mathcal{B} \in \mathcal{O}_{\mathcal{A}}$. \square
Lemma 1.2.25.14. For any finite set of geometric objects $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right\}$ of a ray $\mathcal{O}_{\mathcal{A}}$ there is a geometric object \mathcal{C} on $\mathcal{O}_{\mathcal{A}}$ not in that set.

[^42]Proof. Immediately follows from T 1.2.23 and L 1.2.25.13.
Lemma 1.2.25.15. If a geometric object \mathcal{B} lies between geometric objects \mathcal{O} and \mathcal{A} then the generalized rays $\mathcal{O}_{\mathcal{B}}$ and $\mathcal{O}_{\mathcal{A}}$ are equal.

Proof. $[\mathcal{O B A}] \stackrel{\text { L1.2.25.13 }}{ } \mathcal{B} \in \mathcal{O}_{\mathcal{A}} \xrightarrow{\mathrm{L} 1.22 .25 .3} \mathcal{O}_{\mathcal{B}}=\mathcal{O}_{\mathcal{A}}$.
Lemma 1.2.25.16. If a geometric object \mathcal{A} lies between geometric objects \mathcal{O} and \mathcal{B}, the geometric object \mathcal{B} lies on the generalized ray $\mathcal{O}_{\mathcal{A}}$.

Proof. By Pr 1.2.1, $\operatorname{Pr} 1.2 .3[\mathcal{O} \mathcal{A B}] \Rightarrow \mathcal{B} \neq \mathcal{O} \& \neg[\mathcal{B O} \mathcal{A}] \Rightarrow \mathcal{B} \in \mathcal{O}_{\mathcal{A}}$.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.25.15).
Lemma 1.2.25.17. If generalized rays $\mathcal{O}_{\mathcal{A}}$ and $\mathcal{O}_{\mathcal{B}}^{\prime}$ are equal, their origins coincide.
Proof. Suppose $\mathcal{O}^{\prime} \neq \mathcal{O}$ We have also $\mathcal{O}^{\prime} \neq \mathcal{O} \& \mathcal{O}^{\prime}{ }_{\mathcal{B}}=\mathcal{O}_{\mathcal{A}} \Rightarrow \mathcal{O}^{\prime} \notin \mathcal{O}_{\mathcal{A}}$. Therefore, $\mathcal{O}^{\prime} \in \mathfrak{J} \& \mathcal{O}^{\prime} \neq \mathcal{O} \& \mathcal{O}^{\prime} \notin \mathcal{O}_{\mathcal{A}} \Rightarrow$ $\mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{A}}^{c} . \mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{A}}^{c} \& \mathcal{B} \in \mathcal{O}_{\mathcal{A}} \Rightarrow\left[\mathcal{O}^{\prime} \mathcal{O B}\right] . \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{B}} \&\left[\mathcal{O}^{\prime} \mathcal{O B}\right] \stackrel{\text { L1.2.25.13 }}{\Longrightarrow} \mathcal{O} \in \mathcal{O}^{\prime}{ }_{\mathcal{B}}=\mathcal{O}_{\mathcal{A}}$ - a contradiction.

Lemma 1.2.25.18. If a generalized interval $\mathcal{A}_{0} \mathcal{A}_{n}$ is divided into n generalized intervals $\mathcal{A}_{0} \mathcal{A}_{1}, \mathcal{A}_{1} \mathcal{A}_{2} \ldots, \mathcal{A}_{n-1} \mathcal{A}_{n}$ (by the geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots \mathcal{A}_{n-1}$), ${ }^{134}$ the geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots \mathcal{A}_{n-1}, \mathcal{A}_{n}$ all lie on the same side of the geometric object \mathcal{A}_{0}, and the generalized rays $\mathcal{A}_{0 \mathcal{A}_{1}}, \mathcal{A}_{0 \mathcal{A}_{2}}, \ldots, \mathcal{A}_{0 \mathcal{A}_{n}}$ are equal. ${ }^{135}$

Proof. Follows from L 1.2.22.11, L 1.2.25.15.
Theorem 1.2.25. Every generalized ray contains an infinite number of geometric objects.

Linear Ordering on Generalized Rays

Suppose \mathcal{A}, \mathcal{B} are two geometric objects on a generalized ray $\mathcal{O}_{\mathcal{D}}$. Let, by definition, $(\mathcal{A} \prec \mathcal{B})_{\mathcal{O}_{\mathcal{D}}} \stackrel{\text { def }}{\Longleftrightarrow}[\mathcal{O} \mathcal{A B}]$. If $\mathcal{A} \prec \mathcal{B},{ }^{136}$ we say that the geometric object \mathcal{A} precedes the geometric object \mathcal{B} on the generalized ray $\mathcal{O}_{\mathcal{D}}$, or that the geometric object \mathcal{B} succeeds the geometric object \mathcal{A} on the generalized ray $\mathcal{O}_{\mathcal{D}}$.

Lemma 1.2.26.1. If a geometric object \mathcal{A} precedes a geometric object \mathcal{B} on the generalized ray $\mathcal{O}_{\mathcal{D}}$, and \mathcal{B} precedes a geometric object \mathcal{C} on the same generalized ray, then \mathcal{A} precedes \mathcal{C} on $\mathcal{O}_{\mathcal{D}}$:
$\mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C} \Rightarrow \mathcal{A} \prec \mathcal{C}$, where $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{D}}$.
Proof. $[\mathcal{O} \mathcal{A B}] \&[\mathcal{O B C}] \stackrel{\text { Pr1.2. } 7}{\Longrightarrow}[\mathcal{O} \mathcal{A C}]$.
Lemma 1.2.26.2. If \mathcal{A}, \mathcal{B} are two distinct geometric objects on a generalized ray $\mathcal{O}_{\mathcal{D}}$ then either \mathcal{A} precedes \mathcal{B} or \mathcal{B} precedes \mathcal{A}; if \mathcal{A} precedes \mathcal{B} then \mathcal{B} does not precede \mathcal{A}.

Proof. $\mathcal{A} \in \mathcal{O}_{\mathcal{D}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{D}} \stackrel{\text { L1.2.25.8 }}{\Longrightarrow} \mathcal{B} \in \mathcal{O}_{\mathcal{A}} \Rightarrow \neg[\mathcal{A O B}]$. If $\mathcal{A} \neq \mathcal{B}$, then by $\operatorname{Pr} 1.2 .5[\mathcal{O} \mathcal{A B}] \vee[\mathcal{O B \mathcal { A }}]$, that is, $\mathcal{A} \prec \mathcal{B}$ or $\mathcal{B} \prec \mathcal{A}$. $\mathcal{A} \prec \mathcal{B} \Rightarrow[\mathcal{O} \mathcal{A B}] \stackrel{\text { Pr1.2. } 3}{\Longrightarrow} \neg[\mathcal{O B A}] \Rightarrow \neg(\mathcal{B} \prec \mathcal{A})$.

Lemma 1.2.26.3. If a geometric object \mathcal{B} lies on a generalized ray $\mathcal{O}_{\mathcal{P}}$ between geometric objects \mathcal{A} and $\mathcal{C},{ }^{137}$ then either \mathcal{A} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{C}, or \mathcal{C} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{A}; conversely, if \mathcal{A} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{C}, or \mathcal{C} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{A}, then \mathcal{B} lies between \mathcal{A} and \mathcal{C}. That is,
$[\mathcal{A B C}] \Leftrightarrow(\mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C}) \vee(\mathcal{C} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{A})$.
Proof. From the preceding lemma (L 1.2.26.2) we know that either $\mathcal{A} \prec \mathcal{C}$ or $\mathcal{C} \prec \mathcal{A}$, i.e. $[\mathcal{O} \mathcal{A C}]$ or $[\mathcal{O C} \mathcal{A}]$. Suppose $[\mathcal{O} \mathcal{A C}]$. ${ }^{138}$ Then $[\mathcal{O} \mathcal{A C}] \&[\mathcal{A B C}] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}[\angle O A B] \&[\angle O B C] \Rightarrow \mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C}$. Conversely, $\mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C} \Rightarrow$ $[\mathcal{O} \mathcal{A B}] \&[\mathcal{O B C}] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}[\mathcal{A B C}]$.

For geometric objects \mathcal{A}, \mathcal{B} on a generalized ray $\mathcal{O}_{\mathcal{D}}$ we let, by definition, $\mathcal{A} \preceq \mathcal{B} \stackrel{\text { def }}{\Longleftrightarrow}(\mathcal{A} \prec \mathcal{B}) \vee(\mathcal{A}=\mathcal{B})$.
Theorem 1.2.26. Every generalized ray is a chain with respect to the relation \preceq.
Proof. $\mathcal{A} \preceq \mathcal{A} .(\mathcal{A} \preceq \mathcal{B}) \&(\mathcal{B} \preceq \mathcal{A}) \xrightarrow{\mathrm{L} 1.2 .26 .2} \mathcal{A}=\mathcal{B} ;(\mathcal{A} \prec \mathcal{B}) \&(\mathcal{B} \prec \mathcal{A}) \xrightarrow{\mathrm{L} 1.2 .26 .1} \mathcal{A} \prec \mathcal{C} ; \mathcal{A} \neq \mathcal{B} \xrightarrow{\mathrm{L} 1.2 .26 .2}(\mathcal{A} \prec$ $\mathcal{B}) \vee(\mathcal{B} \prec \mathcal{A})$.

[^43]
Linear Ordering on Sets With Generalized Betweenness Relation

Let $\mathcal{O} \in \mathfrak{J}, \mathcal{P} \in \mathfrak{J},[\mathcal{P O Q}]$. Define the relation of direct (inverse) ordering on the set \mathfrak{J}, which admits a generalized betweenness relation, as follows:

Call $\mathcal{O}_{\mathcal{P}}$ the first generalized ray, and $\mathcal{O}_{\mathcal{Q}}$ the second generalized ray. A geometric object \mathcal{A} precedes a geometric object \mathcal{B} in the set \mathfrak{J} in the direct (inverse) order iff:

- Both \mathcal{A} and \mathcal{B} lie on the first (second) generalized ray and \mathcal{B} precedes \mathcal{A} on it; or
- \mathcal{A} lies on the first (second) generalized ray, and \mathcal{B} lies on the second (first) generalized ray or coincides with $\mathcal{O} ;$ or
- $\mathcal{A}=\mathcal{O}$ and \mathcal{B} lies on the second (first) generalized ray; or
- Both \mathcal{A} and \mathcal{B} lie on the second (first) generalized ray, and \mathcal{A} precedes \mathcal{B} on it.

Thus, a formal definition of the direct ordering on the set \mathfrak{J} can be written down as follows:
$\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \prec \mathcal{A}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B}=\mathcal{O}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{Q}}\right) \vee(\mathcal{A}=\mathcal{O} \& \mathcal{B} \in$ $\left.\mathcal{O}_{\mathcal{Q}}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{A} \prec \mathcal{B}\right)$,
and for the inverse ordering: $\left(\mathcal{A} \prec_{2} \mathcal{B}\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{B} \prec \mathcal{A}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{B}=\mathcal{O}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{B} \in\right.$ $\left.\mathcal{O}_{\mathcal{P}}\right) \vee\left(\mathcal{A}=\mathcal{O} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{A} \prec \mathcal{B}\right)$.

The term "inverse order" is justified by the following trivial
Lemma 1.2.27.1. \mathcal{A} precedes \mathcal{B} in the inverse order iff \mathcal{B} precedes \mathcal{A} in the direct order.
For our notions of order (both direct and inverse) on the set \mathfrak{J} to be well defined, they have to be independent, at least to some extent, on the choice of the origin \mathcal{O}, as well as on the choice of the ray-defining geometric objects \mathcal{P} and \mathcal{Q}.

Toward this end, let $\mathcal{O}^{\prime} \in \mathfrak{J}, \mathcal{P}^{\prime} \in \mathfrak{J},\left[\mathcal{P}^{\prime} \mathcal{O}^{\prime} \mathcal{Q}^{\prime}\right]$, and define a new direct (inverse) ordering with displaced origin (ODO) on the set \mathfrak{J}, as follows:

Call \mathcal{O}^{\prime} the displaced origin, $\mathcal{O}^{\prime} \mathcal{P}^{\prime}$ and $\mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}}$ the first and the second displaced generalized rays, respectively. A geometric object \mathcal{A} precedes a geometric object \mathcal{B} in the set \mathfrak{J} in the direct (inverse) ODO iff:

- Both \mathcal{A} and \mathcal{B} lie on the first (second) displaced generalized ray, and \mathcal{B} precedes \mathcal{A} on it; or
- \mathcal{A} lies on the first (second) displaced generalized ray, and \mathcal{B} lies on the second (first) displaced generalized ray or coincides with \mathcal{O}^{\prime}; or
- $\mathcal{A}=\mathcal{O}^{\prime}$ and \mathcal{B} lies on the second (first) displaced generalized ray; or
- Both \mathcal{A} and \mathcal{B} lie on the second (first) displaced generalized ray, and \mathcal{A} precedes \mathcal{B} on it.

Thus, a formal definition of the direct ODO on the set \mathfrak{J} can be written down as follows:
$\left(\mathcal{A} \prec_{1}^{\prime} \mathcal{B}\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \& \mathcal{B} \prec \mathcal{A}\right) \vee\left(\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \& \mathcal{B}=\mathcal{O}^{\prime}\right) \vee\left(\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}}\right) \vee\left(\mathcal{A}=\mathcal{O}^{\prime} \& \mathcal{B} \in\right.$ $\left.\mathcal{O}^{\prime} \mathcal{Q}^{\prime}\right) \vee\left(\mathcal{A} \in \mathcal{O}^{\prime} \mathcal{Q}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \& \mathcal{A} \prec \mathcal{B}\right)$,
and for the inverse ordering: $\left(\mathcal{A} \prec_{2}^{\prime} \mathcal{B}\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \& \mathcal{B} \prec \mathcal{A}\right) \vee\left(\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \& \mathcal{B}=\mathcal{O}^{\prime}\right) \vee(\mathcal{A} \in$ $\left.\mathcal{O}^{\prime} \mathcal{Q}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime}\right) \vee\left(\mathcal{A}=\mathcal{O}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}^{\prime}}\right) \vee\left(\mathcal{A} \in \mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime} \& \mathcal{A} \prec \mathcal{B}\right)$.

Lemma 1.2.27.2. If the displaced generalized ray origin \mathcal{O}^{\prime} lies on the generalized ray $\mathcal{O}_{\mathcal{P}}$ and between \mathcal{O} and \mathcal{P}^{\prime}, then the generalized ray $\mathcal{O}_{\mathcal{P}}$ contains the generalized ray $\mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime}, \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \subset \mathcal{O}_{\mathcal{P}}$.

Proof. $\mathcal{A} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \Rightarrow \mathcal{A} \in \mathcal{O}_{\mathcal{P}}$, because otherwise $\mathcal{A} \neq \mathcal{O} \& \mathcal{A} \notin \mathcal{O}_{\mathcal{P}} \& \mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{P}} \stackrel{\text { L1.2.25.9 }}{\Longrightarrow}\left[\mathcal{A O} \mathcal{O}^{\prime}\right]$ and $\left[\mathcal{A O} \mathcal{O}^{\prime}\right] \&\left[\mathcal{O O}^{\prime} \mathcal{P}^{\prime}\right] \xrightarrow{\text { Pr1.2.7 }}$ $\left[\mathcal{A O}^{\prime} \mathcal{P}^{\prime}\right] \Rightarrow \mathcal{A} \notin \mathcal{O}^{\prime} \mathcal{P}^{\prime}$.

Lemma 1.2.27.3. Let the displaced origin \mathcal{O}^{\prime} be chosen in such a way that \mathcal{O}^{\prime} lies on the generalized ray $\mathcal{O}_{\mathcal{P}}$, and the geometric object \mathcal{O} lies on the ray $\mathcal{O}^{\prime} \mathcal{Q}^{\prime}$. If a geometric object \mathcal{B} lies on both generalized rays $\mathcal{O}_{\mathcal{P}}$ and $\mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}}$, then it divides \mathcal{O} and \mathcal{O}^{\prime}.

Proof. $\mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{O} \in \mathcal{O}^{\prime} \mathcal{Q}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \stackrel{\text { L1.2.25.8 }}{\Longrightarrow} \neg\left[\mathcal{O}^{\prime} \mathcal{O B}\right] \& \neg\left[\mathcal{O} \mathcal{O}^{\prime} \mathcal{B}\right]$, whence by $\operatorname{Pr} 1.2 .5 \Rightarrow\left[\mathcal{O B} \mathcal{O}^{\prime}\right]$.
Lemma 1.2.27.4. An ordering with the displaced origin \mathcal{O}^{\prime} on a set \mathfrak{J} which admits a generalized betweenness relation, coincides with either direct or inverse ordering on that set (depending on the choice of the displaced generalized rays). In other words, either for all geometric objects \mathcal{A}, \mathcal{B} in \mathfrak{J} we have that \mathcal{A} precedes \mathcal{B} in the ODO iff \mathcal{A} precedes \mathcal{B} in the direct order; or for all geometric objects \mathcal{A}, \mathcal{B} in \mathfrak{J} we have that \mathcal{A} precedes \mathcal{B} in the ODO iff \mathcal{A} precedes \mathcal{B} in the inverse order.
Proof. Let $\mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{P}}, \mathcal{O} \in \mathcal{O}^{\prime} \mathcal{Q}^{\prime},\left(\mathcal{A} \prec^{\prime}{ }_{1} \mathcal{B}\right)_{\mathfrak{J}}$. Then $\left[\mathcal{P}^{\prime} \mathcal{O}^{\prime} \mathcal{Q}^{\prime}\right] \& \mathcal{O} \in \mathcal{O}^{\prime} \mathcal{Q}^{\prime} \stackrel{\text { L1.2.25.9 }}{\Longrightarrow}\left[\mathcal{O O}^{\prime} \mathcal{P}^{\prime}\right]$ and $\mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{P}} \&\left[\mathcal{O O}^{\prime} \mathcal{P}^{\prime}\right] \stackrel{\text { L1.2.27.2 }}{\Longrightarrow}$ $\mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \subset \mathcal{O}_{\mathcal{P}}$.

Suppose $\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime}, \mathcal{B} \in \mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime} . \mathcal{A} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \& \mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime} \subset \mathcal{O}_{\mathcal{P}} \Rightarrow \mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}} . \mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \& \mathcal{B} \in$ $\mathcal{O}^{\prime} \mathcal{P}^{\prime} \&\left(\mathcal{A} \prec^{\prime}{ }_{1} \mathcal{B}\right)_{\mathfrak{J}} \Rightarrow(\mathcal{B} \prec \mathcal{A})_{\mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime}} \Rightarrow\left[\mathcal{O}^{\prime} \mathcal{B A}\right] . \quad \mathcal{B} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \& \mathcal{O} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \stackrel{\text { L1.2.25.11 }}{\Longrightarrow}\left[\mathcal{O} \mathcal{O}^{\prime} \mathcal{B}\right],\left[\mathcal{O} \mathcal{O}^{\prime} \mathcal{B}\right] \&\left[\mathcal{O}^{\prime} \mathcal{B} \mathcal{A}\right] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}$ $(\mathcal{B} \prec \mathcal{A})_{\mathcal{O}_{\mathcal{P}}} \Rightarrow\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}}$.

Suppose $\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime} \& \mathcal{B}=\mathcal{O}^{\prime} . \mathcal{A} \in \mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime} \& \mathcal{B}=\mathcal{O}^{\prime} \& \mathcal{O} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} \stackrel{\text { L1.2.25.11 }}{\longrightarrow}[\mathcal{O B} \mathcal{A}] \Rightarrow\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}}$.
Suppose $\mathcal{A} \in \mathcal{O}^{\prime}{ }_{\mathcal{P}}{ }^{\prime}, \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} . \mathcal{A} \in \mathcal{O}_{\mathcal{P}} \&\left(\mathcal{B}=\mathcal{O} \vee \mathcal{B} \in \mathcal{O}_{\mathcal{Q}}\right) \Rightarrow\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}}$. If $\mathcal{B} \in \mathcal{O}_{\mathcal{P}}$ then $\mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{O} \in$ $\mathcal{O}^{\prime} \mathcal{Q}^{\prime} \& \mathcal{B} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}^{\prime}{ }_{0 \mathcal{Q}^{\prime}} \stackrel{\text { L1.2.27.3 }}{\Longrightarrow}\left[\mathcal{O}^{\prime} \mathcal{B O}\right]$ and $\left[\mathcal{A O} \mathcal{O}^{\prime} \mathcal{B}\right] \&\left[\mathcal{O}^{\prime} \mathcal{B O}\right] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}[\mathcal{A B O}] \Rightarrow\left(\mathcal{A} \prec{ }_{1} \mathcal{B}\right)_{\mathfrak{J}} .{ }^{139}$

[^44]Suppose $\mathcal{A}, \mathcal{B} \in \mathcal{O}^{\prime}{ }_{\mathcal{Q}^{\prime}} .\left(\mathcal{A} \prec^{\prime}{ }_{1} \mathcal{B}\right)_{\mathfrak{J}} \Rightarrow(\mathcal{A} \prec \mathcal{B})_{\mathcal{O}^{\prime}{ }^{\prime}{ }^{\prime}} \Rightarrow\left[\mathcal{O}^{\prime} \mathcal{A B}\right]$. If $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}$ and $\mathcal{B} \in \mathcal{O}_{\mathcal{P}}$ then by $1.2 .27 .3\left[\mathcal{O}^{\prime} \mathcal{B O}\right]$ and $\left[\mathcal{O}^{\prime} \mathcal{B O}\right] \&\left[\mathcal{O}^{\prime} \mathcal{A B}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}[\mathcal{A B O}] \Rightarrow\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}} . \quad\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B}=\mathcal{O}\right) \vee\left(\mathcal{A} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{B} \in \mathcal{O}_{\mathcal{Q}}\right) \vee(\mathcal{A}=\mathcal{O} \& \mathcal{B} \in$ $\left.\mathcal{O}_{\mathcal{Q}}\right) \Rightarrow\left(\mathcal{A} \prec_{1} \mathcal{B}\right)_{\mathfrak{J}}$. Now let $\mathcal{A} \in \mathcal{O}_{\mathcal{Q}}, \mathcal{B} \in \mathcal{O}_{\mathcal{Q}}$. Then $\neg[\mathcal{A O B}] ; \neg[\mathcal{O B A}]$, because $[\mathcal{O B A}] \&\left[\mathcal{B A} \mathcal{O}^{\prime}\right] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}\left[\mathcal{O}^{\prime} \mathcal{B O}\right] \xrightarrow{\text { Pr1.2.3 }}$ $\neg\left[\mathcal{B O} \mathcal{O}^{\prime}\right] \Rightarrow \mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{B}}$ and $\mathcal{B} \in \mathcal{O}_{\mathcal{Q}} \& \mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{B}} \Rightarrow \mathcal{O}^{\prime} \in \mathcal{O}_{\mathcal{Q}}$. Finally, $\neg[\mathcal{A O B}] \& \neg[\mathcal{O B A}] \stackrel{\text { Pr1.2.5 }}{\Longrightarrow}[\mathcal{O} \mathcal{A B}] \Rightarrow\left(\mathcal{A} \prec{ }_{1} \mathcal{B}\right)_{\mathfrak{J}}$.

Lemma 1.2.27.5. Let \mathcal{A}, \mathcal{B} be two distinct geometric objects in a set \mathfrak{J}, which admits a generalized betweenness relation, and on which some direct or inverse order is defined. Then either \mathcal{A} precedes \mathcal{B} in that order, or \mathcal{B} precedes \mathcal{A}, and if \mathcal{A} precedes \mathcal{B}, \mathcal{B} does not precede \mathcal{A}, and vice versa.

Proof.

Lemma 1.2.27.6. If a geometric object \mathcal{A} precedes a geometric object \mathcal{B} on set line \mathfrak{J} with generalized betweenness relation, and \mathcal{B} precedes a geometric object \mathcal{C} in the same set, then \mathcal{A} precedes \mathcal{C} on \mathfrak{J} :

$$
\mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C} \Rightarrow \mathcal{A} \prec \mathcal{C} \text {, where } \mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}
$$

Proof. Follows from the definition of the precedence relation \prec (on sets with generalized betweenness relation) and L 1.2.26.1. ${ }^{140}$

For geometric objects \mathcal{A}, \mathcal{B} in a set \mathfrak{J}, which admits a generalized betweenness relation, and where some direct or inverse order is defined, we let $\mathcal{A} \preceq_{i} \mathcal{B} \stackrel{\text { def }}{\Longleftrightarrow}\left(\mathcal{A} \prec_{i} \mathcal{B}\right) \vee(\mathcal{A}=\mathcal{B})$, where $i=1$ for the direct order and $i=2$ for the inverse order.

Theorem 1.2.27. Every set \mathfrak{J}, which admits a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation \preceq_{i}.

Proof.

Theorem 1.2.28. If a geometric object \mathcal{B} lies between geometric objects \mathcal{A} and \mathcal{C}, then in any ordering of the kind defined above, defined on the set \mathfrak{J}, containing these geometric objects, either \mathcal{A} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{C}, or \mathcal{C} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{A}; conversely, if in some order, defined on the set \mathfrak{J} admitting a generalized betweenness relation and containing geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{A}$ precedes \mathcal{B} and \mathcal{B} precedes \mathcal{C}, or \mathcal{C} precedes \mathcal{B} and \mathcal{B} precedes \mathcal{A}, then \mathcal{B} lies between \mathcal{A} and \mathcal{C}. That is,

$$
\forall \mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}[\mathcal{A B C}] \Leftrightarrow(\mathcal{A} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{C}) \vee(\mathcal{C} \prec \mathcal{B} \& \mathcal{B} \prec \mathcal{A})
$$

Proof. Suppose $[\mathcal{A B C}]$. ${ }^{141}$
For $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{P}}$ and $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ see L 1.2.26.3.
If $\mathcal{A}, \mathcal{B} \in \mathcal{O}_{\mathcal{P}}, \mathcal{C}=\mathcal{O}$ then $[\mathcal{A B O}] \Rightarrow(\mathcal{B} \prec \mathcal{A})_{\mathcal{O}_{\mathcal{P}}} \Rightarrow(\mathcal{A} \prec \mathcal{B})_{\mathfrak{J}}$; also $\mathcal{B} \prec \mathcal{C}$ in this case from definition of order on line.

If $\mathcal{A}, \mathcal{B} \in \mathcal{O}_{\mathcal{P}}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ then $[\mathcal{A B C}] \&[\mathcal{B O C}] \stackrel{\operatorname{Pr1.2} \cdot 7}{\Longrightarrow}[\mathcal{A B O}] \Rightarrow(\mathcal{A} \prec \mathcal{B})_{\mathfrak{J}}$ and $\mathcal{B} \in \mathcal{O}_{\mathcal{P}} \& \mathcal{C} \in \mathcal{O}_{\mathcal{Q}} \Rightarrow(\mathcal{B} \prec \mathcal{C})_{\mathfrak{J}}$.
For $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}, \mathcal{B}=\mathcal{O}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ see definition of order on line.
For $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ we have $[\mathcal{A O B}] \&[\mathcal{A B C}] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}[\mathcal{O B C}] \Rightarrow \mathcal{B} \prec \mathcal{C}$.
If $\mathcal{A}=\mathcal{O}$ and $\mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$, we have $[\mathcal{O B C}] \Rightarrow \mathcal{B} \prec \mathcal{C}$.
Conversely, suppose $\mathcal{A} \prec \mathcal{B}$ and $\mathcal{B} \prec \mathcal{C}$ in the given direct order on \mathfrak{J}. ${ }^{142}$
For $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{P}}$ and $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ see L 1.2.26.3.
If $\mathcal{A}, \mathcal{B} \in \mathcal{O}_{\mathcal{P}}, \mathcal{C}=\mathcal{O}$ then $(\mathcal{A} \prec \mathcal{B})_{\mathfrak{J}} \Rightarrow(\mathcal{B} \prec \mathcal{A})_{\mathcal{O}_{\mathcal{P}}} \Rightarrow[\mathcal{A B O}]$.
If $\mathcal{A}, \mathcal{B} \in \mathcal{O}_{\mathcal{P}}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ then $[\mathcal{A B O}] \&[\mathcal{B O C}] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}[\mathcal{A B C}]$.
For $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}, \mathcal{B}=\mathcal{O}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ we immediately have $[\mathcal{A B C}]$ from L 1.2.25.11.
For $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}, \mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ we have $[\mathcal{A O B}] \&[\mathcal{O B C}] \stackrel{\text { Pr1.2.6 }}{\Longrightarrow}[\mathcal{A B C}]$.
If $\mathcal{A}=\mathcal{O}$ and $\mathcal{B}, \mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$, we have $\mathcal{B} \prec \mathcal{C} \Rightarrow[\mathcal{O B C}]$.

[^45]
Complementary Generalized Rays

Lemma 1.2.29.1. A generalized interval $(\mathcal{O A})$ is the intersection of the generalized rays $\mathcal{O}_{\mathcal{A}}$ and $\mathcal{A}_{\mathcal{O}}$, i.e. $(\mathcal{O A})=$ $\mathcal{O}_{\mathcal{A}} \cap \mathcal{A}_{\mathcal{O}}$.

Proof. $\mathcal{B} \in(\mathcal{O A}) \Rightarrow[\mathcal{O B A}]$, whence by $\operatorname{Pr} 1.2 .1$, $\operatorname{Pr} 1.2 .3 \mathcal{B} \neq \mathcal{O}, \mathcal{B} \neq \mathcal{A}, \neg[\mathcal{B O} \mathcal{A}]$, and $\neg[\mathcal{B A O}]$, which means $\mathcal{B} \in \mathcal{O}_{\mathcal{A}}$ and $\mathcal{B} \in \mathcal{A}_{\mathcal{O}}$.

Suppose now $\mathcal{B} \in \mathcal{O}_{\mathcal{A}} \cap \mathcal{A}_{\mathcal{O}}$. Hence $\mathcal{B} \neq \mathcal{O}, \neg[\mathcal{B} \mathcal{O} \mathcal{A}]$ and $\mathcal{B} \neq \mathcal{A}, \neg[\mathcal{B A O}]$. Since $\mathcal{O}, \mathcal{A}, \mathcal{B}$ are distinct, by Pr 1.2.5 $[\mathcal{B O \mathcal { A }}] \vee[\mathcal{B A O}] \vee[\mathcal{O B \mathcal { A }}]$. But since $\neg[\mathcal{B O \mathcal { A }}], \neg[\mathcal{B A O}]$, we find that $[\mathcal{O B \mathcal { A }}]$.

Given a generalized ray $\mathcal{O}_{\mathcal{A}}$, define the generalized ray $\mathcal{O}_{\mathcal{A}}^{c(\mathfrak{J})}$ (usually written simply as $\mathcal{O}_{\mathcal{A}}^{c}{ }^{143}$), complementary in the set \mathfrak{J} to the generalized ray $\mathcal{O}_{\mathcal{A}}$, as $\mathcal{O}_{\mathcal{A}}^{c} \rightleftharpoons \mathfrak{J} \backslash\left(\{\mathcal{O}\} \cup \mathcal{O}_{\mathcal{A}}\right)$. In other words, the generalized ray $\mathcal{O}_{\mathcal{A}}^{c}$, complementary to the generalized ray $\mathcal{O}_{\mathcal{A}}$, is the set of all geometric objects lying in the set \mathfrak{J} on the opposite side of the geometric object \mathcal{O} from the geometric object \mathcal{A}. An equivalent definition is provided by

Lemma 1.2.29.2. $\mathcal{O}_{\mathcal{A}}^{c}=\{\mathcal{B} \mid[\mathcal{B O \mathcal { A }}]\}$. We can also write $\mathcal{O}_{\mathcal{A}}^{c}=\mathcal{O}_{\mathcal{D}}$ for any geometric object $\mathcal{D} \in \mathfrak{J}$ such that $[\mathcal{D O A}]$.
Proof. See L 1.2.25.6, L 1.2.25.3.
Lemma 1.2.29.3. The generalized ray $\left(\mathcal{O}_{\mathcal{A}}^{c}\right)^{c}$, complementary to the generalized ray $\mathcal{O}_{\mathcal{A}}^{c}$, complementary to the given generalized ray $\mathcal{O}_{\mathcal{A}}$, coincides with the generalized ray $\mathcal{O}_{\mathcal{A}}:\left(\mathcal{O}_{\mathcal{A}}^{c}\right)^{c}=\mathcal{O}_{\mathcal{A}}$.

Proof. $\mathfrak{J} \backslash\left(\{\mathcal{O}\} \cup\left(\mathfrak{J} \backslash\left(\{\mathcal{O}\} \cup \mathcal{O}_{\mathcal{A}}\right)\right)=\mathcal{O}_{\mathcal{A}} \square\right.$
Lemma 1.2.29.4. Given a geometric object \mathcal{C} on a generalized ray $\mathcal{O}_{\mathcal{A}}$, the generalized ray $\mathcal{O}_{\mathcal{A}}$ is a disjoint union of the generalized half - open interval $(\mathcal{O C}]$ and the generalized ray $\mathcal{C}_{\mathcal{O}}^{c}$, complementary to the generalized ray $\mathcal{C}_{\mathcal{O}}$: $\mathcal{O}_{\mathcal{A}}=(\mathcal{O C}] \cup \mathcal{C}_{\mathcal{O}}^{c}$.

Proof. By L 1.2.25.3 $\mathcal{O}_{\mathcal{C}}=\mathcal{O}_{\mathcal{A}}$. Suppose $\mathcal{M} \in \mathcal{O}_{\mathcal{C}} \cup \mathcal{C}_{\mathcal{O}}^{c}$. By Pr 1.2.3, $\operatorname{Pr} 1.2 .1[\mathcal{O} \mathcal{M C}] \vee \mathcal{M}=\mathcal{C} \vee[\mathcal{O C M}] \Rightarrow$ $\neg[\mathcal{M O C}] \& \mathcal{M} \neq \mathcal{O} \Rightarrow \mathcal{M} \in \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{C}}$.

Conversely, if $\mathcal{M} \in \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{C}}$ and $\mathcal{M} \neq \mathcal{C}$ then $\mathcal{M} \neq \mathcal{C} \& \mathcal{M} \neq \mathcal{O} \& \neg[\mathcal{M O C}] \stackrel{\operatorname{Pr1.2.5}}{\Longrightarrow}[\mathcal{O M C}] \vee[\mathcal{O C M}] \Rightarrow \mathcal{M} \in$ $(\mathcal{O C}) \vee \mathcal{M} \in \mathcal{C}_{\mathcal{O}}^{c}$.
Lemma 1.2.29.5. Given in a set \mathfrak{J}, which admits a generalized betweenness relation, a geometric object \mathcal{B}, distinct from a geometric object $\mathcal{O} \in \mathfrak{J}$, the geometric object \mathcal{B} lies either on $\mathcal{O}_{\mathcal{A}}$ or on $\mathcal{O}_{\mathcal{A}}^{c}$, where $\mathcal{A} \in \mathfrak{J}, A \neq O$.

Proof.
Theorem 1.2.29. Let a finite sequence of geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}, n \in \mathbb{N}$, from the set \mathfrak{J} be numbered in such a way that, except for the first and (in the finite case) the last, every geometric object lies between the two geometric objects with adjacent (in \mathbb{N}) numbers. Then the generalized ray $\mathcal{A}_{1} \mathcal{A}_{n}$ is a disjoint union of generalized half-closed intervals $\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right], i=1,2, \ldots, n-1$, with the generalized ray $\mathcal{A}_{n}{ }^{c}{ }_{\mathcal{A}}^{k}$, complementary to the generalized ray $\mathcal{A}_{n \mathcal{A}_{k}}$, where $k \in\{1,2, \ldots, n-1\}$, i.e.
$\mathcal{A}_{1 \mathcal{A}_{n}}=\bigcup_{i=1}^{n-1}\left(\mathcal{A}_{i} \mathcal{A}_{i+1}\right] \cup \mathcal{A}_{n}{ }^{c} \mathcal{A}_{k}$.
Proof. Observe that $\left[\mathcal{A}_{1} \mathcal{A}_{k} \mathcal{A}_{n}\right] \stackrel{\text { L1.2.29.5 }}{\Longrightarrow} \mathcal{A}_{n \mathcal{A}_{k}}=\mathcal{A}_{n \mathcal{A}_{1}}$, then use L 1.2.22.15, L 1.2.29.4.

Sets of Geometric Objects on Generalized Rays

Given a geometric object \mathcal{O} in a set \mathfrak{J}, which admits a generalized betweenness relation, a nonempty set $\mathfrak{B} \subset \mathfrak{J}$ is said to lie in the set \mathfrak{J} on the same side (on the opposite side) of the geometric object \mathcal{O} as (from) a nonempty set $\mathfrak{A} \subset \mathfrak{J}$ iff for all geometric objects $\mathcal{A} \in \mathfrak{A}$ and all geometric objects $\mathcal{B} \in \mathfrak{B}$, the geometric object \mathcal{B} lies on the same side (on the opposite side) of the geometric object \mathcal{O} as (from) the geometric object $\mathcal{A} \in \mathfrak{A}$. If the set \mathfrak{A} (the set \mathfrak{B}) consists of a single element, we say that the set \mathfrak{B} (the geometric object \mathcal{B}) lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as the geometric object \mathcal{A} (the set $\mathfrak{A})$.
Lemma 1.2.30.1. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as the set \mathfrak{B}.

Proof. See L 1.2.25.5.
Lemma 1.2.30.2. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as a set $\mathfrak{A} \subset \mathfrak{J}$, and a set $\mathfrak{C} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as the set \mathfrak{B}, then the set \mathfrak{C} lies in the set \mathfrak{J} on the same side of the geometric object \mathcal{O} as the set \mathfrak{A}.

Proof. See L 1.2.25.5.

[^46]Lemma 1.2.30.3. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the opposite side of the geometric object \mathcal{O} from a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the set \mathfrak{J} on the opposite side of the geometric object \mathcal{O} from the set \mathfrak{B}.

Proof. See L 1.2.25.6.
In view of symmetry of the relations, established by the lemmas above, if a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side (on the opposite side) of the geometric object \mathcal{O} as a set (from a set) $\mathfrak{A} \subset \mathfrak{J}$, we say that the sets \mathfrak{A} and \mathfrak{B} lie in the set \mathfrak{J} on one side (on opposite sides) of the geometric object \mathcal{O}.
Lemma 1.2.30.4. If two distinct geometric objects \mathcal{A}, \mathcal{B} lie on a generalized ray $\mathcal{O}_{\mathcal{C}}$, the generalized open interval $(\mathcal{A B})$ also lies on the generalized ray $\mathcal{O}_{\mathcal{C}}$.

Proof. By L 1.2.25.8 $[\mathcal{O} \mathcal{A B}] \vee[\mathcal{O B A}]$, whence by T 1.2.29 $(\mathcal{A B}) \subset \mathcal{O}_{\mathcal{A}}=\mathcal{O}_{\mathcal{C}}$.
Given a generalized interval $\mathcal{A B}$ in the set \mathfrak{J} such that the generalized open interval $(\mathcal{A B})$ does not contain $\mathcal{O} \in \mathfrak{J}$, we have ($\mathrm{L} 1.2 .30 .5-\mathrm{L} 1.2 .30 .7$):

Lemma 1.2.30.5. - If one of the ends of $(\mathcal{A B})$ is on the generalized ray $\mathcal{O}_{\mathcal{C}}$, the other end is either on $\mathcal{O}_{\mathcal{C}}$ or coincides with \mathcal{O}.

Proof. Let, say, $\mathcal{B} \in \mathcal{O}_{\mathcal{C}}$. By L 1.2.25.3 $\mathcal{O}_{\mathcal{B}}=\mathcal{O}_{\mathcal{C}}$. Assuming the contrary to the statement of the lemma, we have $\mathcal{A} \in \mathcal{O}_{\mathcal{B}}^{c} \Rightarrow[\mathcal{A O B}] \Rightarrow \mathcal{O} \in(\mathcal{A B})$, which contradicts the hypothesis.

Lemma 1.2.30.6. - If $(\mathcal{A B})$ has some geometric objects in common with the generalized ray $\mathcal{O}_{\mathcal{C}}$, either both ends of $(\mathcal{A B})$ lie on $\mathcal{O}_{\mathcal{C}}$, or one of them coincides with \mathcal{O}.

Proof. By hypothesis $\exists \mathcal{M} \mathcal{M} \in(\mathcal{A B}) \cap \mathcal{O}_{\mathcal{C}} . \mathcal{M} \in \mathcal{O}_{\mathcal{C}} \stackrel{\text { L1.2.25.3 }}{\Longrightarrow} \mathcal{O}_{\mathcal{M}}=\mathcal{O}_{\mathcal{C}}$. Assume the contrary to the statement of the lemma and let, say, $\mathcal{A} \in \mathcal{O}_{\mathcal{M}}^{c}$. Then $[\mathcal{A O M}] \&[\mathcal{A M B}] \stackrel{\text { Pr1.2. } 7}{\Longrightarrow}[\mathcal{A O B}] \Rightarrow \mathcal{O} \in(\mathcal{A B})$ - a contradiction.

Lemma 1.2.30.7. - If $(\mathcal{A B})$ has common points with the generalized ray $\mathcal{O}_{\mathcal{C}}$, the generalized interval $(\mathcal{A B})$ lies on $\mathcal{O}_{\mathcal{C}},(\mathcal{A B}) \subset \mathcal{O}_{\mathcal{C}}$.

Proof. Use L 1.2.30.6 and L 1.2.29.4 or L 1.2.30.4.
Lemma 1.2.30.8. If \mathcal{A} and \mathcal{B} lie on one generalized ray $\mathcal{O}_{\mathcal{C}}$, the complementary generalized rays $\mathcal{A}_{\mathcal{O}}^{c}$ and $\mathcal{B}_{\mathcal{O}}^{c}$ lie in the set \mathfrak{J} on one side of the geometric object \mathcal{O}.

Proof.
Lemma 1.2.30.9. If a generalized open interval $(\mathcal{C D})$ is included in a generalized open interval $(\mathcal{A B})$, neither of the ends of $(\mathcal{A B})$ lies on $(\mathcal{C D})$.

Proof. $\mathcal{A} \notin(\mathcal{C D}), \mathcal{B} \notin(\mathcal{C D})$, for otherwise $(\mathcal{A} \in(\mathcal{C D}) \vee \mathcal{B} \in(\mathcal{C D})) \&(\mathcal{C D}) \subset(\mathcal{A B}) \Rightarrow \mathcal{A} \in(\mathcal{A B}) \vee \mathcal{B} \in(\mathcal{A B})$, which is absurd as it contradicts Pr 1.2.1.

Lemma 1.2.30.10. If a generalized open interval $(C D)$ is included in a generalized open interval $(A B)$, the generalized closed interval $[\mathcal{C D}]$ is included in the generalized closed interval $[\mathcal{A B}]$.

Proof. By Pr $1.2 .4 \exists \mathcal{E}[\mathcal{C E D}] . \mathcal{E} \in(\mathcal{C D}) \&(\mathcal{C D}) \subset(\mathcal{A B}) \stackrel{\text { L1.2.29.1 }}{\Longrightarrow} \mathcal{E} \in(\mathcal{C D}) \cap\left(\mathcal{A}_{\mathcal{B}} \cap \mathcal{B}_{\mathcal{A}}\right)$. $\mathcal{A} \notin(\mathcal{C D}) \& \mathcal{B} \notin(\mathcal{C D}) \& \mathcal{E} \in$ $\mathcal{A}_{\mathcal{B}} \cap(\mathcal{C D}) \& \mathcal{E} \in \mathcal{B}_{\mathcal{A}} \cap(\mathcal{C D}) \stackrel{\mathrm{L} 1.2 .30 .6}{\Longrightarrow} \mathcal{C} \in \mathcal{A}_{\mathcal{B}} \cup\{\mathcal{A}\} \& \mathcal{C} \in \mathcal{B}_{\mathcal{A}} \cup\{\mathcal{B}\} \& \mathcal{D} \in \mathcal{A}_{\mathcal{B}} \cup\{\mathcal{A}\} \& \mathcal{D} \in \mathcal{B}_{\mathcal{A}} \cup\{\mathcal{B}\} \Rightarrow \mathcal{C} \in$ $\left(\mathcal{A}_{\mathcal{B}} \cap \mathcal{B}_{\mathcal{A}}\right) \cup\{\mathcal{A}\} \cup\{\mathcal{B}\} \& \mathcal{D} \in\left(\mathcal{A}_{\mathcal{B}} \cap \mathcal{B}_{\mathcal{A}}\right) \cup\{\mathcal{A}\} \cup\{\mathcal{B}\} \stackrel{\text { L1.2.29.1 }}{\Longrightarrow} \mathcal{C} \in[\mathcal{A B}] \& \mathcal{D} \in[\mathcal{A B}]$.

Corollary 1.2.30.11. For generalized intervals $\mathcal{A B}, \mathcal{C D}$ both inclusions $(\mathcal{A B}) \subset(\mathcal{C D}),(\mathcal{C D}) \subset(\mathcal{A B})$ (i.e., the equality $(\mathcal{A B})=(\mathcal{C D})$) holds iff the generalized (abstract) intervals $\mathcal{A B}, \mathcal{C D}$ are identical.

Proof. \#1. $(\mathcal{C D}) \subset(\mathcal{A B}) \xrightarrow{\text { L1.2.30.10 }}[\mathcal{C D}] \subset[\mathcal{A B}] \Rightarrow \mathcal{C} \in[\mathcal{A B}] \& \mathcal{D} \in[\mathcal{A B}]$. On the other hand, $(\mathcal{A B}) \subset(\mathcal{C D}) \xrightarrow{\text { L1.2.30.9 }}$ $\mathcal{C} \notin(\mathcal{A B}) \& \mathcal{D} \notin(\mathcal{A B})$.
$\# 2 .(\mathcal{A B}) \subset(\mathcal{C D}) \&(\mathcal{C D}) \subset(\mathcal{A B}) \xrightarrow{\mathrm{L1.2.30} 10}[\mathcal{A B}] \subset[\mathcal{C D}] \&[\mathcal{C D}] \subset[\mathcal{A B}] .(\mathcal{A B})=(\mathcal{C D}) \&[\mathcal{A B}]=[\mathcal{C D}] \Rightarrow\{\mathcal{A}, \mathcal{B}\}=$ $[\mathcal{A B}] \backslash(\mathcal{A B})=[\mathcal{C D}] \backslash(\mathcal{C D})=\{\mathcal{C}, \mathcal{D}\}$.

Lemma 1.2.30.12. Both ends of a generalized interval $\mathcal{C D}$ lie on a generalized closed interval $[\mathcal{A B}]$ iff the generalized open interval $(\mathcal{C D})$ is included in the generalized open interval $(\mathcal{A B})$.

Proof. Follows immediately from L 1.2.22.5, L 1.2.30.10.
Theorem 1.2.30. A geometric object \mathcal{O} in a set \mathfrak{J} which admits a generalized betweenness relation, separates the rest of the geometric objects in this set into two non-empty classes (generalized rays) in such a way that...

Proof.

Figure 1.58: If rays $l, m \in \mathfrak{J}$ lie between rays $h, k \in \mathfrak{J}$, the open angular interval $(l m)$ is contained in the open angular interval ($h k$).

Betweenness Relation for Rays

Given a pencil \mathfrak{J} of rays, all lying in some plane α on a given side of a line $a \subset \alpha$ and having an initial point O, define an open angular interval $\left(O_{A} O_{C}\right)$, formed by the rays $O_{A}, O_{C} \in \mathfrak{J}$, as the set of all rays $O_{B} \in \mathfrak{J}$ lying inside the angle $\angle A O C$. That is, for $O_{A}, O_{C} \in \mathfrak{J}$ we let $\left(O_{A} O_{C}\right) \rightleftharpoons\left\{O_{B} \mid O_{B} \subset \operatorname{Int} \angle A O C\right\}$. In analogy with the general case, we shall refer to $\left[O_{A} O_{C}\right),\left(O_{A} O_{C}\right],\left[O_{A} O_{C}\right]$ as half-open, half-closed, and closed angular intervals, respectively. ${ }^{144}$ In what follows, open angular intervals, half-open, half-closed and closed angular intervals will be collectively referred to as angular interval-like sets. The definition just given for open, half-open, dots, angular intervals is also applicable for the set \mathfrak{J} of rays, all lying in some plane α on a given side of a line $a \subset \alpha$ and having an initial point O, with two additional rays added: the ray $h \rightleftharpoons O_{A}$, where $A \in a, A \neq O$, and its complementary ray h^{c}. For convenience, we can call the set of rays, all lying in α on a given side of $a \subset \alpha$ and having the origin O, an open angular pencil. And we can refer to the same set with the rays h, h^{c} added, as a closed angular pencil. ${ }^{145}$

Given a set \mathfrak{J} of rays having the same initial point O and all lying in plane α on the same side of a line a as a given point Q (an open pencil), or the same set with the rays $h \rightleftharpoons O_{A}$, where $A \in a, A \neq O$, and h^{c} added to it (a closed pencil), the following L 1.2.31.1 - T 1.2.37 hold. The angles spoken about in these statements are all assumed to be extended angles. ${ }^{146}$

Lemma 1.2.31.1. If a ray $O_{B} \in \mathfrak{J}$ lies between rays O_{A}, O_{C} of the pencil \mathfrak{J}, the ray O_{A} cannot lie between the rays O_{B} and O_{C}. In other words, if a ray $O_{B} \in \mathfrak{J}$ lies inside $\angle A O C$, where $O_{A}, O_{C} \in \mathfrak{J}$, then the ray O_{A} cannot lie inside the angle $\angle B O C$.

Lemma 1.2.31.2. Suppose each of $l, m \in \mathfrak{J}$ lies inside the angle formed by $h, k \in \mathfrak{J}$. If a ray $n \in \mathfrak{J}$ lies inside the angle $\angle(l, m)$, it also lies inside the angle $\angle(h, k)$. In other words, if rays $l, m \in \mathfrak{J}$ lie between rays $h, k \in \mathfrak{J}$, the open angular interval $(l m)$ is contained in the open angular interval $(h k)$, i.e. $(l m) \subset(h k)$ (see Fig 1.58).

Lemma 1.2.31.3. Suppose each side of an (extended) angles $\angle(l, m)$ (where $l, m \in \mathfrak{J}$) either lies inside an (extended) angle $\angle(h, k)$, where $h, k \in \mathfrak{J}$, or coincides with one of its sides. Then if a ray $n \in \mathfrak{J}$ lies inside $\angle(l, m)$, it also lies inside the angle $\angle(h, k)$. ${ }^{147}$

Lemma 1.2.31.4. If a ray $l \in \mathfrak{J}$ lies between rays $h, k \in \mathfrak{J}$, none of the rays of the open angular interval (hl) lie on the open angular interval $(l k)$. That is, if a ray $l \in \mathfrak{J}$ lies inside $\angle(h, k)$, none of the rays ${ }^{148}$ lying inside the angle $\angle(h, l)$ lie inside the angle $\angle(l, k)$.

Proposition 1.2.31.5. If two (distinct) rays $l \in \mathfrak{J}, m \in \mathfrak{J}$ lie inside the angle $\angle(h, k)$, where $h \in \mathfrak{J}$, $k \in \mathfrak{J}$, then either the ray l lies inside the angle $\angle(h, m)$, or the ray m lies inside the angle $\angle(h, l)$.

[^47]

Figure 1.59: If $o \in \mathfrak{J}$ divides $h, k \in \mathfrak{J}$, as well as h and $l \in \mathfrak{J}$, it does not divide k, l.

Figure 1.60: Suppose $h_{1}, h_{2}, \ldots, h_{n}(, \ldots)$ is a finite (countably infinite) sequence of rays of the pencil \mathfrak{J} with the property that a ray of the sequence lies between two other rays of the sequence. Then if a ray of the sequence lies inside the angle formed by two other rays of the sequence, its number has an intermediate value between the numbers of these two rays.

Lemma 1.2.31.6. Each of $l, m \in \mathfrak{J}$ lies inside the closed angular interval formed by $h, k \in \mathfrak{J}$ (i.e. each of the rays l, m either lies inside the angle $\angle(h, k)$ or coincides with one of its sides) iff all the rays $n \in \mathfrak{J}$ lying inside the angle $\angle(l, m)$ lie inside the angle $\angle(k, l)$.

Lemma 1.2.31.7. If a ray $l \in \mathfrak{J}$ lies between rays h, k of the pencil \mathfrak{J}, any ray of the open angular interval ($h k$), distinct from l, lies either on the open angular interval ($h l$) or on the open angular interval ($l k$). In other words, if a ray $l \in \mathfrak{J}$ lies inside $\angle(h, k)$, formed by the rays h, k of the pencil \mathfrak{J}, any other (distinct from l) ray lying inside $\angle(h, k)$, also lies either inside $\angle(h, l)$ or inside $\angle(l, k)$.

Lemma 1.2.31.8. If a ray $o \in \mathfrak{J}$ divides rays $h, k \in \mathfrak{J}$, as well as h and $l \in \mathfrak{J}$, it does not divide k, l. (see Fig. 1.59)

Betweenness Relation For n Rays With Common Initial Point

Lemma 1.2.31.9. Suppose $h_{1}, h_{2}, \ldots, h_{n}(, \ldots)$ is a finite (countably infinite) sequence of rays of the pencil \mathfrak{J} with the property that a ray of the sequence lies between two other rays of the sequence ${ }^{149}$ if its number has an intermediate value between the numbers of these rays. (see Fig. 1.60) Then the converse of this property is true, namely, that if a ray of the sequence lies inside the angle formed by two other rays of the sequence, its number has an intermediate value between the numbers of these two rays. That is, $\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, $\left.\mathbb{N}\right)((i<j<k) \vee(k<j<i) \Rightarrow$ $\left.\left.\left[h_{i} h_{j} h_{k}\right]\right)\right) \Rightarrow\left(\forall i, j, k \in \mathbb{N}_{n}(\right.$ respectively, $\left.\mathbb{N})\left(\left[h_{i} h_{j} h_{k}\right] \Rightarrow(i<j<k) \vee(k<j<i)\right)\right)$.

Let an infinite (finite) sequence of rays h_{i} of the pencil \mathfrak{J}, where $i \in \mathbb{N}\left(i \in \mathbb{N}_{n}, n \geq 4\right)$, be numbered in such a way that, except for the first and the last, every ray lies inside the angle formed by the two rays of sequence with numbers, adjacent (in \mathbb{N}) to that of the given ray. Then:

[^48]Lemma 1.2.31.10. - A ray from this sequence lies inside the angle formed by two other members of this sequence iff its number has an intermediate value between the numbers of these two rays.
Lemma 1.2.31.11. - An arbitrary ray of the pencil \mathfrak{J} cannot lie inside of more than one of the angles formed by pairs of rays of the sequence having adjacent numbers in the sequence.

Lemma 1.2.31.12. - In the case of a finite sequence, a ray which lies between the end (the first and the last, $n^{\text {th }}$) rays of the sequence, and does not coincide with the other rays of the sequence, lies inside at least one of the angles, formed by pairs of rays with adjacent numbers.

Lemma 1.2.31.13. - All of the open angular intervals $\left(h_{i} h_{i+1}\right)$, where $i=1,2, \ldots, n-1$, lie inside the open angular interval $\left(h_{1} h_{n}\right)$. In other words, any ray k, lying inside any of the angles $\angle\left(h_{i}, h_{i+1}\right)$, where $i=1,2, \ldots, n-1$, lies inside the angle $\angle\left(h_{1}, h_{n}\right)$, i.e. $\forall i \in\{1,2, \ldots, n-1\} k \subset \operatorname{Int} \angle\left(h_{i}, h_{i+1}\right) \Rightarrow k \subset \operatorname{Int} \angle\left(h_{1}, h_{n}\right)$.
Lemma 1.2.31.14. - The half-open angular interval $\left[h_{1} h_{n}\right)$ is a disjoint union of the half-closed angular intervals $\left[h_{i} h_{i+1}\right)$, where $i=1,2, \ldots, n-1$:
$\left[h_{1} h_{n}\right)=\bigcup_{i=1}^{n-1}\left[h_{i} h_{i+1}\right)$.
Also,
The half-closed angular interval $\left(h_{1} h_{n}\right]$ is a disjoint union of the half-closed angular intervals $\left(h_{i} h_{i+1}\right]$, where $i=1,2, \ldots, n-1$:
$\left(h_{1} h_{n}\right]=\bigcup_{i=1}^{n-1}\left(h_{i} h_{i+1}\right]$.
Thus, if $\mathfrak{J}=\left[h_{1}, h_{n}\right]$, where $h_{1}=h, h_{n}=h^{c}$, is a pencil of rays with initial point O lying (in a given plane) on the same side of a line a as a point A, plus the rays h, h^{c}, we have $a_{A}=\left(\bigcup_{i=1}^{n-1} \operatorname{Int} \angle\left(h_{i}, h_{i+1}\right)\right) \cup\left(\bigcup_{i=2}^{n-1} h_{i}\right)$.

Proof.
If a finite (infinite) sequence of rays h_{i} of the pencil $\mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4(n \in \mathbb{N})$ has the property that if a ray of the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate value between the numbers of these two rays, we say that the rays $h_{1}, h_{2}, \ldots, h_{n}(, \ldots)$ are in order $\left[h_{1} h_{2} \ldots h_{n}(\ldots)\right]$.
Theorem 1.2.31. Any finite sequence of rays $h_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4$ can be renumbered in such a way that a ray from the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate value between the numbers of these two rays. In other words, any finite (infinite) sequence of rays $h_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}$, $n \geq 4$ can be put in order $\left[h_{1} h_{2} \ldots h_{n}\right]$.
Lemma 1.2.31.12. For any finite set of rays $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of an open angular interval $(h k) \subset \mathfrak{J}$ there is a ray l on ($h k$) not in that set.
Proposition 1.2.31.13. Every open angular interval in \mathfrak{J} contains an infinite number of rays.
Corollary 1.2.31.14. Every angular interval-like set in \mathfrak{J} contains an infinite number of rays.

Basic Properties of Angular Rays

Given a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, and two distinct rays o, $h, h \neq o$ of the pencil \mathfrak{J}, define the angular ray o_{h}, emanating from its origin, or initial ray o, as the set of all rays $k \neq o$ of the pencil \mathfrak{J} such that the ray o does not divide the rays h, k. ${ }^{150}$ That is, for $o, h \in \mathfrak{J}, o \neq h$, we define $o_{h} \rightleftharpoons\{k \mid k \subset \mathfrak{J} \& k \neq o \& \neg[h o k]\} .{ }^{151}$
Lemma 1.2.32.1. Any ray h lies on the angular ray o_{h}.
Lemma 1.2.32.2. If a ray k lies on an angular ray o_{h}, the ray h lies on the angular ray o_{k}. That is, $k \in o_{h} \Rightarrow h \in o_{k}$.
Lemma 1.2.32.3. If a ray k lies on an angular ray o_{h}, the angular ray o_{h} coincides with the angular ray o_{k}.
Lemma 1.2.32.4. If angular rays o_{h} and o_{k} have common rays, they are equal.
Lemma 1.2.32.5. The relation "to lie in the pencil \mathfrak{J} on the same side of a given ray $o \in \mathfrak{J}$ as" is an equivalence relation on $\mathfrak{J} \backslash\{o\}$. That is, it possesses the properties of:

1) Reflexivity: A ray h always lies on the same side of the ray o as itself;
2) Symmetry: If a ray k lies on the same side of the ray o as h, the ray h lies on the same side of o as k.
3) Transitivity: If a ray k lies on the same side of the ray o as h, and a ray llies on the same side of o as k, then l lies on the same side of o as h.
[^49]Lemma 1.2.32.6. A ray k lies on the opposite side of ofrom h iff o divides h and k.
Lemma 1.2.32.7. The relation "to lie in the pencil \mathfrak{J} on the opposite side of the given ray o from ..." is symmetric.
If a ray k lies in the pencil \mathfrak{J} on the same side (on the opposite side) of the ray o as (from) a ray h, in view of symmetry of the relation we say that the rays h and k lie in the set \mathfrak{J} on the same side (on opposite sides) of o.

Lemma 1.2.32.8. If rays h and k lie on one angular ray $o_{l} \subset \mathfrak{J}$, they lie in the pencil \mathfrak{J} on the same side of the ray \mathcal{O}. If, in addition, $h \neq k$, then either h lies between o and k, or k lies between o and h.

Lemma 1.2.32.9. If a ray l lies in the pencil \mathfrak{J} on the same side of the ray o as a ray h, and a ray m lies on the opposite side of o from h, then the rays l and m lie on opposite sides of o. ${ }^{152}$

Lemma 1.2.32.10. If rays l and m lie in the pencil \mathfrak{J} on the opposite side of the ray ofrom a ray $h,{ }^{153}$ then l and m lie on the same side of o.

Lemma 1.2.32.11. Suppose a ray lies on an angular ray o_{h}, a ray m lies on an angular ray o_{k}, and o lies between h and k. Then o also lies between l and m.

Lemma 1.2.32.12. A ray $o \in \mathfrak{J}$ divides rays $h \in \mathfrak{J}$ and $k \in \mathfrak{J}$ iff the angular rays o_{h} and o_{k} are disjoint, $o_{h} \cap o_{k}=\emptyset$, and their union, together with the ray o, gives the pencil \mathfrak{J}, i.e. $\mathfrak{J}=o_{h} \cup o_{k} \cup\{o\}$. That is,
$[h o k] \Leftrightarrow\left(\mathfrak{J}=o_{h} \cup o_{k} \cup\{o\}\right) \&\left(o_{h} \cap o_{k}=\emptyset\right)$.
Lemma 1.2.32.13. An angular ray o_{h} contains the open angular interval (oh).
Lemma 1.2.32.14. For any finite set of rays $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of an angular ray o_{h}, there is a ray l on o_{h} not in that set.

Lemma 1.2.32.15. If a ray k lies between rays o and h then the angular rays o_{k} and o_{h} are equal.
Lemma 1.2.32.16. If a ray h lies between rays o and k, the ray k lies on the angular ray o_{h}.
Lemma 1.2.32.17. If angular rays o_{h} and $o^{\prime}{ }_{k}$ are equal, their origins coincide.
Lemma 1.2.32.18. If an angle (=abstract angular interval) $\angle\left(h_{0}, h_{n}\right)$ is divided into n angles $\angle\left(h_{0}, h_{1}\right), \angle\left(h_{1}, h_{2}\right)$, $\ldots, \angle\left(h_{n-1}, h_{n}\right)$ (by the rays $h_{1}, h_{2}, \ldots, h_{n-1}$), ${ }^{154}$ the rays $h_{1}, h_{2}, \ldots h_{n-1}, h_{n}$ all lie on the same side of the ray h_{0}, and the angular rays $h_{0 h_{1}}, h_{0 h_{2}}, \ldots, h_{0 h_{n}}$ are equal. ${ }^{155}$

Theorem 1.2.32. Every angular ray contains an infinite number of rays.

Line Ordering on Angular Rays

Suppose h, k are two rays on an angular ray o_{m}. Let, by definition, $(h \prec k)_{o_{m}} \stackrel{\text { def }}{\Longleftrightarrow}\left[2\langle\|]\right.$. If $h \prec k,{ }^{156}$ we say that the ray h precedes the ray k on the angular ray o_{m}, or that the ray k succeeds the ray h on the angular ray o_{m}.

Lemma 1.2.33.1. If a ray h precedes a ray k on an angular ray o_{m}, and k precedes a ray l on the same angular ray, then h precedes l on o_{m} :
$h \prec k \& k \prec l \Rightarrow h \prec l$, where $h, k, l \in o_{m}$.
Proof.
Lemma 1.2.33.2. If h, k are two distinct rays on an angular ray o_{m} then either h precedes k, or k precedes h; if h precedes k then k does not precede h.

Proof.
For rays h, k on an angular ray o_{m} we let, by definition, $h \preceq k \stackrel{\text { def }}{\Longleftrightarrow}(h \prec k) \vee(h=k)$.
Theorem 1.2.33. Every angular ray is a chain with respect to the relation \preceq.

[^50]
Line Ordering on Pencils of Rays

Let $o \in \mathfrak{J}, p \in \mathfrak{J},[p o q]$. Define the relation of direct (inverse) ordering on the pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, as follows:

Call o_{p} the first angular ray, and o_{q} the second angular ray. A ray h precedes a ray k in the pencil \mathfrak{J} in the direct (inverse) order iff:

- Both h and k lie on the first (second) angular ray and k precedes h on it; or
- h lies on the first (second) angular ray, and k lies on the second (first) angular ray or coincides with o; or
- $h=o$ and k lies on the second (first) angular ray; or
- Both h and k lie on the second (first) angular ray, and h precedes k on it.

Thus, a formal definition of the direct ordering on the pencil \mathfrak{J} can be written down as follows:
$\left(h \prec_{1} k\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longrightarrow}\left(h \in o_{p} \& k \in o_{p} \& k \prec h\right) \vee\left(h \in o_{p} \& k=o\right) \vee\left(h \in o_{p} \& k \in o_{q}\right) \vee\left(h=o \& k \in o_{q}\right) \vee\left(h \in o_{q} \& k \in\right.$ $\left.o_{q} \& h \prec k\right)$,
and for the inverse ordering: $\left(h \prec_{2} k\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(h \in o_{q} \& k \in o_{q} \& k \prec h\right) \vee\left(h \in o_{q} \& k=o\right) \vee\left(h \in o_{q} \& k \in o_{p}\right) \vee(h=$ $\left.o \& k \in o_{p}\right) \vee\left(h \in o_{p} \& k \in o_{p} \& h \prec k\right)$.

The term "inverse order" is justified by the following trivial
Lemma 1.2.34.1. h precedes k in the inverse order iff k precedes h in the direct order.
For our notion of order (both direct and inverse) on the pencil \mathfrak{J} to be well defined, they have to be independent, at least to some extent, on the choice of the origin o of the pencil \mathfrak{J}, as well as on the choice of the rays p and q, forming, together with the ray o, angular rays o_{p} and o_{q}, respectively.

Toward this end, let $o^{\prime} \in \mathfrak{J}, p^{\prime} \in \mathfrak{J},\left[p^{\prime} o^{\prime} q^{\prime}\right]$, and define a new direct (inverse) ordering with displaced origin (ODO) on the pencil \mathfrak{J}, as follows:

Call o^{\prime} the displaced origin, $o^{\prime}{ }_{p^{\prime}}$ and $o^{\prime} q^{\prime}$ the first and the second displaced angular rays, respectively. A ray h precedes a ray k in the set \mathfrak{J} in the direct (inverse) ODO iff:

- Both h and k lie on the first (second) displaced angular ray, and k precedes h on it; or
- h lies on the first (second) displaced angular ray, and k lies on the second (first) displaced angular ray or coincides with o^{\prime}; or
- $h=o^{\prime}$ and k lies on the second (first) displaced angular ray; or
- Both h and k lie on the second (first) displaced angular ray, and h precedes k on it.

Thus, a formal definition of the direct ODO on the set \mathfrak{J} can be written down as follows:
$\left(h \prec_{1}^{\prime} k\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(h \in o^{\prime} p^{\prime} \& k \in o^{\prime} p^{\prime} \& k \prec h\right) \vee\left(h \in o^{\prime}{ }_{p^{\prime}} \& k=o^{\prime}\right) \vee\left(h \in o^{\prime}{ }_{p^{\prime}} \& k \in o^{\prime}{ }_{q^{\prime}}\right) \vee\left(h=o^{\prime} \& k \in o^{\prime}{ }_{q^{\prime}}\right) \vee(h \in$ $\left.o^{\prime}{ }_{q^{\prime}} \& k \in o^{\prime}{ }_{q^{\prime}} \& h \prec k\right)$,
and for the inverse ordering: $\left(h \prec{ }_{2}^{\prime} k\right)_{\mathcal{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(h \in o^{\prime}{ }_{q^{\prime}} \& k \in o^{\prime}{ }_{q^{\prime}} \& k \prec h\right) \vee\left(h \in o^{\prime}{ }_{q^{\prime}} \& k=o^{\prime}\right) \vee\left(h \in o^{\prime}{ }_{q^{\prime}} \& k \in\right.$ $\left.o^{\prime}{ }_{p^{\prime}}\right) \vee\left(h=o^{\prime} \& k \in o^{\prime}{ }_{p^{\prime}}\right) \vee\left(h \in o^{\prime}{ }_{p^{\prime}} \& k \in o^{\prime}{ }_{p^{\prime}} \& h \prec k\right)$.
Lemma 1.2.34.2. If the origin o^{\prime} of the displaced angular ray $o^{\prime}{ }_{p^{\prime}}$ lies on the angular ray o_{p} and between o and p^{\prime}, then the angular ray o_{p} contains the angular ray $o^{\prime} p^{\prime}, o^{\prime} p^{\prime} \subset o_{p}$.

Lemma 1.2.34.3. Let the displaced origin o^{\prime} be chosen in such a way that o^{\prime} lies on the angular ray o_{p}, and the ray o lies on the angular ray $o^{\prime} q^{\prime}$. If a ray k lies on both angular rays o_{p} and $o^{\prime}{ }_{q^{\prime}}$, then it divides o and o^{\prime}.

Lemma 1.2.34.4. An ordering with the displaced origin o^{\prime} on a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, coincides with either direct or inverse ordering on that pencil (depending on the choice of the displaced angular rays). In other words, either for all rays h, k in \mathfrak{J} we have that h precedes k in the ODO iff h precedes k in the direct order; or for all rays h, k in \mathfrak{J} we have that h precedes k in the ODO iff h precedes k in the inverse order.

Lemma 1.2.34.5. Let h, k be two distinct rays in a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, and on which some direct or inverse order is defined. Then either h precedes k in that order, or k precedes h, and if h precedes k, k does not precede h, and vice versa.

For rays h, k in a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, and where some direct or inverse order is defined, we let $h \preceq_{i} k \stackrel{\text { def }}{\Longleftrightarrow}\left(h \prec_{i} k\right) \vee(h=k)$, where $i=1$ for the direct order and $i=2$ for the inverse order.

Theorem 1.2.34. Every set \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation \preceq_{i}.
Theorem 1.2.35. If a ray k lies between rays h and l, then in any ordering of the kind defined above, defined on the pencil \mathfrak{J}, containing these rays, either h precedes k and k precedes l, or l precedes k and k precedes h; conversely, if in some order, defined on the pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, admitting a generalized betweenness relation and containing rays h, k, l, we have that h precedes k and k precedes l, or l precedes k and k precedes h, then k lies between h and l. That is,

```
\forallh,k,l\in\mathfrak{J}[hkl]\Leftrightarrow(h\preck&k\precl)\vee(l\preck&k\prech).
```


Complementary Angular Rays

Lemma 1.2.36.1. An angular interval (oh) is the intersection of the angular rays o_{h} and h_{o}, i.e. $(o h)=o_{h} \cap h_{o}$.
Given an angular ray o_{h}, define the angular ray o_{h}^{c}, complementary in the pencil \mathfrak{J} to the angular ray o_{h}, as $o_{h}^{c} \rightleftharpoons \mathfrak{J} \backslash\left(\{o\} \cup o_{h}\right)$. In other words, the angular ray o_{h}^{c}, complementary to the angular ray o_{h}, is the set of all rays lying in the pencil \mathfrak{J} on the opposite side of the ray o from the ray h. An equivalent definition is provided by

Lemma 1.2.36.2. $o_{h}^{c}=\{k \mid[k o h]\}$. We can also write $o_{h}^{c}=o_{m}$ for any ray $m \in \mathfrak{J}$ such that $[$ moh $]$.
Lemma 1.2.36.3. The angular ray $\left(o_{h}^{c}\right)^{c}$, complementary to the angular ray o_{h}^{c}, complementary to the given angular ray o_{h}, coincides with the angular ray $o_{h}:\left(o_{h}^{c}\right)^{c}=o_{h}$.

Lemma 1.2.36.4. Given a ray l on an angular ray o_{h}, the angular ray o_{h} is a disjoint union of the half - open angular interval (ol] and the angular ray l_{o}^{c}, complementary to the angular ray l_{o} :
$o_{h}=(o l] \cup l_{o}^{c}$.
Lemma 1.2.36.5. Given in a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, a ray k, distinct from a ray $o \in \mathfrak{J}$, the ray k lies either on o_{h} or on o_{h}^{c}, where $h \in \mathfrak{J}, h \neq o$.

Theorem 1.2.36. Let a finite sequence of rays $h_{1}, h_{2}, \ldots, h_{n}, n \in \mathbb{N}$, from the pencil \mathfrak{J}, be numbered in such a way that, except for the first and (in the finite case) the last, every ray lies between the two rays with adjacent (in \mathbb{N}) numbers. Then the angular ray $h_{1 h_{n}}$ is a disjoint union of half-closed angular intervals $\left(h_{i} h_{i+1}\right], i=1,2, \ldots, n-1$, with the angular ray $h_{n h_{k}}^{c}$, complementary to the angular ray $h_{n h_{k}}$, where $k \in\{1,2, \ldots, n-1\}$, i.e.

$$
h_{1 h_{n}}=\bigcup_{i=1}^{n-1}\left(h_{i} h_{i+1}\right] \cup h_{n h_{k}}^{c} .
$$

Given a ray o in a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, a nonempty set $\mathfrak{B} \subset \mathfrak{J}$ of rays is said to lie in the pencil \mathfrak{J} on the same side (on the opposite side) of the ray o as (from) a nonempty set $\mathfrak{A} \subset \mathfrak{J}$ of rays iff for all rays $h \in \mathfrak{A}$ and all rays $k \in \mathfrak{B}$, the ray k lies on the same side (on the opposite side) of the ray o as (from) the ray $h \in \mathfrak{A}$. If the set \mathfrak{A} (the set \mathfrak{B}) consists of a single element, we say that the set \mathfrak{B} (the ray k) lies in the pencil \mathfrak{J} on the same side of the ray o as the ray h (the set \mathfrak{A}).

Sets of (Traditional) Rays on Angular Rays

Lemma 1.2.37.1. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side of the ray o as a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the pencil \mathfrak{J} on the same side of the ray o as the set \mathfrak{B}.

Lemma 1.2.37.2. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side of the ray o as a set $\mathfrak{A} \subset \mathfrak{J}$, and a set $\mathfrak{C} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side of the ray o as the set \mathfrak{B}, then the set \mathfrak{C} lies in the pencil \mathfrak{J} on the same side of the ray o as the set \mathfrak{A}.

Lemma 1.2.37.3. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the opposite side of the ray ofrom a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the set \mathfrak{J} on the opposite side of the ray o from the set \mathfrak{B}.

In view of symmetry of the relations, established by the lemmas above, if a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side (on the opposite side) of the ray o as a set (from a set) $\mathfrak{A} \subset \mathfrak{J}$, we say that the sets \mathfrak{A} and \mathfrak{B} lie in the pencil \mathfrak{J} on one side (on opposite sides) of the ray o.

Lemma 1.2.37.4. If two distinct rays h, k lie on an angular ray o_{l}, the open angular interval $(h k)$ also lies on the angular ray ol.

Given an angle $\angle(h, k),{ }^{157}$ whose sides h, k both lie in the pencil \mathfrak{J}, such that the open angular interval ($h k$) does not contain $o \in \mathfrak{J}$, we have (L 1.2.37.5-L 1.2.37.7):

Lemma 1.2.37.5. - If one of the ends of $(h k)$ lies on the angular ray o_{l}, the other end is either on o_{l} or coincides with o.

Lemma 1.2.37.6. - If $(h k)$ has rays in common with the angular ray o_{l}, either both ends of $(h k)$ lie on on or one of them coincides with o.

Lemma 1.2.37.7. - If $(h k)$ has common points with the angular ray o_{l}, the interval $(h k)$ lies on $o_{l},(h k) \subset o_{l}$.
Lemma 1.2.37.8. If h and k lie on one angular ray o_{l}, the complementary angular rays h_{o}^{c} and k_{o}^{c} lie in the pencil \mathfrak{J} on one side of the ray o.

[^51]Table 1.1: Names of polygons

n	polygon	n	polygon	n	polygon
2	digon	11	undecagon (hendecagon)	30	triacontagon
3	triangle (trigon)	12	dodecagon	40	tetracontagon
4	quadrilateral (tetragon)	13	tridecagon (triskaidecagon)	50	pentacontagon
5	pentagon	14	tetradecagon (tetrakaidecagon)	60	hexacontagon
6	hexagon	15	pentadecagon (pentakaidecagon)	70	heptacontagon
7	heptagon	16	hexadecagon (hexakaidecagon)	80	octacontagon
8	octagon	17	heptadecagon (heptakaidecagon)	90	enneacontagon
9	nonagon enneagon	18	octadecagon (octakaidecagon)	100	hectogon
10	decagon	19	enneadecagon (enneakaidecagon)	1000	myriagon
		20	icosagon		

Lemma 1.2.37.9. If the interior of an angle $\angle(l, m)$ is included in the interior of an angle $\angle(h, k)$, neither of the sides of the angle $\angle(h, k)$ lies inside $\angle(l, m)$.

Proof.
Lemma 1.2.37.10. If the interior of an angle $\angle(l, m)$ is included in the interior of an angle $\angle(h, k)$, the set $\operatorname{Int} \angle(l, m) \cup \mathcal{P}_{\angle(l, m)}$ is included in the set $\operatorname{Int} \angle(l, m) \cup \mathcal{P}_{\angle(l, m)}$.

Proof.
Corollary 1.2.37.11. For angles $\angle(h, k), \angle(l, m)$ both inclusions $\operatorname{Int} \angle(h, k) \subset \operatorname{Int} \angle(l, m)$, $\operatorname{Int} \angle(l, m) \subset \operatorname{Int} \angle(h, k)$ (i.e., the equality $\operatorname{Int} \angle(h, k)=\operatorname{Int} \angle(l, m)$ holds iff the angles $\angle(h, k), \angle(l, m)$ are identical.

Proof.
Lemma 1.2.37.12. Both sides of an angle $\angle(l, m)$ are included in the set $\operatorname{Int} \angle(h, k) \cup \mathcal{P}_{\angle(h, k)}$ iff the interior $\operatorname{Int} \angle(l, m)$ of the angle $\angle(l, m)$ is included in the interior Int $\angle(h, k)$ of the angle $\angle(h, k)$.

Proof.
Theorem 1.2.37. A ray o in a pencil \mathfrak{J} of rays lying in plane α on the same side of a line a as a given point Q, which admits a generalized betweenness relation, separates the rest of the rays in this pencil into two non-empty classes (angular rays) in such a way that...

Paths and Polygons: Basic Concepts

Following Hilbert, we define paths and polygons as follows:
A (rectilinear) path, ${ }^{158}$ or a way $A_{0} A_{1} A_{2} \ldots A_{n-1} A_{n}$, in classical synthetic geometry, is an (ordered) n-tuple, $n \geq 1$, of abstract intervals $A_{0} A_{1}, A_{1} A_{2}, \ldots, A_{n-1} A_{n}$, such that each interval $A_{i} A_{i+1}$, except possibly for the first $A_{0} A_{1}$ and the last, $A_{n-1} A_{n}$, shares one of its ends, A_{i}, with the preceding (in this n-tuple) interval $A_{i-1} A_{i}$, and the other end A_{i+1} with the succeeding interval $A_{i+1} A_{i+2}$. (See Fig. 1.61, a).)

Given a path $A_{0} A_{1} A_{2} \ldots A_{n}$, the abstract intervals $A_{k} A_{k+1}$, or open interval ($A_{k} A_{k+1}$), depending on the context (an attempt is made in this book to always make clear in which sense the term is used in any particular instance of its use), is called the $k^{t h}$ side of the path, the closed interval $\left[A_{k} A_{k+1}\right]$ the $k^{t h}$ side-interval of the path, the line $a_{A_{k} A_{k+1}}$ the $k^{t h}$ side-line of the path, and the point A_{k} - the $k^{t h}$ vertex of the path. The path $A_{0} A_{1} A_{2} \ldots A_{n-1} A_{n}$ is said to go from A_{0} to A_{n} and to connect, or join, its beginning A_{0} with end A_{n}. The first A_{0} and the last A_{n} vertices of the path are also collectively called its endpoints, or simply its ends. Two vertices, together forming a side, are called adjacent.

The contour $\mathcal{P}_{A_{0} A_{1} \ldots A_{n}}$ of the path $A_{0} A_{1} \ldots A_{n}$ is, by definition, the union of its sides and vertices:

$$
\mathcal{P}_{A_{0} A_{1} \ldots A_{n}} \rightleftharpoons \bigcup_{i=0}^{n}\left(A_{i} A_{i+1}\right) \bigcup\left\{A_{0}, A_{1}, \ldots, A_{n}\right\}
$$

If the first and the last vertices in a path $A_{0} A_{1} \ldots A_{n} A_{n+1}$ coincide, i.e. if $A_{0}=A_{n+1}$, the path is said to be closed and is called a polygon $A_{0} A_{1} \ldots A_{n}$, or n-gon, to be more precise. ${ }^{159}$ (See Fig. 1.61, b).)

A polygon with $n=3$ is termed a triangle, with $n=4$ a quadrilateral, and the names of the polygons for $n \geq 5$ are formed using appropriate Greek prefixes to denote the number of sides: pentagon $(n=5)$, hexagon $(n=6)$, octagon $(n=8)$, decagon $(n=10)$, dodecagon $(n=12)$, dots (see Table 1.1).

[^52]

Figure 1.61: a) A general path; b) A polygon with 15 sides

To denote a triangle $A_{1} A_{2} A_{3},{ }^{160}$ which is a path $A_{1} A_{2} A_{3} A_{4}$ with the additional condition $A_{4}=A_{1}$, a special notation $\triangle A B C$ is used.

For convenience, in a polygon $A_{1} A_{2} \ldots A_{n}$, viewed from the standpoint of the general path notation $A_{1} A_{2} \ldots A_{n} A_{n+1}$, where $A_{1}=A_{n+1}$, we let, by definition $A_{n+2} \rightleftharpoons A_{2}$.

Alternatively, one could explicate the intuitive notion of a jagged path or a polygon using the concept of an ordered path, using the definition of an ordered interval:

An ordered (rectilinear) path, ${ }^{161}$ or a way $\overrightarrow{A_{0} A_{1} A_{2} \ldots A_{n-1} A_{n}}$, in classical synthetic geometry, is an (ordered) n-tuple, $n \geq 1$, of ordered abstract intervals $\overrightarrow{A_{0} A_{1}}, \overrightarrow{A_{1} A_{2}}, \ldots, \overrightarrow{A_{n-1} A_{n}}$, such that each ordered interval $\overrightarrow{A_{i} A_{i+1}}$, except possibly for the first $\overrightarrow{A_{0}} \overrightarrow{A_{1}}$ and the last, $\overrightarrow{A_{n-1} A_{n}}$, has as its beginning A_{i} the end of the preceding (in this ($n-1$)-tuple) ordered interval $\overrightarrow{A_{i-1} A_{i}}$, and its end A_{i+1} coincides with the beginning of the succeeding ordered interval $\xrightarrow[A_{i+1} A_{i+2}]{ }$.

Although it might appear that the concept of an ordered path better grasps the ordering of the intervals which make up the path, we shall prefer to stick with the concept of non-ordered path (including non-ordered polygons), which, as above, will be referred to simply as paths. This is not unreasonable since the results concerning paths (and, in particular, polygons), are formulated ultimately in terms of the basic relations of betweenness and congruence involving the sides of these paths, and these relations are symmetric.

A path $A_{l+1} A_{l+2} \ldots A_{l+k}$, formed by intervals $A_{l+1} A_{l+2}, A_{l+2} A_{l+3}, \ldots, A_{l+k-1} A_{k}$, consecutively joining k consecutive vertices of a path $A_{1} A_{2} \ldots A_{n}$, is called a subpath of the latter. A subpath $A_{l+1} A_{l+2} \ldots A_{l+k}$ of a path $A_{1} A_{2} \ldots A_{n}$, different from the path itself, is called a proper subpath.

A path $A_{1} A_{2} \ldots A_{n}$, in particular, a polygon, is called planar, if all its vertices lie in a single plane α, that is, $\exists \alpha A_{i} \in \alpha$ for all $i \in \mathbb{N}_{n}$.

Given a path $A_{1} A_{2} \ldots A_{n}$, we can define on the set $\mathcal{P}_{A_{1} A_{2} \ldots A_{n}} \backslash\left\{A_{n}\right\}$ an ordering relation as follows. We say that a point $A \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}} \backslash\left\{A_{n}\right\}$ precedes a point $B \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}} \backslash\left\{A_{n}\right\}$ and write $A \prec B,{ }^{162}$ or that B succeeds A, and write $B \succ A$ iff (see Fig. 1.62)

- either both A and B lie on the same half-open interval $\left[A_{i} A_{i+1}\right)$ and A precedes B on it; or
- A lies on the half-open interval $\left[A_{i}, A_{i+1}\right), B$ lies on $\left[A_{j}, A_{j+1}\right)$ and $i<j$.

We say that A precedes B on the half-open interval $\left[A_{i} A_{i+1}\right)$ iff $A=A_{i}$ and $B \in\left(A_{i}, A_{i+1}\right)$, or both $A, B \in$ $\left(A_{i} A_{i+1}\right)$ and $\left[A_{i} A B\right]$.

For an open path $A_{1} A_{2} \ldots A_{n}$, we can extend this relation onto the set $\mathcal{P}_{A_{1} A_{2} \ldots A_{n}}$ if we let, by definition, $A \prec A_{n}$ for all $A \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}} \backslash\left\{A_{n}\right\}$.

Lemma 1.2.38.1. The relation \prec thus defined is transitive on $\mathcal{P}_{A_{1} A_{2} \ldots A_{n} \backslash\left\{A_{n}\right\} \text {, and in the case of an open path }}$ on $\mathcal{P}_{A_{1} A_{2} \ldots A_{n}}$. That is, for $A, B, C \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}} \backslash\left\{A_{n}\right\}\left(A, B, C \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}}\right.$ if $A_{1} A_{2} \ldots A_{n}$ is open) we have $A \prec B \& B \prec C \Rightarrow A \prec C$.

[^53]

Figure 1.62: An illustration of ordering on a path. Here on an open path $A_{1} A_{2} \ldots A_{n}$ we have, for instance, $A_{1} \prec A_{3} \prec A_{5} \prec A \prec B \prec A_{6} \prec A_{7} \prec C \prec A_{8} \prec A_{9}$. Note that our definition of ordering on a path $A_{1} A_{2} \ldots A_{n}$ conforms to the intuitive notion that a point $A \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}}$ precedes another point $B \in \mathcal{P}_{A_{1} A_{2} \ldots A_{n}}$ if we encounter A sooner than B when we "take" the open path $A_{1} A_{2} \ldots A_{n}$ from A_{1} to A_{n}.

Figure 1.63: A peculiar path $A_{1} A_{2} \ldots A_{12}$ (a), and the corresponding naturalized path $B_{1} B_{2} \ldots B_{7}$ (b). Note that the path $A_{1} A_{2} \ldots A_{12}$ drawn here is a very perverse one: aside from being peculiar, it is not even semi-simple!

Proof. (sketch) Let $A \prec B, B \prec C$. If $A, B, C \in\left(A_{i}, A_{i+1}\right)$ for some $i \in \mathbb{N}_{n}$, we have, using the definition, $A \prec B \& B \prec C \Rightarrow\left[A_{i} A B\right] \&\left[A_{i} B C\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{i} A C\right]$. The other cases are even more obvious.

We shall call a path $A_{1} A_{2} \ldots A_{n}$, which contains (at least once) three or more consecutive collinear vertices, a peculiar path. Otherwise the path is called non-peculiar. A subpath $A_{l+1} A_{l+2} \ldots A_{l+k-1} A_{k+l},(k \geq 3)$, formed by consecutive collinear vertices in a peculiar path, is called a peculiar k - tuple, and the corresponding vertices are called peculiar vertices. ${ }^{163}$ If $\left.A_{l+1} A_{l+2} \ldots A_{l+k}\right), k \geq 2$, is a peculiar k-tuple, A_{l+1} is called its first, and A_{l+k} its last point.

If two (or more ${ }^{164}$) sides of a path share a vertex, they are said to be adjacent.
By definition, the angle between adjacent sides $A_{i-1} A_{i}, A_{i} A_{i+1}$, called also the angle at the vertex A_{i}, of a non-peculiar path $A_{1} A_{2} \ldots A_{n}$ is the angle $\angle\left(A_{i_{i-1}}, A_{i_{i+1}}\right)=\angle A_{i-1} A_{i} A_{i+1}$.

This angle is also denoted $\angle A_{i}$ whenever this simplified notation is not likely to lead to confusion. ${ }^{165}$
An angle adjacent supplementary to an angle of a non-peculiar path (in particular, a polygon) is called an exterior angle of the path (polygon).

An angle $\angle A_{i-1} A_{i} A_{i+1}$, formed by two adjacent sides of the path $A_{1} A_{2} \ldots A_{n}$, is also said to be adjacent to its sides $A_{i-1} A_{i}, A_{i} A_{i+1}$, any of which, in its turn, is said to be adjacent to the angle $\angle A_{i-1} A_{i} A_{i+1}$.

Given a peculiar path $A_{1} A_{2} \ldots A_{n}$, define the corresponding depeculiarized, or naturalized path $B_{1} B_{2} \ldots B_{p}$ by induction, as follows (see Fig. 1.63):

Let $B_{1} \rightleftharpoons A_{1}$; if $B_{k-1}=A_{l}$ let $B_{k} \rightleftharpoons A_{m}$, where m is the least integer greater than l such that the points A_{l-1}, A_{l}, A_{m} are not collinear, i.e. $m \rightleftharpoons \min \left\{p \mid l+1 \leq p \leq n \& \neg \exists b\left(A_{l-1} \in b \& A_{l} \in b \& A_{m} \in b\right)\right\}$. If no such m exists, $B_{1} B_{2} \ldots B_{k-1}$ is the required naturalized path.

In addition to naturalization, in the future we are going to need a related operation which we will refer to as straightening: given a path $A_{1} \ldots A_{i} \ldots A_{i+k} \ldots A_{n}$, we can replace it with the path $A_{1} \ldots A_{i} A_{i+k} \ldots A_{n}$ (note that

[^54]

Figure 1.64: No three side - intervals meet in any point.
the vertices A_{i}, A_{i+k} are now adjacent). We say that we straighten the sides $A_{i} A_{i+1}, \ldots, A_{i+k-1} A_{i+k}$ of the path $A_{1} \ldots A_{n}$ into the single side $A_{i} A_{i+k}$ of the new path $A_{1} \ldots A_{i} A_{i+k} \ldots A_{n}$. Of course, this new path always contain fewer sides than the initial path.

Of course, there are paths (polygons) on which we can perform successive straightenings.

Simplicity and Related Properties

A path is termed semisimple if it has the following properties:
Property 1.2.9. All its vertices (except the first and the last one in the case of a polygon) are distinct;
Property 1.2.10. No vertex lies on a side of the path;
Property 1.2.11. No pair of its sides meet.
Alternatively, a path is called semisimple if the following properties hold:
Property 1.2.12. No two side-intervals meet in any point which is not a vertex;
Property 1.2.13. No three side - intervals meet in any point.
Property 1.2.14. No side can contain an endpoint of the path.
Lemma 1.2.38.2. The two definitions of a semisimple path are equivalent.
Proof. Obviously, $\operatorname{Pr} 1.2 .12$ is just a reformulation of $\operatorname{Pr} 1.2 .11$, so $\operatorname{Pr} 1.2 .11$ and $\operatorname{Pr} 1.2 .12$ are equivalent. It is also obvious that Pr 1.2.14 is a particular case of $\operatorname{Pr} 1.2 .12$.

To prove that $\operatorname{Pr} 1.2 .9-\operatorname{Pr} 1.2 .11$ imply $\operatorname{Pr} 1.2 .13$ suppose the contrary, namely, that $\exists B B \in\left[A_{i} A_{i+1}\right] \cap$ $\left[A_{j} A_{j+1}\right] \cap\left[A_{k} A_{k+1}\right], i \neq j \neq k$. By Pr 1.2.12 B is an end of at least two of these side-intervals. Without loss of generality, we can assume $B=A_{i+1}=A_{j},{ }^{166}$ and thus we have $i+1=j$ by $\operatorname{Pr} 1.2 .9$. ${ }^{167} B=A_{i+1}$ does not coincide with either of the ends of $\left[A_{k} A_{k+1}\right]$ (Fig. 1.64, a) shows how this hypothetic situation would look), because each end is a vertex of the path, $i \neq j \neq k$ from our assumption, $i+1>1$, and by $\operatorname{Pr} 1.2 .9$ the vertices A_{i}, where $i=2, \ldots, n$, are distinct. Nor can B lie on $\left(A_{k} A_{k+1}\right)$, (see Fig. 1.64, b)) because A_{i+1} is a vertex, and by $\operatorname{Pr} 1.2 .10$ no vertex of the path can lie on its side. We have thus come to a contradiction which shows that Pr 1.2.13 is true. To show $\operatorname{Pr} 1.2 .12-\operatorname{Pr} 1.2 .14 \Rightarrow \operatorname{Pr} 1.2 .9$ let $B \rightleftharpoons A_{i}=A_{k}$, where $1<k-i<n-1$. ${ }^{168}$ Then the following three side - intervals meet in B :
for $i=1:\left[A_{1} A_{2}\right],\left[A_{k-1} A_{k}\right],\left[A_{k} A_{k+1}\right] .{ }^{169}$
for $i>1$: $\left[A_{i-1} A_{i}\right],\left[A_{i} A_{i+1}\right],\left[A_{k-1} A_{k}\right]$
They are all distinct because $1<k-i$, and we arrive at a contradiction with $\operatorname{Pr} 1.2 .13$, which testifies the truth of Pr 1.2.9.

Finally, to prove $\operatorname{Pr} 1.2 .12-\operatorname{Pr} 1.2 .14 \Rightarrow \operatorname{Pr} 1.2 .10$ suppose $A_{i} \in\left(A_{k} A_{k+1}\right)$. But by $\operatorname{Pr} 1.2 .14 i \neq 1, n$, and thus $\left[A_{i-1} A_{i}\right],\left[A_{i} A_{i+1}\right]$ are both defined and meet $\left[A_{k} A_{k+1}\right]$ and each other in $B \rightleftharpoons A_{i}$ contrary to $\operatorname{Pr} 1.2 .13$.

Lemma 1.2.38.3. If $A_{l+1} A_{l+2} \ldots A_{l+k}$ is a peculiar k-tuple in a semisimple path $A_{1} A_{2} \ldots A_{n}$, then $A_{l+1}, A_{l+2}, \ldots, A_{l+k}$ are distinct points in order $\left[A_{l+1} A_{l+2} \ldots A_{l+k}\right]$.

[^55]

Figure 1.65: Illustration for proof of L 1.2.38.3.

Proof. By induction on k. Let $k=3 . A_{l+1} \neq A_{l+2}, A_{l+2} \neq A_{l+3}$ because $A_{l+1} A_{l+2}, A_{l+2} A_{l+3}$ are sides of the path and therefore are intervals, which are, by definition, pairs of distinct points. $A_{l+1} \neq A_{l+3}$ (this hypothetic case is shown in Fig.1.65, a)), because $A_{l+1} A_{l+2}=A_{l+2} A_{l+3} \stackrel{\text { T1.2.1 }}{\Longrightarrow}\left(A_{l+1} A_{l+2}\right) \cap\left(A_{l+2} A_{l+3}\right) \neq \emptyset$, contrary to Pr 1.2.11. Since $A_{l+1}, A_{l+2}, A_{l+3}$ are distinct and collinear (due to peculiarity), by T $1.2 .2\left[A_{l+1} A_{l+3} A_{l+2}\right] \vee\left[A_{l+2} A_{l+1} A_{l+3}\right] \vee$ $\left[A_{l+1} A_{l+2} A_{l+3}\right.$, but the first two cases (shown in Fig.1.65, b, c) contradict semisimplicity of $A_{1} A_{2} \ldots A_{n}$ by $\operatorname{Pr} 1.2 .10$.

Obviously, since $A_{l+1} A_{l+2} \ldots A_{l+k}$ is a peculiar k - tuple, $A_{l+1} A_{l+2} \ldots A_{l+k-1}$ is a peculiar $(k-1)$-tuple. Then, by induction hypothesis, $A_{l+1}, A_{l+2}, \ldots, A_{l+k-1}$ are distinct points in order $\left[A_{l+1} A_{l+2} \ldots A_{l+k-1}\right] . A_{l+k} \neq A_{l+k-1}$ by definition of $A_{l+k-1} A_{l+k}$. $\quad A_{l+k} \neq A_{l+1}$, (this hypothetic case is shown in Fig.1.65, d)) because otherwise $\left[A_{l+1} A_{l+2} \ldots A_{l+k-1}\right] \Rightarrow A_{l+2} \in\left(A_{l+k-1} A_{l+k}\right)$, which by Pr 1.2.10 contradicts semisimplicity. Since A_{l+1}, A_{l+k-1}, A_{l+k} are distinct and collinear, we have by T $1.2 .2\left[A_{l+k-1} A_{l+1} A_{l+k}\right] \vee\left[A_{l+1} A_{l+k} A_{l+k-1}\right] \vee\left[A_{l+1} A_{l+k-1} A_{l+k}\right]$. But $\left[A_{l+k-1} A_{l+1} A_{l+k}\right]$ contradicts $\operatorname{Pr} 1.2 .10$. (This situation is shown is shown in Fig.1.65, e).) $\left[A_{l+1} A_{l+k} A_{l+k-1}\right] \Rightarrow$ $A_{l+k} \in\left[A_{l+1} A_{l+k-1}\right) \stackrel{\text { L1.2.7.7 }}{\Longrightarrow} \exists i \in \mathbb{N}_{k-2} A_{l+k} \in\left[A_{l+i} A_{l+i+1}\right.$), (see Fig.1.65, f)) which contradicts either Pr 1.2.9 or $\operatorname{Pr} 1.2 .10$, because A_{l+i} is a vertex, and $A_{l+i} A_{l+i+1}$ is a side of the path. Therefore, we can conclude that $\left[A_{l+1} A_{l+k-1} A_{l+k}\right]$. Finally, $\left[A_{l+1} A_{l+2} \ldots A_{l+k-1}\right] \Rightarrow\left[A_{l+1} A_{l+k-1} A_{l+k}\right],\left[A_{l+1} A_{l+k-2} A_{l+k-1}\right] \&\left[A_{l+1} A_{l+k-1} A_{l+k}\right] \xrightarrow{\mathrm{L} 1.2 .3 .2}$ $\left[A_{l+k-2} A_{l+k-1} A_{l+k}\right],\left[A_{l+1} A_{l+2} \ldots A_{l+k-1}\right] \&\left[A_{l+k-2} A_{l+k-1} A_{l+k}\right] \stackrel{\mathrm{L} 1.2 .7 .3}{\Longrightarrow}\left[A_{l+1} A_{l+2} \ldots A_{l+k-1} A_{l+k}\right]$.

Theorem 1.2.38. Naturalization preserves the contour of a semisimple path. That is, if $A_{1} A_{2} \ldots A_{n}$ is a peculiar semisimple path, and $B_{1} B_{2} \ldots B_{p}$ is the corresponding naturalized path, then $\mathcal{P}_{B_{1} B_{2} \ldots B_{p}=\mathcal{P}_{A_{1} A_{2} \ldots A_{n}}}$.

Proof.
A path that is both non-peculiar and semisimple is called simple. In the following, unless otherwise explicitly stated, all paths are assumed to be simple. ${ }^{170}$

Some Properties of Triangles and Quadrilaterals

Theorem 1.2.39. If points A_{1}, A_{2}, A_{3} do not colline, the triangle $\triangle A_{1} A_{2} A_{3}{ }^{171}$ is simple.
Proof. Non-peculiarity is trivial. Let us show semisimplicity. Obviously, we must have $A_{1} \neq A_{2} \neq A_{3}$ for the abstract intervals $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{1}$ forming the triangle $\triangle A_{1} A_{2} A_{3}$ to make any sense. So Pr 1.2.9 holds. Pr 1.2.10, $\operatorname{Pr} 1.2 .11$ are also true for our case, because $\neg \exists a\left(A_{i} \in a \& A_{j} \in a \& A_{k} \in a\right) \stackrel{\text { L1.2.1.9 }}{\Longrightarrow}\left[A_{i} A_{j}\right) \cap\left(A_{j} A_{k}\right]=\emptyset$, where $i \neq j \neq k$.

Lemma 1.2.40.1. If points A, F lie on opposite sides of a line $a_{E B}$, the quadrilateral $F E A B$ is semisimple.
Proof. (See Fig. 1.66.) Obviously, $\exists a_{A B} \Rightarrow A \neq B$ and $A a_{E B} F \Rightarrow A \neq F$. Thus, the points F, E, A, B are all distinct, so Pr 1.2.9 holds in our case. ${ }^{172} A a_{E B} F$ implies that A, E, B, as well as F, E, B are not collinear, whence by L 1.2.1.9 $[B E) \cap(E F]=\emptyset,[B E) \cap(E A]=\emptyset,[E B) \cap(B F]=\emptyset,[E B) \cap(B A]=\emptyset,[E A) \cap(A B]=\emptyset$, $[E F) \cap(F B]=\emptyset$. This means, in particular, that $B \notin(E F), B \notin(E A), E \notin(B F), E \notin(B A)$. Also, $A a_{E B} F \xrightarrow{\mathrm{~T} 1.2 .20}$

[^56]

Figure 1.66: If points A, F lie on opposite sides of a line $a_{E B}$, the quadrilateral $F E A B$ is semisimple.
$[A E) a_{E B}(E F] \&[A E) a_{E B}(B F] \&[A B) a_{E B}(B F] \&[A B) a_{E B}(E F]$. From all this we can conclude that Pr 1.2.10, $\operatorname{Pr} 1.2 .11$ are true for the case in question.

Theorem 1.2.40. Given a quadrilateral $F E A B$, if points E, B lie on opposite sides of the line $a_{A F}$, and A, F lie on opposite sides of $a_{E B}$, then the quadrilateral $F E A B$ is simple and no three of its vertices colline. ${ }^{173}$

Proof. $E a_{A F} B \Rightarrow E \notin a_{A F} \& B \notin a_{A F}, A a_{E B} F \Rightarrow A \notin a_{E B} \& F \notin a_{E B}$. Thus, no three of the points F, E, A, B are collinear. This gives non-peculiarity of $F E A B$ as a particular case. But by (the preceding lemma) L 1.2.40.1, the quadrilateral $F E A B$ is also semisimple.

Given a quadrilateral $F E A B$, the open intervals $(A F),(E B)$ are referred to as the diagonals of the quadrilateral $F E A B$.

Theorem 1.2.41. Given a quadrilateral $F E A B$, if points E, B lie on opposite sides of the line $a_{A F}$, and A, F lie on opposite sides of $a_{E B}$, then the open intervals $(E B),(A F)$ concur, i.e. the diagonals of the quadrilateral $F E A B$ meet in exactly one point. If, in addition, a point X lies between E, A, and a point Y lies between F, B, the open intervals $(X Y),(A F)$ are also concurrent. ${ }^{174}$

Proof. (See Fig. 1.67, a).)By the preceding theorem (T 1.2.40), the quadrilateral $F E A B$ is simple and no three of its vertices colline. We have also $E a_{A F} B \Rightarrow \exists G G \in a_{A F} \&[E G B], A a_{E B} F \Rightarrow \exists H H \in a_{E B} \&[A H F]$, and therefore by L 1.2.1.3, A 1.1.2 $G \in a_{A F} \cap(E B) \& H \in a_{E B} \cap(A F) \& \neg \exists a(E \in a \& A \in a \& F \in a) \Rightarrow G=H$. Thus, $G \in(E B) \cap(A F)$, and by L 1.2.9.10, in view of the fact that no three of the points F, E, A, B colline, we can even write $G=(E B) \cap(A F)$.

Show 2nd part. We have $[E X A] \&[F Y B] \& E a_{A F} B \xrightarrow{T 1.2 .20} X a_{A F} Y \Rightarrow \exists Z Z \in a_{A F} \&[X Z Y]$ and $G=(A F) \cap$ $(E B) \xrightarrow{\mathrm{C} 1.2 .21 .26} E F a_{A B} . E F a_{A B} \&[A X E] \&[B Y F] \xrightarrow{\text { Pr?? }} Y F a_{A B} \& X F a_{A B}$. With $[X Z Y]$, by L 1.2.19.9 this gives $Z F a_{A B}$. To show $Z \neq F$, suppose $Z=F$. (See Fig. 1.67, b).) Then $[X F Y] \&[F Y B] \xrightarrow{\text { L1.2.3. } 1}[X F B]$ and by L 1.2.11.13, ${ }^{175}$ we have $[A X E] \& B \in E_{B} \&[X F B] \Rightarrow E_{F} \subset \operatorname{Int} \angle A E B$. On the other hand, $G=$ $(E B) \cap(A F) \stackrel{\text { C1.2.21.25 }}{\Longrightarrow} E_{B} \subset$ Int $\angle A E F$, so, in view of C 1.2.21.13 we have a contradiction. Also, $\neg[Z A F]$, for $[Z A F] \&[A G F] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[Z G F] \Rightarrow Z a_{E B} F-$ a contradiction. Now the obvious symmetry of the conditions of the second part of the lemma with respect to the substitution $A \leftrightarrow F, X \leftrightarrow Y, B \leftrightarrow E^{176}$ allows us to conclude that also $A \neq Z$ and $\neg[Z F A] .[A G F] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} G \in a_{A F}, Z \in a_{A F}$, the points A, F, Z colline. Therefore, $A \neq Z \neq F \& \neg[Z A F] \& \neg[Z F A] \stackrel{\mathrm{T1.2.1}}{\Longrightarrow}[A Z F]$.

Theorem 1.2.42. Given four (distinct) coplanar points A, B, C, D, no three of them collinear, if the open interval $(A B)$ does not meet the line $a_{C D}$ and the open interval $(C D)$ does not meet the line $a_{A B}$, then either the open intervals $(A C),(B D)$ concur, or the open intervals $(A D),(B C)$ concur.

Proof. (See Fig. 1.68, a).) By definition, that A, B, C, D are coplanar means $\exists \alpha(A \in \alpha \& B \in \alpha \& C \in \alpha \& D \in \alpha)$. Since, by hypothesis, A, B, C and A, B, D, as well as A, C, D and B, C, D are not collinear (which means, of course, $\left.C \notin a_{A B}, D \notin a_{A B}, A \notin a_{C D}, B \notin a_{C D}\right)$, we have $C \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a_{A B}} \& D \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a_{A B}} \&(C D) \cap a_{A B}=\emptyset \Rightarrow C D a_{A B}$. Also, $B_{C} \neq B_{D}$, for otherwise B, C, D would colline. Therefore, $C D a_{A B} \& B_{C} \neq B_{D} \xrightarrow{\text { L1.2.21.21 }} B_{C} \subset$ Int $\angle A B D \vee B_{D} \subset$ Int $\angle A B C \xrightarrow{\text { L1.2.21.10 }}\left(\exists X_{1} X_{1} \in B_{C} \&\left[A X_{1} D\right]\right) \vee\left(\exists X_{2} X_{2} \in B_{D} \&\left[A X_{2} C\right]\right)$. Since the points A, B enter the conditions of the lemma symmetrically, we can immediately conclude that also $A_{C} \subset \operatorname{Int} \angle B A D \vee A_{D} \subset \operatorname{Int} \angle B A C$,

[^57]

Figure 1.67: Illustration for proof of T 1.2.41.

Figure 1.68: Illustration for proof of T 1.2.42.
whence $\left(\exists Y_{1} Y_{1} \in A_{C} \&\left[B Y_{1} D\right]\right) \vee\left(\exists Y_{2} Y_{2} \in A_{D} \&\left[B Y_{2} C\right]\right)$. To show that $\exists X_{1} X_{1} \in B_{C} \&\left[A X_{1} D\right]$ and $\exists Y_{1} Y_{1} \in$ $A_{C} \&\left[B Y_{1} D\right]$ cannot hold together, suppose the contrary.(See Fig. 1.68, b).) Then $\neg \exists a(A \in a \& B \in a \& D \in$ $a) \&\left[A X_{1} D\right] \&\left[D Y_{1} B\right] \stackrel{\text { L1.2.3.3 }}{\Longrightarrow} \exists C^{\prime}\left[A C^{\prime} Y_{1}\right] \&\left[B C^{\prime} X_{1}\right] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} C^{\prime} \in a_{A Y_{1}} \cap a_{B X_{1}}$. Obviously, also $Y_{1} \in A_{C} \& C \notin$ $a_{A B} \& X_{1} \in B_{C} \Rightarrow a_{A Y_{1}}=a_{A C} \neq a_{B C}=a_{B X_{1}}$. Therefore, $C^{\prime} \in a_{A Y_{1}} \cap a_{B X_{1}} \& C \in a_{A Y_{1}} \cap a_{B X_{1}} \& a_{A Y_{1}} \neq$ $a_{B X_{1}} \stackrel{\text { T1.1.1 }}{\Longrightarrow} C^{\prime}=C$, and we have $B \notin a_{A D} \&\left[A X_{1} D\right] \&\left[B C X_{1}\right] \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists R R \in a_{C D} \&[A R B]$, which contradicts the condition $a_{C D} \cap(A B)=\emptyset$. Since the conditions of the theorem are symmetric with respect to the substitution $C \leftrightarrow D$, we can immediately conclude that $\left(\exists X_{2} X_{2} \in B_{D} \&\left[A X_{2} C\right]\right)$ and ($\left.\exists Y_{2} Y_{2} \in A_{D} \&\left[B Y_{2} C\right]\right)$ also cannot hold together. Thus, either both $\left(\exists X_{1} X_{1} \in B_{C} \&\left[A X_{1} D\right]\right)$ and $\left(\exists Y_{2} Y_{2} \in A_{D} \&\left[B Y_{2} C\right]\right)$, or $\left(\exists X_{2} X_{2} \in B_{D} \&\left[A X_{2} C\right]\right)$ and $\left(\exists Y_{1} Y_{1} \in A_{C} \&\left[B Y_{1} D\right]\right)$. In the first of these cases we have $X_{1} \in a_{B C} \cap a_{A D} \& Y_{2} \in a_{B C} \cap a_{A D} \& a_{B C} \neq$ $a_{A D} \stackrel{\text { T1.1.1 }}{\Longrightarrow} X_{1}=Y_{2}$. Thus, $X_{1} \in(A D) \cap(B C)$. Similarly, using symmetry with respect to the simultaneous substitutions $A \leftrightarrow B, C \leftrightarrow D$, we find that $X_{2} \in(B D) \cap(A C)$.

Theorem 1.2.43. If points A, B, C, D are coplanar, either the line $a_{A D}$ and the segment $[B C]$ concur, or $a_{B D}$ and $[A C]$ concur, or $a_{C D}$ and $[A B]$ concur.

Proof. We can assume that no three of the points A, B, C, D colline, since otherwise the result is immediate. Suppose $a_{C D} \cap[A B]=\emptyset$. If also $a_{A B} \cap(C D)=\emptyset$ then by (the preceding theorem) T 1.2.42 either (AC) and (BD) concur, whence $a_{B D}$ and $[A C]$ concur, or $(A D)$ and $(B C)$ concur, whence $a_{A D}$ and $[B C]$ concur. Suppose now $\exists E E \in a_{A B} \cap(C D)$. Using our another assumption $a_{C D} \cap[A B]=\emptyset$, we have $E \in E x t[A B] \stackrel{\mathrm{T1.2.1}}{\Longrightarrow}[A B E] \vee[E A B]$. If $[A B E]$ (see Fig. 1.69, a)), then $A \notin a_{C D} \&[C E D] \&[A B E] \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists F[A F C] \& a_{B D}$, and if $[E A B]$ (see Fig. 1.69, b)),

Figure 1.69: Illustration for proof of T 1.2.43.

Figure 1.70: If a point X lies between A, Y, lines $a_{X B}, a_{Y C}$ are parallel, and A, B, C colline, B lies between A, C.
then $B \in a_{C D} \&[C E D] \&[E A B] \stackrel{C 1.2 .1 .7}{\Longrightarrow} \exists F F \in a_{A D} \&[B F C]$. Thus, $\exists F[A F C] \& a_{B D}$ or $\exists F F \in a_{A D} \&[B F C]$.

Theorem 1.2.44. If a point X lies between points A, Y, lines $a_{X B}, a_{Y C}$ are parallel, and the points A, B, C colline, then B lies between A, C.

Proof. (See Fig. 1.70.) Obviously, ${ }^{177}$ the collinearity of A, B, C implies $A \in a_{B C}, a_{A C}=a_{A B}$. Using A 1.1.6, A 1.1.5 we can write $A \in a_{B C} \subset \alpha_{a_{B X} a_{C Y}} \Rightarrow \alpha_{A C Y}=\alpha_{a_{B X} a_{C Y}} \Rightarrow a_{B X} \subset \alpha_{A C Y}$. We have $a_{B X} \| a_{C Y} \Rightarrow C \notin a_{B X} \& Y \notin$ $a_{B X}$. Also, $a_{B X} \neq a_{A C}$ (otherwise $C \in a_{B X}$, which contradicts $a_{B X} \| a_{C Y}$), and $a_{B X} \neq a_{A C}=a_{A B} \Rightarrow A \notin a_{B X}$. Therefore, $a_{B X} \subset \alpha_{A C Y} \& A \notin a_{B X} \& C \notin a_{B X} \& Y \notin a_{B X} \&[A X Y] \& X \in a_{B X} \& a_{B X} \cap(C Y)=\emptyset \stackrel{\text { A1.2.4 }}{\longrightarrow} \exists B^{\prime} B^{\prime} \in$ $a_{B X} \&\left[A B^{\prime} C\right]$. But $B \in a_{B X} \cap a_{A C} \& B^{\prime} \in a_{B X} \cap a_{A C} \& a_{B X} \neq a_{A C} \stackrel{\text { T1.1.1 }}{\Longrightarrow} B^{\prime}=B$. Hence $[A B C]$ as required.

Proposition 1.2.44.1. If a line a is parallel to the side-line $a_{B C}$ of a triangle $\triangle A B C$ and meets its side $A B{ }^{178}$ at some point E, it also meets the side $A C$ of the same triangle.

Proof. (See Fig. 1.71.) By the definition of parallel lines, $a \| a_{B C} \Rightarrow \exists \alpha a \subset \alpha \& a_{B C} \subset \alpha$. Also, $a \| a_{B C} \& E \in$ $a \Rightarrow E \notin a_{B C} ; E \in a \& a \subset \alpha \Rightarrow E \in \alpha ;[A E B] \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} E \in \alpha_{A B C}$. Therefore, $E \in \alpha \& a_{B C} \subset \alpha \& E \in$ $\alpha_{A B C} \& a_{B C} \subset E \in \alpha_{A B C} \stackrel{\text { T1.1.2 }}{\Longrightarrow} \alpha=\alpha_{A B C}$. Thus, $a \subset \alpha_{A B C}$. Obviously, $a \| a_{B C} \Rightarrow B \notin a \& C \notin a$. Also, $A \notin a$, for otherwise $A \in a_{A B} \cap a \& E \in a_{A B} \cap a \& A \neq E \stackrel{\text { A1.1.2 }}{\Longrightarrow} a=a_{A B} \Rightarrow B \in a-$ a contradiction. ${ }^{179}$ Finally, $a \subset \alpha_{A B C} \& A \notin a \& B \notin a \& C \notin a \& \exists E(E \in(A B) \cap a) \& a \| a_{B C} \stackrel{\text { A1.2.4 }}{\Longrightarrow} \exists F(F \in(A C) \cap a)$, q.e.d.

Theorem 1.2.45. If a point A lies between points X, Y, lines $a_{X B}, a_{Y C}$ are parallel, and the points A, B, C colline, A lies between B, C.

[^58]

Figure 1.71: If a is parallel to $a_{B C}$ and meets its side $(A B)$ at E, it also meets $(A C)$.

Figure 1.72: Illustration for proof of T 1.2.45.

Proof. We have $a_{X B} \| a_{Y C} \stackrel{\text { L1.1.7. }}{\Longrightarrow} X \notin a_{Y C} \& B \notin a_{X Y}$ and $\exists a(A \in a \& B \in a \& C \in a) \xrightarrow{\mathrm{T} 1.2 .2}[A B C] \vee$ $[A C B] \&[B A C]$. If $[A B C]$ (see Fig. 1.72, a)), we would have $X \notin a_{Y C} \&[X A Y] \&[A C B] \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists D D \in$ $a_{X B} \&[Y D C] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} \exists D \in a_{X B} \cap a_{Y C} \Rightarrow a_{X B} \nVdash a_{Y C}-$ a contradiction. Similarly, assuming that [ACB] (see Fig. 1.72, b)), we would have $B \notin a_{X Y} \&[X A Y] \&[A C B] \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists D D \in a_{Y C} \&[X D B] \stackrel{\mathrm{L} 1.2 .1 .3}{\Longrightarrow} \exists D \in a_{Y C} \cap a_{X B} \Rightarrow$ $a_{Y C} \nVdash a_{X B} .{ }^{180}$ Thus, we are left with $[B A C]$, q.e.d.

Theorem 1.2.46. If a point B lies between points A, C, lines $a_{A X}, a_{B Y}$ are parallel, as are $a_{B Y}, a_{C Z}$, and if the points X, Y, Z colline, then Y lies between X and Z.

Proof. (See Fig. 1.73.) By C 1.2.1.10 the lines $a_{A X}, a_{B Y}, a_{C Z}$ coplane. Therefore, $[A B C] \Rightarrow A a_{B X} C$. We also have (from the condition of parallelism) $(C Z] \cap a_{B Y}=\emptyset \&(A X] \cap a_{B Y}=\emptyset \Rightarrow C Z a_{B Y} \& A X a_{B Y}$. Then $A X a_{B Y} \& C Z a_{B Y} \& A a_{B Y} C \xrightarrow{\text { L1.2.17.11 }} X a_{B Y} Z \Rightarrow \exists Y^{\prime} Y^{\prime} \in a_{B Y} \&\left[X Y^{\prime} Z\right]$. But $Y \in a_{B Y} \cap a_{X Z} \& Y^{\prime} \in a_{B Y} \cap$ $a_{X Z} \& a_{X Z} \neq a_{B Y} \stackrel{\mathrm{T1.1.1}}{\Longrightarrow} Y^{\prime}=Y$.

[^59]

Figure 1.73: If a point B lies between A, C; lines $a_{A X}\left\|a_{B Y}, a_{B Y}\right\| a_{C Z}$, and if X, Y, Z colline, then Y divides X and Z.

Basic Properties of Trapezoids and Parallelograms

A quadrilateral is referred to as a trapezoid if (at least) two of its side-lines are parallel. A quadrilateral $A B C D$ is called a parallelogram if $a_{A B}\left\|a_{C D}, a_{A C}\right\| a_{B D} .{ }^{181} A B C D$

Corollary 1.2.47.1. In a trapezoid no three of its vertices colline. Thus, a trapezoid, and, in particular, a parallelogram $A B C D$, is a non-peculiar quadrilateral. Furthermore, any side - line formed by a pair of adjacent vertices of a parallelogram lies completely on one side ${ }^{182}$ of the line formed by the other two vertices. In particular, we have $C D a_{A B}$, etc.

Proof. Follows immediately from the definition of parallelogram and L 1.1.7.3, T 1.2.19.
Lemma 1.2.47.2. Given a parallelogram $A B C D$, if a point X lies on the ray A_{B}, the open intervals $(A C),(D X)$ concur. In particular, $(A C)$ and $(B D)$ concur.

Proof. By the preceding corollary (C 1.2.47.1) $B \notin A_{D}$ and, moreover, $B C a_{A D}$. Therefore, $X \in A_{B} \& B \notin$ $a_{A D} \stackrel{\mathrm{~L} 1.2 .19 .8}{\Longrightarrow} X B a_{A D}$, and $X B a_{A D} \& B C a_{A D} \stackrel{\mathrm{~L} 1.2 .17 .1}{\Longrightarrow} X C a_{A D} \Rightarrow(X C) \cap a_{A D}=\emptyset \stackrel{\mathrm{L} 1.2 .1 .3}{\Longrightarrow}(X C) \cap(A D)=\emptyset$. Since also $a_{A X}=a_{A B} \| a_{C D} \stackrel{\text { L1.2.1.3 }}{\Longrightarrow}(A X) \cap a_{C D}=\emptyset \& a_{A X} \cap(C D)=\emptyset$, the open intervals $(A C)$, (XD) concur by T 1.2.42.

Corollary 1.2.47.3. Given a parallelogram $A B C D$, if a point X lies on the ray A_{B}, the ray A_{C} lies inside the angle $\angle X A D .^{183}$ In particular, the points X, D are on opposite sides of the line $a_{A C}$ and A, C are on opposite sides of $a_{D X}$. In particular, the vertices B, D are on opposite sides of the line $a_{A C}$ and A, C are on opposite sides of $a_{D B}$.

Proof. Follows immediately from the preceding lemma (L 1.2.47.2) and C 1.2.21.25.
Corollary 1.2.47.4. Suppose that in a trapezoid $A B C D$ with $a_{A B} \| a_{C D}$ the vertices B, C lie on the same side of the line $a_{A D}$. Then the open intervals $(A C),(B D)$ concur and $A B C D$ is a simple quadrilateral.

Proof. Observe that the assumptions of the theorem imply that no three of the coplanar points A, B, C, D are collinear, the open interval $(A B)$ does not meet the line $a_{C D}$, the open interval $(C D)$ does not meet the line $a_{A B}$, and the open intervals $(A D),(B C)$ do not meet. Then the open intervals $(A C),(B D)$ concur by T 1.2.42 and the trapezoid $A B C D$ is simple by T 1.2 .40 .

Corollary 1.2.47.5. Suppose that in a trapezoid $A B C D$ with $a_{B C} \| a_{A D}$ the open intervals $(A B),(C D)$ do not meet. Then the points C, D lie on the same side of the line $a_{A B}$. ${ }^{184}$

Proof. First, observe that no three vertices of $A B C D$ colline (see C 1.2.47.1), and thus $C \notin a_{A B}, D \notin a_{A B}$. To show that the points C, D lie on the same side of the line $a_{A B}$, suppose the contrary, i.e. that there is a point $E \in$ $(C D) \cap a_{A B}$. Since $(C D) \subset$ Int $a_{B C} a_{A D}$ (by L 1.2.19.16), we have $E \in$ Int $a_{B C} a_{A D}$. Since $(A B)=a_{A B} \cap \operatorname{Int} a_{B C} a_{A D}$ (again by L 1.2.19.16), we find that $E \in(A B)$, which in view of $E \in(C D)$ contradicts the condition of the theorem that the open intervals $(A B),(C D)$ do not meet. This contradiction shows that in reality the points C, D lie on the same side of the line $a_{A B}$.

Corollary 1.2.47.6. Suppose that in a trapezoid $A B C D$ with $a_{B C} \| a_{A D}$ the open intervals $(A B),(C D)$ do not meet. ${ }^{185}$ Then the ray A_{C} lies inside the angle $\angle B A D$ and the ray D_{B} lies inside the angle $\angle A D C .{ }^{186}$

[^60]

Figure 1.74: Illustration for proof of T 1.2.48.

Proof. Since (by hypothesis) $a_{A D} \| a_{B C}$, the points B, C lie on the same side of $a_{A D}$. Furthermore, from the preceding corollary (C 1.2 .47 .5) we have $C D a_{A B}, A B a_{C D}$. Hence in view of the definition of interior of angle we can write $A B a_{C D} \& B C a_{A D} \Rightarrow D_{B} \subset$ Int $\angle A D C$ (see also L 1.2.21.4), $C D a_{A B} \& B C a_{A D} \Rightarrow A_{C} \subset$ Int $\angle B A D$.

Theorem 1.2.47. A parallelogram is a simple quadrilateral.

Proof. It is non-peculiar by C 1.2.47.1 and semisimple by C 1.2.47.1, L 1.2.40.1.

Theorem 1.2.48. Given a parallelogram $C A Y X$, if a point O lies between A, C, a point B lies on the line $a_{A C}$, and the lines $a_{X B}, a_{O Y}$ are parallel, then the point O lies between A, B. (See Fig. 1.74, a).)

Proof. Suppose the contrary, i.e. $\neg[B O A]$.(See Fig. 1.74, b).) We have by L1.2.1.3, A 1.2.1 $[C O A] \Rightarrow O \in a_{A C} \& A \neq$ O. Since also, by hypothesis, $B \in a_{A C}$, the points O, A, B are collinear. Taking into account $a_{X B} \| a_{O Y} \Rightarrow O \neq B$, we can write $B \in a_{O A} \& \neg[B O A] \& B \neq O \& O \neq A$. Then by L 1.2.11.9, L 1.2.13.2 [COA] \& B $\in O_{A} \Rightarrow[C O B] \& B \in$ C_{A}. Since $C A Y X$ is a parallelogram and $B \in C_{A}$, by L 1.2.47.2 $\exists D D \in(X B) \cap(C Y)$. Therefore, $Y \notin a_{C B}=$ $a_{C A} \&[C D Y] \& D \in a_{B X} \&[C O B] \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists E E \in a_{B X} \&[O E Y] \Rightarrow \exists E E \in a_{B X} \cap a_{O Y}$ - a contradiction.

Lemma 1.2.49.1. Proof.

Theorem 1.2.49. If a polygon $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ (i.e., a path $A_{1} A_{2} \ldots A_{n} A_{n+1}$ with $A_{n+1}=A_{1}$) is non-peculiar (semisimple, simple) the polygons $A_{2} A_{3} \ldots A_{n-1} A_{n} A_{1}, A_{3} A_{4} \ldots A_{n} A_{1} A_{2}, \ldots, A_{n} A_{1} \ldots A_{n-2} A_{n-1}$ are non-peculiar (semisimple, simple) as well. Furthermore, the polygons $A_{n} A_{n-1} A_{n-2} \ldots A_{2} A_{1}, A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{n}$, ..., $A_{1} A_{n} A_{n-1} \ldots A_{3} A_{2}$ are also non-peculiar (semisimple, simple). Written more formally, if a polygon $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ is non-peculiar (semisimple, simple), the polygon $A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(n-1)} A_{\sigma(n)}$ is non-peculiar (semisimple, simple) as well, and, more generally, the polygon $A_{\sigma^{k}(1)} A_{\sigma^{k}(2)} \ldots A_{\sigma^{k}(n-1)} A_{\sigma^{k}(n)}$ is also non-peculiar (semisimple, simple), where σ is the permutation

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}\right),
$$

i.e. $\sigma(i)=i+1, i=1,2, \ldots n-1, \sigma(n)=1$, and $k \in \mathbb{N}$. Furthermore, the polygon $A_{\tau^{k}(1)} A_{\tau^{k}(2)} \ldots A_{\tau^{k}(n-1)} A_{\tau^{k}(n)}$ is non-peculiar (semisimple, simple), where τ is the permutation

$$
\tau=\sigma^{-1}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
n & 1 & \ldots & n-2 & n-1
\end{array}\right)
$$

i.e. $\tau(1)=n, \tau(i)=i-1, i=2,3, \ldots n$, and $k \in\{0\} \cup \mathbb{N}$.

Proof. Follows immediately by application of the appropriate definitions of non-peculiarity (semisimplicity, simplicity) to the polygons in question.

Theorem 1.2.50. Proof.

[^61]

Figure 1.75: If A, B and B, C lie on one side of α, so do A, C.

Basic Properties of Half-Spaces

We say that a point B lies (in space) on the same side (on the opposite (other) side) of a plane α as the point A (from the point A) iff:

- Both A and B do not lie in plane α;
- the interval $A B$ meets (does not meet) the plane α;
and write this as $A B \alpha(A \alpha B)$
Thus, we let, by definition
$A B \alpha \stackrel{\text { def }}{\Longleftrightarrow} A \in \alpha \& B \in \alpha \& \neg \exists C(C \in \alpha \&[A C B])$; and
$A B \alpha \stackrel{\text { def }}{\Longrightarrow} A \in \alpha \& B \in \alpha \& \exists C(C \in \alpha \&[A C B])$.
Lemma 1.2.51.1. The relation "to lie (in space) on the same side of a plane α as", i.e. the relation $\rho \subset \mathcal{C}^{P t} \backslash \mathcal{P}_{\alpha} \times$ $\mathcal{C}^{P t} \backslash \mathcal{P}_{\alpha}$ defined by $(A, B) \in \rho \stackrel{\text { def }}{\Longleftrightarrow} A B \alpha$, is an equivalence on $\mathcal{C}^{P t} \backslash \mathcal{P}_{\alpha}$.
Proof. By A 1.2.1 $A A \alpha$ and $A B \alpha \Rightarrow B A \alpha$. To prove $A B \alpha \& B C \alpha \Rightarrow A C \alpha$ assume the contrary, i.e. that $A B \alpha$, $B C \alpha$ and $A \alpha C$. Obviously, $A \alpha C$ implies that $\exists D D \in \alpha \&[A D C]$. Consider two cases:

If $\exists b(A \in b \& B \in b \& C \in b)$, by T 1.2.2 $[A B C] \vee[B A C] \vee[A C B]$. But $[A B C] \&[A D C] \& D \neq B \xrightarrow{\text { T1.2.5 }}$ $[A D B] \vee[B D C],[B A C] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[B D C],[A C B] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A D B]$, which contradicts $A B \alpha \& B C \alpha$.

Suppose now $\neg \exists b\left(A \in b \& B \in b \& C \in b\right.$) (See Fig. 1.75.) then (by A 1.1.1) $\exists \alpha_{A B C} . D \in \alpha \cap \alpha_{A B C} \stackrel{\text { A1.1.7 }}{\Longrightarrow}$ $\exists G G \neq D \& G \in \alpha \cap \alpha_{A B C}$. By A 1.1.6 $a_{D G} \subset \alpha \cap \alpha_{A B C} . A \notin \alpha \& B \notin \alpha \& C \notin \alpha \& a_{D G} \subset \alpha \Rightarrow A \notin$ $a_{D G} \& B \notin a_{D G} \& C \notin a_{D G} . A \notin a_{D G} \& B \notin a_{D G} \& C \notin a_{D G} \& a_{D G} \subset \alpha=\alpha_{A B C} \&\left(D \in a_{D G} \&[A D C]\right) \xrightarrow{\text { A1.2.4 }}$ $\exists E\left(E \in a_{D G} \&[A E B]\right) \vee \exists F\left(F \in a_{D G} \&[B F C]\right)$. Since, in view of $a_{D G} \subset \alpha$, we have either $[A E B] \& E \in \alpha_{A B C}$ or $[B F C] \& F \in \alpha_{A B C}$, this contradicts $A B \alpha \& B C \alpha$.

A half-space α_{A} is, by definition, the set of points lying (in space) on the same side of the plane α as the point B, i.e. $\alpha_{A} \rightleftharpoons\{B \mid A B \alpha\}$.
Lemma 1.2.51.2. The relation "to lie on the opposite side of the plane α from" is symmetric.
Proof. Follows from A 1.2.1.
In view of symmetry of the corresponding relations, if a point B lies on the same side of a plane α as (on the opposite side of a plane α from) a point A, we can also say that the points A and B lie on one side (on opposite (different) sides) of the plane α.

Lemma 1.2.51.3. A point A lies in the half-space α_{A}.
Lemma 1.2.51.4. If a point B lies in a half-space α_{A}, then the point A lies in the half-space α_{B}.
Lemma 1.2.51.5. Suppose a point B lies in a half-space α_{A}, and a point C in the half-space α_{B}. Then the point C lies in the half-space α_{A}.

Lemma 1.2.51.6. If a point B lies in a half-space α_{A} then $\alpha_{B}=\alpha_{A}$.

Proof. To show $\alpha_{B} \subset \alpha_{A}$ note that $C \in \alpha_{B} \& B \in \alpha_{A} \stackrel{\text { C1.2.51.5 }}{\Longrightarrow} C \in \alpha_{A}$. Since $B \in \alpha_{A} \xrightarrow{\text { C1.2.51.4 }} A \in \alpha_{B}$, we have $C \in \alpha_{A} \& A \in \alpha_{B} \stackrel{\text { C1.2.51.5 }}{\Longrightarrow} C \in \alpha_{B}$ and thus $\alpha_{A} \subset \alpha_{B}$.

Lemma 1.2.51.7. If half-spaces α_{A} and α_{B} have common points, they are equal.
Proof. $\alpha_{A} \cap \alpha_{B} \neq \emptyset \Rightarrow \exists C C \in \alpha_{A} \& C \in \alpha_{B} \stackrel{L 1.2 .51 .6}{\Longrightarrow} \alpha_{A}=\alpha_{C}=\alpha_{B}$.
Lemma 1.2.51.8. Two points A, B in space lie either on one side or on opposite sides of a given plane α.
Proof. Follows immediately from the definitions of "to lie on one side" and "to lie on opposite side".
Lemma 1.2.51.9. If points A and B lie on opposite sides of a plane α, and B and C lie on opposite sides of the plane α, then A and C lie on the same side of α.
Proof. ${ }^{188} A \alpha B \& B \alpha C \Rightarrow \exists D(D \in \alpha \&[A D B]) \& \exists E(E \in \alpha \&[B E C])$. Let α_{1} be a plane drawn through points A, B, C. (And possibly also through some other point G if A, B, C are collinear - see A 1.1.3, A 1.1.4.) Since $A \in \alpha_{1}$ but $A \notin \alpha$, the planes α_{1}, α are distinct. We also have $[A D B] \& A \in \alpha_{1} \& B \in \alpha_{1} \&[B E C] \& C \in \alpha_{1} \xrightarrow{\mathrm{C} 1.2 .1 .11}$ $D \in \alpha_{1} \& E \in \alpha_{1}$, whence it follows that $D \in \alpha_{1} \cap \alpha \Rightarrow \alpha_{1} \cap \alpha \neq \emptyset$. Since the planes α_{1}, α are distinct but have common points, from T 1.1.5 it follows that there is a line a containing all their common points. In particular, we have $D \in a, E \in a$. We are now in a position to prove that points A, C lie on the same side of the plane α, i.e. that $\neg \exists F(F \in \alpha \&[A F C])$. In fact, otherwise $A \in \alpha_{1} \& C \in \alpha_{1} \&[A F C] \Rightarrow \xrightarrow{\text { C1.2.1.11 }} F \in \alpha_{1}$, and we have $F \in \alpha_{1} \cap \alpha \Rightarrow F \in a$. But since $A \notin \alpha \Rightarrow A \notin a$, we can always (whether points A, B, C are collinear or not) write $(D \in a \&[A D B]) \&(E \in a \&[B E C]) \stackrel{\text { T1.2.6 }}{\Longrightarrow} \neg \exists F(F \in a \&[A F C])$, and we arrive at a contradiction.
Lemma 1.2.51.10. If a point A lies on the same side of a plane α as a point C and on the opposite side of α from a point B, the points B and C lie on opposite sides of the plane α.

Proof. Points B, C cannot lie on the same side of α, because otherwise $A C \alpha \& B C \alpha \Rightarrow A B \alpha$ - a contradiction. Then $B \alpha C$ by L 1.2.51.8.

Lemma 1.2.51.11. Let points A and B lie in on opposite sides of plane α, and points C and D - in the half-spaces α_{A} and α_{B}, respectively. Then the points C and D lie on opposite sides of α.

Proof. $A C \alpha \& A \alpha B \& B D \alpha \xrightarrow{\text { L1.2.51.10 }} C \alpha D$.
Theorem 1.2.51. Proof.

Point Sets in Half-Spaces

Given a plane α, a nonempty point set \mathcal{B} is said to lie (in space) on the same side (on the opposite side) of the plane α as (from) a nonempty point set \mathcal{A} iff for all $A \in \mathcal{A}$ and all $B \in \mathcal{B}$ the point B lies on the same side (on the opposite side) of the plane α as (from) the point $A \in \mathcal{A}$. If the set \mathcal{A} (the set \mathcal{B}) consists of a single element (i.e., only one point), we say that the set \mathcal{B} (the point B) lies in plane a on the same side of the line a as the point A (the set \mathcal{A}).

If all elements of a point set \mathcal{A} lie (in space) on one side of a plane α, it is legal to write $\alpha_{\mathcal{A}}$ to denote the side of α that contains all points of \mathcal{A}.
Lemma 1.2.52.1. If a set \mathcal{B} lies on the same side of a plane α as a set \mathcal{A}, then the set \mathcal{A} lies on the same side of the plane α as the set \mathcal{B}.

Proof. See L 1.2.51.1.
Lemma 1.2.52.2. If a set \mathcal{B} lies in on the same side of a plane α as a set \mathcal{A}, and a set \mathcal{C} lies in on the same side of the plane α as the set \mathcal{B}, then the set \mathcal{C} lies in on the same side of the plane α as the set \mathcal{A}.

Proof. See L 1.2.51.1.
Lemma 1.2.52.3. If a set \mathcal{B} lies on the opposite side of a plane α from a set \mathcal{A}, then the set \mathcal{A} lies in on the opposite side of the plane α from the set \mathcal{B}.

Proof. See L 1.2.51.2.
The lemmas L 1.2.51.9 - L 1.2.51.11 can be generalized in the following way:
Lemma 1.2.52.4. If point sets \mathcal{A} and \mathcal{B} lie on opposite sides of a plane α, and the sets \mathcal{B} and \mathcal{C} lie on opposite sides of the plane α, then \mathcal{A} and \mathcal{C} lie on the same side of α.
Lemma 1.2.52.5. If a point set \mathcal{A} lies on the same side of a plane α as a point set \mathcal{C} and on the opposite side of α from the point set \mathcal{B}, the point sets \mathcal{B} and \mathcal{C} lie on opposite sides of the plane α.

[^62]Proof.
Lemma 1.2.52.6. Let point sets \mathcal{A} and \mathcal{B} lie in on opposite sides of a plane α, and point sets \mathcal{C} and \mathcal{D} - on the same side of α as \mathcal{A} and \mathcal{B}, respectively. Then \mathcal{C} and \mathcal{D} lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set \mathcal{B} lies on the same side (on the opposite side) of a plane α as a set (from a set) \mathcal{A}, we say that the sets \mathcal{A} and \mathcal{B} lie in on one side (on opposite sides) of the plane α.

Theorem 1.2.52. Proof.

Complementary Half-Spaces

Given a half-space α_{A}, we define the half-space a_{A}^{c}, complementary to the half-space α_{A}, as $\mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}\right)$.
An alternative definition of complementary half-space is provided by the following
Lemma 1.2.53.1. Given a half-space α_{A}, the complementary half-space α_{A}^{c} is the set of points B such that the open interval $(A B)$ meets the plane $\alpha: \alpha_{A}^{c} \rightleftharpoons\{\exists O O \in \alpha \&[O A B]\}$. A point C lying in space outside α lies either in α_{A} or on α_{A}^{c}.

Proof. $B \in \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}\right) \stackrel{\text { L1.2.51.8 }}{\Longleftrightarrow} A \alpha B \Leftrightarrow \exists O O \in \alpha \&[A O B]$.
Lemma 1.2.53.2. The half-space $\left(\alpha_{A}^{c}\right)^{c}$, complementary to the half-space α_{A}^{c}, complementary to the half-space α_{A}, coincides with the half-space α_{A} itself.

Proof. In fact, we have $\alpha_{A}=\mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup\left(\mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}\right)\right)\right)=\left(\alpha_{A}^{c}\right)^{c}$.
Lemma 1.2.53.3. A line b that is parallel to a plane α and has common points with a half-space α_{A}, lies (completely) in α_{A}.

Proof. (See Fig. 1.76, a).) By hypothesis, $b \cap \alpha=\emptyset$. To prove that $b \cap \alpha_{A}^{c}=\emptyset$ suppose that $\exists D D \in b \cap \alpha_{A}^{c}$ (see Fig. 1.76, b).). Then $A B \alpha \& A \alpha D \xrightarrow{\mathrm{~L} 1.2 .51 .10} \exists C C \in \alpha \&[B C D] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} \exists C C \in \alpha \cap a_{B D}=b$ - a contradiction. Thus, we have shown that $b \subset \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}^{c}\right)=\alpha_{A}$.

Given a ray O_{B}, not meeting a plane α
Lemma 1.2.53.4. - If the origin O lies in a half-space α_{A}, so does the whole ray O_{B}.
Proof. (See Fig. 1.77.) By hypothesis, $O_{B} \cap \alpha=\emptyset$. To prove $O_{B} \cap \alpha_{A}^{c}=\emptyset$, suppose $\exists F F \in O_{B} \cap \alpha_{A}^{c}$. $O \in \alpha_{A} \& F \in$ $\alpha_{A}^{c} \Rightarrow \exists E E \in \alpha \&[O E F] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} \exists E E \in \alpha \cap O_{B}$ - a contradiction. Thus, $O_{B} \subset \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}^{c}\right)=\alpha_{A}$.

Lemma 1.2.53.5. - If the ray O_{B} and the half-space α_{A} have a common point D, then:
a) The initial point O of O_{B} lies either in half-space α_{A} or on plane α;
b) The whole ray O_{B} lies in the half-space a_{A}.

Proof. a) (See Fig. 1.78, a).) To prove $O \notin \alpha_{A}^{c}$, suppose the contrary, i.e. $O \in \alpha_{A}^{c}$. Then $D \in \alpha_{A} \& O \in \alpha_{A}^{c} \exists E E \in$ $\alpha \&[O E D] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} \exists E E \in \alpha \cap O_{B}$ - a contradiction. We see that $O \in \mathcal{C}^{P t} \backslash \alpha_{A}^{c}=\alpha_{A} \cup \mathcal{P}_{\alpha}$.
b) (See Fig. 1.78, b).) By hypothesis, $\alpha \cap O_{B}=\emptyset$. If $\exists F F \in O_{B} \cap \alpha_{A}^{c}$, we would have $D \in \alpha_{A} \& F \in \alpha_{A}^{c} \Rightarrow$ $\exists E E \in \alpha \&[D E F] \stackrel{\text { L1.2.16.4 }}{\Longrightarrow} \exists E E \in \alpha \cap O_{B}$ - a contradiction. Therefore, $O_{B} \subset \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}^{c}\right)=\alpha_{A}$.

Given an open interval ($D B$), not meeting a plane α
Lemma 1.2.53.6. - If one of the ends of $(D B)$ lies in the half-space α_{A}, the open interval $(D B)$ completely lies in the half-space α_{A} and its other end lies either on α_{A} or on plane α.

Proof. (See Fig. 1.79.) If $B \in \alpha_{A}^{c}$ then $D \in \alpha_{A} \& B \in \alpha_{A}^{c} \Rightarrow \exists E(E \in \alpha \&[D E B])$ - a contradiction. By hypothesis, $(D B) \cap \alpha=\emptyset$. To prove $(D B) \cap \alpha_{A}^{c}=\emptyset$, suppose $F \in(D B) \cap \alpha_{A}^{c}$. Then $D \in \alpha_{A} \& F \in \alpha_{A}^{c} \Rightarrow \exists E(E \in \alpha \&[D E F])$. But $[D E F] \&[D F B] \xrightarrow{\text { L1.2.3.2 }}[D E B]-$ a contradiction.

Lemma 1.2.53.7. - If the open interval $(D B)$ and the half-space α_{A} have at least one common point G, then the open interval $(D B)$ lies completely in α_{A}, and either both its ends lie in α_{A}, or one of them lies in α_{A}, and the other in plane α.

Proof. Both ends of $(D B)$ cannot lie on α, because otherwise by C 1.2.1.11 we have $(B D) \subset \alpha$, whence $(B D) \cap \alpha_{A}=\emptyset$. Let $D \notin \alpha$. To prove $D \notin \alpha_{A}^{c}$ suppose the contrary, i.e. $D \in \alpha_{A}^{c}$. Then $D \in \alpha_{A}^{c} \&(B D) \cap \alpha=\emptyset \xrightarrow{\text { L1.2.53.6 }}(D B) \subset$ $\alpha_{A}^{c} \Rightarrow G \in \alpha_{A}^{c}$ - a contradiction. Therefore, $D \in \alpha_{A}$. Finally, $D \in \alpha_{A} \&(D B) \cap \alpha=\emptyset \stackrel{\text { L1.2.19.6 }}{\Longrightarrow}(B D) \subset \alpha_{A}$.

Figure 1.76: A line b parallel to a plane α and having common points with α_{A}, lies in α_{A}.

Figure 1.77: Given a ray O_{B}, not meeting a plane α, if a point O lies in the half-space α_{A}, so does O_{B}.

Figure 1.78: Given a ray O_{B}, not meeting a plane α, if O_{B} and α_{A} share a point D, then: a) O lies in α_{A} or on α; b) O_{B} lies in α_{A}.

Figure 1.79: Given an open interval $(D B)$, not meeting a plane α, if one of the ends of $(D B)$ lies in α_{A}, then ($D B$) lies in α_{A} and its other end lies either in α_{A} or on α.

Figure 1.80: A ray O_{B} with its initial point O on α and one of its points C in α_{A}, lies in α_{A}, and O_{B}^{c} lies in α_{A}^{c}.

Lemma 1.2.53.8. A ray O_{B} having its initial point O on a plane α and one of its points C in a half-space α_{A}, lies completely in α_{A}, and its complementary ray O_{B}^{c} lies completely in the complementary half-space α_{A}^{c}.

In particular, given a plane α and points $O \in \alpha$ and $A \notin \alpha$, we always have $O_{A} \subset \alpha_{A}, O_{A}^{c} \subset \alpha_{A}^{c}$. We can thus write $\alpha_{A}^{c}=\alpha_{O_{A}^{c}}$.

Proof. (See Fig. 1.80.) $O_{B} \cap \alpha=\emptyset$, because if $\exists E E \in O_{B} \& E \in \alpha$, we would have $O \in a_{O B} \cap \alpha \& O \in a_{O B} \cap \alpha \xrightarrow{\text { A1.1. } 6}$ $a_{O B} \subset \alpha \Rightarrow C \in \alpha$ - a contradiction. $O_{B} \subset a_{O B}=a_{O C} \subset \alpha_{a A} \& C \in O_{B} \cap a_{A} \& O_{B} \cap a=\emptyset \stackrel{\text { L1.2.19.5 }}{\Longrightarrow} O_{B} \subset a_{A}$. By A 1.1.2 $\exists F[B O F]$. Since $F \in O_{B}^{c} \cap a_{A}^{c}$, by preceding argumentation we conclude that $O_{B}^{c} \subset a_{A}^{c}$.

Lemma 1.2.53.9. If one end of an open interval ($D B$) lies in half - space α_{A}, and the other end lies either in α_{A} or on plane α, the open interval $(D B)$ lies completely in α_{A}.

Proof. Let $B \in \alpha_{A}$. If $D \in \alpha_{A}$ we note that by $\mathrm{L} 1.2 .11 .13(D B) \subset D_{B}$ and use the preceding lemma (L 1.2.53.8). Let now $D \in \alpha_{A}$. Then $(D B) \cap \alpha=\emptyset$, because $B \in \alpha_{A} \& E \in(D B) \cap \alpha \Rightarrow D \in \alpha_{A}^{c}$ - a contradiction. Finally, $B \in \alpha_{A} \&(D B) \cap \alpha=\emptyset \stackrel{\text { L1.2.19.6 }}{\Longrightarrow}(D B) \subset \alpha_{A}$.

Lemma 1.2.53.10. If a plane β, parallel to a plane α, has at least one point in a half-space α_{A}, it lies completely in α_{A}.

Proof. (See Fig. 1.81, a).) By hypothesis, $\beta \cap \alpha=\emptyset$. To show $\beta \cap \alpha_{A}^{c}=\emptyset$, suppose the contrary, i.e. that $\exists D D \in \beta \cap \alpha_{A}^{c}$ (see Fig. 1.81, b)). Then $B \in \alpha_{A} \& D \in \alpha_{A}^{c} \Rightarrow \exists C[B C D] \& C \in \alpha$. But $B \in \beta \& D \in \beta \&[B C D] \stackrel{\text { C1.2.1.11 }}{\Longrightarrow} C \in \beta$. Hence $C \in \alpha \cap \beta$, which contradicts the hypothesis. Thus, we have $\beta \subset \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}^{c}\right)=\alpha_{A}$.

Lemma 1.2.53.11. If a half-plane χ has no common points with a plane α and one of its points, B, lies in a half-space α_{A}, the half-plane χ lies completely in the half-space α_{A}.

Proof. By hypothesis, $\chi \cap \alpha=\emptyset$. To show $\chi \cap \alpha_{A}^{c}=\emptyset$, suppose the contrary, i.e. that $\exists D D \in \chi \cap \alpha_{A}^{c}$. Then $B \in \alpha_{A} \& D \in \alpha_{A}^{c} \Rightarrow \exists C[B C D] \& C \in \alpha$. But $B \in \beta \& D \in \beta \&[B C D] \stackrel{\text { L1.2.19.9 }}{\Longrightarrow} C \in \chi$. Hence $C \in \alpha \cap \chi$, which contradicts the hypothesis. Thus, we have $\chi \subset \mathcal{C}^{P t} \backslash\left(\mathcal{P}_{\alpha} \cup \alpha_{A}^{c}\right)=\alpha_{A}$.

Lemma 1.2.53.12. A half-plane χ having its edge a on a plane α and one of its points, B, in a half-space α_{A}, lies completely in α_{A}, and the complementary half-plane χ^{c} lies completely in the complementary half-space α_{A}^{c}.

In particular, given a plane α, a line a in it, and a point $A \notin \alpha$, we always have $a_{A} \subset \alpha_{A}, a_{A}^{c} \subset \alpha_{A}^{c}$. We can thus write $\alpha_{A}^{c}=\alpha_{a_{A}^{c}}$.

Proof. ${ }^{189}$ By T 1.1.2 $\alpha_{a B}=\bar{\chi}$. By the same theorem we have $\chi \cap \alpha=\emptyset$, for otherwise $\exists E E \in \chi \cap \alpha$ together with $a \subset \alpha_{a B} \cap \alpha$ would imply $\alpha_{a B} \cap \alpha$, whence $B \in \alpha$, which contradicts $B \in \alpha_{A}$. Therefore, using the preceding lemma gives $B \in \chi \cap \alpha_{A} \& \chi \cap \alpha=\emptyset \stackrel{\text { L1.2.53.11 }}{\Longrightarrow} \chi \subset \alpha_{A}$. Choosing points C, D such that $C \in a=\alpha \cap \alpha_{a B}$ and [BCD] (see A 1.1.3, A 1.2.2), we have by L1.2.19.1, L $1.2 .53 .1 \exists D D \in \chi^{c} \cap \alpha_{A}^{c}$. Then the first part of the present proof gives $\chi^{c} \subset \alpha_{A}^{c}$, which completes the proof.

[^63]

Figure 1.81: If a plane β, parallel to a plane α, has at least one point in a half-space α_{A}, it lies completely in α_{A}.

Theorem 1.2.53. Given a plane α, let \mathcal{A} be either

- A set $\left\{B_{1}\right\}$, consisting of one single point B_{1} lying in a half - space α_{A}; or
- A line b_{1}, parallel to α and having a point B_{1} in α_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$, not meeting the plane α, such that the initial point O or one of its points, D_{1}, lies in α_{A}; or
- An open interval ($D_{1} B_{1}$), not meeting the plane α, such that one of its ends lies in α_{A}, or one of its points,
G_{1}, lies in α_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$ with its initial point O_{1} on α and one of its points, C_{1}, in α_{A}; or
- An interval - like set with both its ends D_{1}, B_{1} in α_{A}, or with one end in α_{A} and the other on α;
- A plane β_{1}, parallel to α and having a point B_{1} in α_{A};
- A half-plane χ_{1} having no common points with α and one of its points, B_{1}, in a half-space α_{A};
- A half-plane χ_{1}, having its edge a_{1} on α and one of its points, B_{1}, in a half-space α_{A};
and let \mathcal{B} be either
- A line b_{2}, parallel to α and having a point B_{2} in α_{A}; or
- A ray $\left(O_{2}\right)_{B_{2}}$, not meeting the plane α, such that the initial point O or one of its points, D_{2}, lies in α_{A}; or
- An open interval ($D_{2} B_{2}$), not meeting the plane α, such that one of its ends lies in α_{A}, or one of its points, G_{2}, lies in α_{A}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ with its initial point O_{2} on α and one of its points, C_{2}, in α_{A}; or
- An interval - like set with both its ends D_{2}, B_{2} in α_{A}, or with one end in α_{A} and the other on α;
- A plane β_{2}, parallel to α and having a point B_{2} in α_{A};
- A half-plane χ_{2} having no common points with α and one of its points, B_{2}, in α_{A};
- A half-plane χ_{2}, having its edge a_{2} on α and one of its points, B_{2}, in α_{A}.

Then the sets \mathcal{A} and \mathcal{B} lie in plane on one side of the plane α.
Proof.
Theorem 1.2.54. Given a plane α, let \mathcal{A} be either
$-A$ set $\left\{B_{1}\right\}$, consisting of one single point B_{1} lying in a half - space α_{A}; or

- A line b_{1}, parallel to α and having a point B_{1} in α_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$, not meeting the plane α, such that the initial point O or one of its points, D_{1}, lies in α_{A}; or
- An open interval ($D_{1} B_{1}$), not meeting the plane α, such that one of its ends lies in α_{A}, or one of its points,
G_{1}, lies in α_{A}; or
- A ray $\left(O_{1}\right)_{B_{1}}$ with its initial point O_{1} on α and one of its points, C_{1}, in α_{A}; or
- An interval - like set with both its ends D_{1}, B_{1} in α_{A}, or with one end in α_{A} and the other on α;
- A plane β_{1}, parallel to α and having a point B_{1} in α_{A};
- A half-plane χ_{1} having no common points with α and one of its points, B_{1}, in a half-space α_{A};
- A half-plane χ_{1}, having its edge a_{1} on α and one of its points, B_{1}, in a half-space α_{A};
and let \mathcal{B} be either
- A line b_{2}, parallel to α and having a point B_{2} in α_{A}^{c}; or
$-A$ ray $\left(O_{2}\right)_{B_{2}}$, not meeting the plane α, such that the initial point O or one of its points, D_{2}, lies in α_{A}^{c}; or
- An open interval ($D_{2} B_{2}$), not meeting the plane α, such that one of its ends lies in α_{A}^{c}, or one of its points, G_{2}, lies in α_{A}^{c}; or
- A ray $\left(O_{2}\right)_{B_{2}}$ with its initial point O_{2} on α and one of its points, C_{2}, in α_{A}^{c}; or
- An interval - like set with both its ends D_{2}, B_{2} in α_{A}^{c}, or with one end in α_{A}^{c} and the other on α;
- A plane β_{2}, parallel to α and having a point B_{2} in α_{A}^{c};
- A half-plane χ_{2} having no common points with α and one of its points, B_{2}, in α_{A}^{c};
- A half-plane χ_{2}, having its edge a_{2} on α and one of its points, B_{2}, in α_{A}^{c}.

Then the sets \mathcal{A} and \mathcal{B} lie in plane on opposite sides of the plane α.
Proof.

Basic Properties of Dihedral Angles

A pair of distinct non-complementary half-planes $\chi=a_{A}, \kappa=a_{B}, \chi \neq \kappa$, with a common edge a is called a dihedral angle $(\widehat{\chi \kappa})_{a},{ }^{190}$ which can also be written as $\widehat{A a B}$. The following trivial lemma shows that the latter notation is well defined:

Lemma 1.2.55.1. If points C, D lie, respectively, on the sides $\chi=a_{A}, \kappa=a_{B}$ of the dihedral angle $\widehat{\chi \kappa}$ then $\widehat{C a D}=\widehat{\chi \kappa}$.

Proof. (See Fig. 1.82.) Follows immediately from L 1.2.17.6.
In a dihedral angle $\widehat{A a B}=\left\{a_{A}, a_{B}\right\}$ the half-planes a_{A}, a_{B} will be called the sides, and the line a (the common edge of the half-planes a_{A}, a_{B}) the edge, of the dihedral angle $\widehat{A a B}$.

[^64]

Figure 1.82: If points C, D lie, respectively, on the sides $\chi=a_{A}, \kappa=a_{B}$ of the dihedral angle $\widehat{\chi \kappa}$ then $\widehat{C a D}=\widehat{\chi \kappa}$.

Lemma 1.2.55.2. 1. Given a dihedral angle $\widehat{A a B}$, we have $B \notin \alpha_{a A}, A \notin \alpha_{a B}$, and the line a cannot be coplanar with both points A, B simultaneously. ${ }^{191}$ The lines $a, a_{A B}$ are then skew lines.
2. If any of the following conditions:
i): $B \notin \alpha_{a A}$;
ii): $A \notin \alpha_{a B}$;
iii): $a, a_{A B}$ are skew lines;
are met, then the other conditions are also met, and the dihedral angle $\widehat{A a B}$ exists. ${ }^{192}$
Proof. 1. Otherwise, we would have $B \in \alpha_{a A} \& B \notin a \Rightarrow a_{B}=a_{A} \vee a_{B}=a_{A}^{c}$ (see L 1.2.17.6, L 1.2.19.1), contrary to hypothesis that a_{A}, a_{B} form a dihedral angle. We conclude that $B \notin \alpha_{a A}$, whence $\neg \exists \alpha(A \in \alpha \& a \subset \alpha \& B \in \alpha)$ and $A \notin \alpha_{a B}$.
2. We have $B \notin \alpha_{a A} \Rightarrow B \notin a_{A} \& B \notin a_{A}^{c}$, for $B \in a_{A} \vee B \in a_{A}^{c} \Rightarrow B \in \alpha_{a A}$. Hence $a_{B} \neq a_{A}$ and $a_{B} \neq a_{A}^{c}$, so $\widehat{A a B}$ exists.

To show that i) implies iii), suppose the contrary, i.e. that $B \in \alpha_{a A}$. Then by A 1.1.6 we have $a_{A B} \subset \alpha_{a A}$, whence we conclude that the lines $a, a_{A B}$ lie in one plane, which is, by definition, not possible for skew lines.

The set of points, or contour, of the dihedral angle $(\widehat{\chi \kappa})_{a}$ is, by definition, the set $\mathcal{P}_{(\widehat{\chi \kappa})} \rightleftharpoons \chi \cup \mathcal{P}_{a} \cup \kappa$. We say that a point lies on a dihedral angle if it lies on one of its sides or coincides with its edge. In other words, C lies on $\widehat{\chi, \kappa}$ if it lies on its contour, that is, belongs to the set of its points: $C \in \mathcal{P}_{(\widehat{\chi \kappa})}$.

We say that a point X lies inside a dihedral angle $\widehat{\chi \kappa}$ if it lies on the same side of the plane $\bar{\chi}$ as any of the points of the half-plane κ, and on the same side of the plane $\bar{\kappa}$ as any of the points of the half-plane χ. ${ }^{193}$

The set of all points lying inside a dihedral angle $\widehat{\chi \kappa}$ will be referred to as its interior $\operatorname{Int}(\widehat{\chi \kappa}) \rightleftharpoons\{X \mid X \chi \bar{\kappa} \& X \kappa \bar{\chi}\}$. We can also write $\operatorname{Int} \widehat{A a B}=\left(\alpha_{a A}\right)_{B} \cap\left(\alpha_{a B}\right)_{A}$.

If a point X lies in space neither inside nor on a dihedral angle $\widehat{\chi \kappa}$, we shall say that X lies outside the dihedral angle $\widehat{\chi \kappa}$.

The set of all points lying outside a given dihedral angle $\widehat{\chi \kappa}$ will be referred to as the exterior of the dihedral angle $\widehat{\chi \kappa}$, written $\operatorname{Ext}(\widehat{\chi \kappa})$. We thus have, by definition, $\operatorname{Ext}(\widehat{\chi \kappa}) \rightleftharpoons \mathcal{C}^{P t} \backslash(\mathcal{P}(\widehat{\chi \kappa}) \cup \operatorname{Int}(\widehat{\chi \kappa}))$.

Lemma 1.2.55.3. If a point C lies inside a dihedral angle $\widehat{A a B}$, the half-plane a_{C} lies completely inside $\widehat{A a B}$: $a_{C} \subset \operatorname{Int} \widehat{A O B}$.

From L 1.2.17.6 it follows that this lemma can also be formulated as:
If one of the points of a half-plane a_{C} lies inside a dihedral angle $\widehat{A a B}$, the whole half-plane a_{C} lies inside the dihedral angle $\widehat{A a B}$.

Proof. (See Fig. 1.83.) Immediately follows from T 1.2.53. Indeed, by hypothesis, $C \in \operatorname{Int} \widehat{A a B}=\left(\alpha_{a A}\right)_{B} \cap\left(\alpha_{a B}\right)_{A}$. Since also $a=\bar{\chi} \cap \bar{\kappa}$, by T 1.2.53 $\alpha_{C} \subset \operatorname{Int} A a B=\left(\alpha_{a A}\right)_{B} \cap\left(\alpha_{a B}\right)_{A}$.

Lemma 1.2.55.4. If a point C lies outside a dihedral angle $\widehat{A a B}$, the half-plane a_{C} lies completely outside $\widehat{A a B}$: $a_{C} \subset \operatorname{Ext}(\widehat{A a B})$. ${ }^{194}$

[^65]

Figure 1.83: If C lies inside a dihedral angle $\widehat{A a B}$, the half-plane a_{C} lies completely inside $\widehat{A a B}: a_{C} \subset \operatorname{Int} \widehat{A a B}$.

Figure 1.84: If a point C lies outside a dihedral angle $\widehat{A a B}$, the half-plane a_{C} lies completely outside $\widehat{A a B}: a_{C} \subset$ $\operatorname{Ext}(\widehat{A a B})$.

Proof. (See Fig. 1.84.) $a_{C} \cap \mathcal{P}_{(\widehat{A} a B)}=\emptyset$, because $C \notin a$ and $a_{C} \cap a_{A} \neq \emptyset \vee a_{C} \cap a_{B} \neq \emptyset \stackrel{\text { L1.2.17.7 }}{\Longrightarrow} a_{C}=a_{A} \vee$ $a_{C}=a_{B} \Rightarrow C \in a_{A} \vee C \in a_{B}-$ a contradiction. $a_{C} \cap \operatorname{Int}(\widehat{A} a B)=\emptyset$, because if $D \in a_{C} \cap \operatorname{Int}(\widehat{\operatorname{AaB}})$, we would have $a_{D}=a_{C}$ from L 1.2.17.6 and $a_{D} \subset \operatorname{Int}(\widehat{A} a B)$, whence $C \in \operatorname{Int}(\widehat{A a B})$ - a contradiction. Finally, $a_{C} \subset \mathcal{C}^{P t} \& a_{C} \cap \mathcal{P}_{(\widehat{A a B})}=\emptyset \& a_{C} \cap \operatorname{Int}(\widehat{A a B})=\emptyset \Rightarrow a_{C} \subset E x t \angle A a B$.

Lemma 1.2.55.5. Given a dihedral angle $\widehat{A a B}$, if a point C lies either inside $\widehat{A a B}$ or on its side a_{A}, and a point D either inside $\widehat{A a B}$ or on its other side a_{B}, the open interval $(C D)$ lies completely inside $\widehat{A a B}$, that is, $(C D) \subset \operatorname{Int}(\widehat{A a B})$.

Proof. $C \in \operatorname{Int}(\widehat{A a B}) \cup a_{A} \& D \in \operatorname{Int}(\widehat{A a B}) \cup a_{B} \Rightarrow C \in\left(\left(\alpha_{a A}\right)_{B} \cap\left(\alpha_{a B}\right)_{A}\right) \cup a_{A} \& D \in\left(\left(\alpha_{a A}\right)_{B} \cap\left(\alpha_{a B}\right)_{A}\right) \cup a_{B} \Rightarrow$ $C \in\left(\left(\alpha_{a A}\right)_{B} \cup a_{A}\right) \cap\left(\left(\alpha_{a B}\right)_{A} \cup a_{A}\right) \& D \in\left(\left(\alpha_{a A}\right)_{B} \cup a_{B}\right) \cap\left(\left(\alpha_{a B}\right)_{A} \cup a_{B}\right)$. Since, by L 1.2.53.12, $a_{A} \subset\left(\alpha_{a B}\right)_{A}$ and $a_{B} \subset\left(\alpha_{a A}\right)_{B}$, we have $\left(\alpha_{a B}\right)_{A} \cup a_{A}=\left(\alpha_{a B}\right)_{A},\left(\alpha_{a A}\right)_{B} \cup a_{B}=\left(\alpha_{a A}\right)_{B}$, and, consequently, $C \in\left(\alpha_{a A}\right)_{B} \cup a_{A} \& C \in$ $\left(\alpha_{a B}\right)_{A} \& D \in\left(\alpha_{a A}\right)_{B} \& D \in\left(\alpha_{a B}\right)_{A} \cup a_{B} \stackrel{\mathrm{~L} 1.2 .53 .9}{\Longrightarrow}(C D) \subset\left(\alpha_{a A}\right)_{B} \&(C D) \subset\left(\alpha_{a B}\right)_{A} \Rightarrow a_{C} \subset \operatorname{Int}(\widehat{A a B})$.

The lemma L 1.2.55.5 implies that the interior of a dihedral angle is a convex point set.
Lemma 1.2.55.6. If a point C lies inside a dihedral angle $(\widehat{\chi \kappa})_{a}$ (with the edge a), the half-plane a_{C}^{c}, complementary to the half-plane a_{C}, lies inside the vertical dihedral angle $\chi^{c} \kappa^{c}$.

Proof. (See Fig. 1.86.) $C \in \operatorname{Int}\left(\left(\widehat{\chi^{\kappa}}\right)\right) \Rightarrow C \in \bar{\chi}_{\kappa} \cap \bar{\kappa}_{\chi} \xrightarrow{\text { L1.2.53.12 }} a_{C}^{c} \subset \bar{\chi}_{\kappa}^{c} \cap \bar{\kappa}_{\chi}^{c} \Rightarrow a_{C}^{c} \subset \bar{\chi}_{\kappa^{c}} \cap \bar{\kappa}_{\chi^{c}} \Rightarrow a_{C}^{c} \subset \operatorname{Int} \angle\left(\left(\widehat{\chi^{c} \kappa^{c}}\right)\right)$.

Lemma 1.2.55.7. Given a dihedral angle $\widehat{\chi \kappa}$, all points lying either inside or on the sides χ^{c}, κ^{c} of the dihedral angle opposite to it, lie outside $\widehat{\chi \kappa}$. ${ }^{195}$

Proof.

[^66]

Figure 1.85: Dihedral angles $\widehat{\lambda \chi}$ and $\widehat{\kappa \mu}$ are adjacent to the dihedral angle $\widehat{\chi \kappa}$. Note that χ, μ lie on opposite sides of $\bar{\kappa}$ and λ, κ lie on opposite sides of $\bar{\chi}$.

Figure 1.86: If C lies inside a dihedral angle $(\widehat{\chi \kappa})_{a}$, the half-plane a_{C}^{c} lies inside $\widehat{\chi^{c} \kappa^{c}}$.

Lemma 1.2.55.8. 1 . If a plane α and the edge a of a dihedral angle $\widehat{\chi \kappa}$ concur at a point O, the rays h, k that are the sections by the plane α of the half-planes χ, κ, respectively, form an angle $\angle(h, k)$ with the vertex O.

The angle $\angle(h, k)$, formed by the sections of the sides χ, κ of a dihedral angle $\widehat{\chi \kappa}$ by a plane α, will be referred to as the section of the dihedral angle $\widehat{\chi \kappa}$ by the plane α. ${ }^{196}$
2. Conversely, if an angle $\angle(h, k)$ is the section of a dihedral angle $\widehat{\chi \kappa}$ by a plane α, the edge a of $\widehat{\chi \kappa}$ concurs with the plane α at the vertex O of the angle $\angle(h, k) .{ }^{197}$

Proof. 1. We have $k \neq h^{c}$, for otherwise the half-planes χ^{c}, κ, in addition to having a common edge (a), would by L 1.2 .19 .8 have a common point, for which we can then take any point lying on $h^{c}=k$. This would, by L 1.2.17.7, imply $\chi^{c}=\kappa$, in contradiction with the definition of dihedral angle. Thus, the two distinct rays h, k form an angle $\angle(h, k)$ with the vertex O, q.e.d.
2. Follows immediately from L 1.2.19.13, part 2 .

A dihedral angle is said to be adjacent to another dihedral angle if it shares a side and the edge with that dihedral angle, and the remaining sides of the two dihedral angles lie on opposite sides of the line containing their common side. This relation being obviously symmetric, we can also say the two dihedral angles are adjacent to each other. We shall denote any dihedral angle, adjacent to a given dihedral angle $\widehat{\chi \kappa}$, by adj $\widehat{\chi \kappa}$. Thus, we have, by definition, $\widehat{\kappa \mu}=a d j \widehat{\chi \kappa}{ }^{198}$ and $\widehat{\lambda \chi}=a d j \widehat{\chi \kappa}$ if $\chi \bar{k} \mu$ and $\lambda \bar{\chi} \kappa$, respectively. (See Fig. 1.85.)
Corollary 1.2.55.9. If a point B lies inside a dihedral angle $\widehat{A a C}$, the dihedral angles $\widehat{A a B}, \widehat{B a C}$ are adjacent.
Proof. $B \in \operatorname{Int} \widehat{A a C} \stackrel{\text { L1.2.55.18 }}{\longrightarrow} \exists D D \in a_{B} \&[A D C]$. Since $D \in \alpha_{a B} \cap(A C), A \notin \alpha_{a B}$, we see that the points A, C, and thus the half-planes a_{A}, a_{C} (see T 1.2.54) lie on opposite sides of the plane $\alpha_{a B}$. Together with the fact that the dihedral angles $\widehat{A a B}, \widehat{B a C}$ share the side a_{B} this means that $\widehat{A a B}, \widehat{B a C}$ are adjacent.

From the definition of adjacency of dihedral angles, taken together with the definition of the interior and exterior of a dihedral angle, immediately follows

Lemma 1.2.55.10. In a dihedral angle $\widehat{\kappa \mu}$, adjacent to a dihedral angle $\widehat{\chi \kappa}$, the side μ lies outside $\widehat{\chi \kappa}$.
which, together with C 1.2.55.9, implies the following corollary
Corollary 1.2.55.11. If a point B lies inside a dihedral angle $\widehat{A a C}$, neither the half-plane a_{C} has any points inside or on the dihedral angle $\widehat{A a B}$, nor the half-plane a_{A} has any points inside or on $\widehat{B a C}$.

Lemma 1.2.55.12. If dihedral angles $\widehat{\chi \kappa}, \widehat{\kappa \mu}$ share the side κ, and points $A \in \chi, B \in \mu$ lie on opposite sides of the plane $\bar{\kappa}$, the dihedral angles $\widehat{\chi \kappa}, \widehat{\kappa \mu}$ are adjacent to each other.

Proof. Immediately follows from L 1.2.19.12.
A dihedral angle $\widehat{\kappa \lambda}$ is said to be adjacent supplementary to a dihedral angle $\widehat{\chi \kappa}$, written $\widehat{\kappa \lambda}=\operatorname{adjsp} \widehat{\chi \kappa}$, iff the half-plane λ is complementary to the half-plane χ. That is, $\widehat{\kappa \lambda}=\operatorname{adjsp} \widehat{\chi \kappa} \stackrel{\text { def }}{\Longleftrightarrow} \lambda=\chi^{c}$. Since, by L 1.2.19.2, the half-plane $\left(\chi^{c}\right)^{c}$, complementary to the half-plane χ^{c}, complementary to the given half-plane χ, coincides with the half-plane $\chi:\left(\chi^{c}\right)^{c}=\chi$, if $\widehat{\kappa \lambda}$ is adjacent supplementary to $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi \kappa}$ is, in its turn, adjacent supplementary to the dihedral angle $\widehat{\kappa \lambda}$.
Lemma 1.2.55.13. Given a dihedral angle $\widehat{\chi \kappa}$, all points lying inside any dihedral angle $\widehat{\kappa \mu}$ adjacent to it, lie outside $\widehat{\chi \kappa} .{ }^{199}$

Proof. (See Fig. 1.87.) By definition of the interior, $A \in \operatorname{Int}(\widehat{\chi \kappa}) \Rightarrow A \mu \bar{\kappa}$. By the definition of adjacency $\widehat{\kappa \mu}=$ $\operatorname{adj} \widehat{\chi \kappa} \Rightarrow \chi \bar{\kappa} \mu . A \mu \bar{\kappa} \& \chi \bar{\kappa} \mu \stackrel{\text { L1.2.52.5 }}{\Longrightarrow} A \bar{\kappa} \chi \Rightarrow A \in E x t \widehat{\chi \kappa}$.

Corollary 1.2.55.14. If $\angle(h, k)$ is the section of a dihedral angle Int $(\widehat{\chi \kappa})$ by a plane α, then the adjacent supplementary angles $\angle\left(h^{c}, k\right), \angle\left(h, k^{c}\right)$ are the sections of the corresponding adjacent supplementary dihedral angles $\widehat{\chi^{c} \kappa}$, $\widehat{\chi \kappa^{c}}$, respectively, and the vertical angle $\angle\left(h^{c}, k^{c}\right)$ is the section of the vertical dihedral angle $\widehat{\chi^{c} \kappa^{c}}$.

Proof. See C 1.2.19.14.
Lemma 1.2.55.15. If a point C lies inside a section of a dihedral angle $\widehat{\chi \kappa}$ by a plane $\alpha \ni C$, it lies inside the dihedral angle itself: $C \in \widehat{\chi \kappa}$.

[^67]

Figure 1.87: Given a dihedral angle $\widehat{\chi \kappa}$, all points lying inside any dihedral angle $\widehat{\kappa \mu}$ adjacent to it, lie outside $\widehat{\chi \kappa}$.

Proof. Taking points D, F on the sides h, k, respectively, of a section $\angle(h, k)$, we have $C \in \operatorname{Int} \angle(h, k) \xrightarrow{\text { L1.2.21.10 }}$ $\exists E[D E F] \& E \in O_{C} . D \in h \& h \subset \chi \Rightarrow D \in \chi, F \in k \& k \subset \kappa \Rightarrow F \in \kappa$, whence $D \in \chi \& F \in \kappa \& E \in$ $(D F) \stackrel{\text { L1.2.55.5 }}{\Longrightarrow} E \in \operatorname{Int}(\widehat{\chi \kappa})$. Using L 1.2.53.8, L 1.2.55.3 we can write $O_{C} \subset a_{c} \subset \operatorname{Int}(\widehat{\chi \kappa})$, whence $C \in \operatorname{Int}(\widehat{\chi \kappa})$, q.e.d.

Thus, for an arbitrary section $\angle(h, k)$ of a dihedral angle $\widehat{\chi \kappa}$ we can write $\operatorname{Int} \angle(h, k) \subset \operatorname{Int}(\widehat{\chi \kappa})$. Furthermore, applying the same argument to the adjacent supplementary and vertical angles, we can also write $\operatorname{Int} \angle\left(h^{c}, k\right) \subset$ $\operatorname{Int}\left(\widehat{\chi^{c} \kappa}\right), \operatorname{Int} \angle\left(h, k^{c}\right) \subset \operatorname{Int}\left(\widehat{\chi \kappa^{c}}\right), \operatorname{Int} \angle\left(h^{c}, k^{c}\right) \subset \operatorname{Int}\left(\widehat{\chi^{c} \kappa^{c}}\right)$

Lemma 1.2.55.16. A point C lying inside a dihedral angle $\widehat{\chi \kappa}$ also lies inside all sections of $\widehat{\chi \kappa}$ by planes $\alpha \ni C$. 200

Proof. Let $\angle(h, k)$ be the section of $\widehat{\chi \kappa}$ by a plane $\alpha \ni C . C \in \alpha=\alpha_{\angle(h, k)} \& C \notin \bar{h} \& C \notin \bar{k} \xrightarrow{\mathrm{~L} 1.2 .21 .10} C \in \operatorname{Int} \angle(h, k) \vee$ $C \in \operatorname{Int} \angle\left(h^{c}, k\right) \vee C \in \operatorname{Int} \angle\left(h, k^{c}\right) \vee C \in \operatorname{Int} \angle\left(h^{c}, k^{c}\right)$. But the two preceding results (C 1.2.55.14, L 1.2.55.15) imply that $C \in \operatorname{Int} \angle\left(h^{c}, k\right) \Rightarrow C \in \operatorname{Int}\left(\widehat{\chi^{c} \kappa}\right), C \in \operatorname{Int} \angle\left(h, k^{c}\right) \Rightarrow C \in \operatorname{Int}\left(\widehat{\chi \kappa^{c}}\right), C \in \operatorname{Int} \angle\left(h^{c}, k^{c}\right) \Rightarrow C \in \operatorname{Int}\left(\widehat{\chi^{c} \kappa^{c}}\right)$. In view of L 1.2.55.13, L 1.2.55.7, the variants $C \in \operatorname{Int}\left(\widehat{\chi^{c} \kappa}\right), C \in \operatorname{Int}\left(\widehat{\chi^{c}}\right), C \in \operatorname{Int}\left(\widehat{\chi^{c} \kappa^{c}}\right)$ all contradict the hypothesis $C \in \operatorname{Int}(\widehat{\chi \kappa})$. This contradiction shows that, in fact, $C \in \operatorname{Int} \angle(h, k)$ is the only possible option, q.e.d.

Lemma 1.2.55.17. Suppose points D, F lie, respectively, on the sides χ, κ, and a point O lies on the edge a of a dihedral angle $\widehat{\chi \kappa}$. Then:

1. The points D, O, F are not collinear;
2. The plane $\alpha_{D O F}$ concurs with the line a at O;
3. The angle $\angle D O F$ is the section of the dihedral angle $\widehat{\chi \kappa}$ by the plane $\alpha_{D O F}$.

Proof. (See Fig. 1.88.) 1. We have $D \in \chi \& F \in \kappa \stackrel{\text { L1.2.55.1 }}{\Longrightarrow} \widehat{D a F}=\widehat{\chi \kappa} . O \in a \subset \bar{\chi}=\alpha_{a} D \& D \in \bar{\chi} \xrightarrow{\text { A1.1.6 }} a_{O D} \subset \bar{\chi}$. Hence $F \notin a_{O D}$, for otherwise $F \in a_{O D} \subset \bar{\chi} \Rightarrow F \in \subset \bar{\chi}$, which contradicts L 1.2.55.2. Thus, the points D, O, F are not collinear.
2. If $P \in a \cap \alpha_{D O F},{ }^{201} P \neq O$, then we would have $O \in a \cap \alpha_{D O F} \& P \in a \cap \alpha_{D O F} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a \subset \angle D O F \xrightarrow{\mathrm{~T} 1.1 .2} \alpha_{a D}=$ $\alpha_{D O F}$, whence $F \in \alpha_{a D}$ - a contradiction with L 1.2.55.2.
3. Follows from 2. and L 1.2.55.8.

Lemma 1.2.55.18. Given a dihedral angle $\widehat{\chi \kappa}_{a}$ (with the line a as its edge) and a point C inside it, for any points D on χ and F on κ, the half-plane a_{C} meets the open interval ($\left.D F\right)$.

Proof. (See Fig. 1.89.) Take a point $O \in a$. Since, by the preceding lemma (L 1.2.55.17, 2.), the line a and the plane $\alpha_{D O F}$ concur at O, by L 1.2 .19 .13 the plane $\alpha_{D O F}$ and the half-plane a_{A} have a common ray l whose initial point is O. We have $C \in \operatorname{Int}(\widehat{\chi \kappa}) \kappa \stackrel{\text { L1.2.55.3 }}{\Longrightarrow} a_{C} \subset \operatorname{Int}(\widehat{\chi \kappa}) \Rightarrow l \subset \operatorname{Int}(\widehat{\chi \kappa})$. Observe also that, from the preceding lemma (L 1.2.55.17, 3.), the angle $\angle D O F$ is the section of $\widehat{\chi \kappa}$ by $\alpha_{D O F}$. Hence, taking an arbitrary point $P \in l$, we conclude from L 1.2.55.16 that $P \in \operatorname{Int} \angle D O F$, i.e. $l \subset \operatorname{Int} \angle D O F$. Finally, $D \in O_{D} \& F \in O_{F} \& l \subset \operatorname{Int} \angle D O F \xrightarrow{\text { L1.2.21.10 }}$ $\exists E E \in l \&[D E F]$. Thus, $E \in a_{C} \cap(D F)$, as required.

Lemma 1.2.55.19. Given a dihedral angle $\widehat{\chi \kappa}$, any point lying on the same side of the plane $\bar{\chi}$ as the half-plane κ, lies either inside the dihedral angle $\widehat{\chi \kappa}$, or inside the dihedral angle $\widehat{\kappa \chi^{c}}$, or on the half-plane κ (See Fig. 1.91). That $i s, \bar{\chi}_{\kappa}=\operatorname{Int}(\widehat{\chi \kappa}) \cup \kappa \cup \operatorname{Int}\left(\widehat{\kappa \chi^{c}}\right)$.

[^68]

Figure 1.88: Suppose points D, F lie, respectively, on the sides χ, κ, and a point O lies on the edge a of a dihedral angle $\widehat{\chi \kappa}$. Then: 1. The points D, O, F are not collinear; 2 . The plane $\alpha_{D O F}$ concurs with the line a at $O ; 3$. The angle $\angle D O F$ is the section of the dihedral angle $\widehat{\chi \kappa}$ by the plane $\alpha_{D O F}$.

Figure 1.89: Given a dihedral angle $\widehat{\chi \kappa}_{a}$ and a point C inside it, for any points D on χ and F on κ, the half-plane a_{C} meets the open interval $(D F)$.

Figure 1.90: If a point B lies inside an angle $\angle A O C$, the angles $\angle A O B, \angle B O C$ are adjacent.

Figure 1.91: Given a dihedral angle $\widehat{\chi \kappa}$, any point lying on the same side of $\bar{\chi}$ as κ, lies either inside $\widehat{\chi \kappa}$, or inside $\widehat{\kappa \chi^{c}}$, or on κ.

Figure 1.92: For any dihedral angle $\widehat{A a B}$ there is a point C (and, consequently, a half-plane a_{C}) such that the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C}$.

Proof. $\bar{\chi}_{\kappa}=\bar{\chi}_{\kappa} \cap \mathcal{C}^{P t}=\bar{\chi}_{\kappa} \cap\left(\bar{\kappa}_{\chi} \cup \mathcal{P}_{\bar{k}} \cup \bar{k}_{\chi}^{c}\right) \stackrel{\text { L1.2.53.12 }}{=} \bar{\chi}_{\kappa} \cap\left(\bar{\kappa}_{\chi} \cup \mathcal{P}_{\bar{\kappa}} \cup \bar{k}_{\chi^{c}}\right)=\left(\bar{\chi}_{k} \cap \bar{\kappa}_{\chi}\right) \cup\left(\bar{\chi}_{\kappa} \cap \mathcal{P}_{\bar{\kappa}}\right) \cup\left(\bar{\chi}_{k} \cap \bar{\kappa}_{\chi^{c}}\right)=$ $\operatorname{Int}(\widehat{\chi \kappa}) \cup \kappa \cap \operatorname{Int}(\widehat{\chi \kappa})$.

Given a dihedral angle $\widehat{\chi^{\kappa}}$, the dihedral angle $\widehat{\chi^{c} \kappa^{c}}$, formed by the half-planes χ^{c}, κ^{c}, complementary to χ, κ, respectively, is called (the dihedral angle) vertical, or opposite, to $\widehat{\chi \kappa}$. We write vert $(\widehat{\chi \kappa}) \rightleftharpoons \widehat{\chi^{c} \kappa^{c}}$. Obviously, the angle $\operatorname{vert}\left(\operatorname{vert}\left(\widehat{\chi^{\kappa}}\right)\right)$, opposite to the opposite $\widehat{\chi^{c} \kappa^{c}}$ of a given dihedral angle $\widehat{\chi^{\kappa}}$, coincides with the dihedral angle $\widehat{\chi \kappa}$.

Lemma 1.2.55.20. For any dihedral angle $\widehat{A a B}$ there is a point $C{ }^{202}$ such that the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C} .{ }^{203}$

Proof. (See Fig. 1.92.) Since $\widehat{A a B}$ is a dihedral angle, by L 1.2 .55 .2 we have $B \notin \alpha_{a A}$. Hence by C 1.2 .1 .13 also $C \notin \alpha_{a A}$. By L 1.2.55.2 the dihedral angle $\widehat{A a C}$ exists. By L $1.2 .55 .5, \mathrm{~L} 1.2 .55 .3$ the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C}$, q.e.d.

Lemma 1.2.55.21. For any dihedral angle $\widehat{A a C}$ there is a point B such that the half-plane a_{B} lies inside $\widehat{A a C} .^{204}$
Proof. (See Fig. 1.92.) By T $1.2 .2 \exists B[A B C]$. By L 1.2 .55 .5, L $1.2 .55 .3 a_{B} \subset \operatorname{Int}(\widehat{A a C})$.
Lemma 1.2.55.22. If points B, C lie on one side of a plane $\alpha_{a A}$, and $a_{B} \neq a_{C}$, either the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C}$, or the half-plane a_{C} lies inside the dihedral angle $\widehat{A a B}$.

[^69]

Figure 1.93: If B, C lie on one side of $\alpha_{a A}$, and $a_{B} \neq a_{C}$, either a_{B} lies inside $\widehat{A a C}$, or the half-plane a_{C} lies inside $\widehat{A a B}$.

Proof. Denote $a_{D} \rightleftharpoons a_{A}^{c}$. (See Fig. 1.93.) $B C \alpha_{a A} \xrightarrow{\mathrm{~T} 1.253} a_{B} a_{C} \alpha_{a A} . \quad a_{B} a_{C} \alpha_{a A} \& a_{B} \neq a_{C} \xrightarrow{\text { L1.2.5..19 }} a_{C} \subset$ $\operatorname{Int}(\widehat{A a B}) \vee a_{C} \subset \operatorname{Int}(\widehat{\operatorname{BaD}})$. ${ }^{205}$ Suppose $a_{C} \subset \operatorname{Int}(\widehat{\operatorname{BaD}})$. ${ }^{206}$ Then by L 1.2.55.10 $a_{B} \subset \operatorname{Ext}(\widehat{C a D})$. But since $a_{B} a_{C} a_{O A} \& O_{B} \neq O_{C} \stackrel{\text { L1.2.55.19 }}{\Longrightarrow} a_{B} \subset \operatorname{Int}(\widehat{A a C}) \vee a_{B} \subset \operatorname{Int}(\widehat{C a D})$, we conclude that $a_{B} \subset \operatorname{Int}(\widehat{A a B})$.

Corollary 1.2.55.23. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a plane α. If the rays k, l lie in α on the same side of \bar{h}, then the half-planes κ, λ lie on the same side of the plane $\bar{\chi}$.

Proof. Obviously, we can assume without loss of generality that the rays k, l are distinct. ${ }^{207}$ Then by L 1.2.21.21 either $k \subset \operatorname{Int} \angle(h, l)$ or $l \subset \operatorname{Int} \angle(h, k)$. Hence, in view of L1.2.55.15, L 1.2.55.3 we have either $\kappa \subset$ Int $\widehat{\chi \lambda}$ or $\lambda \subset I n t \widehat{\chi \kappa}$. Then from definition of interior of dihedral angle we see that the half-planes κ, λ lie on the same side of the plane $\bar{\chi}$.

Corollary 1.2.55.24. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a plane α. If κ, λ lie on the same side of the plane $\bar{\chi}$, then the rays k, l lie in α on the same side of \bar{h}.

Proof. Follows from L 1.2.55.22, L 1.2.55.16.

Corollary 1.2.55.25. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a plane α. If the rays k, l lie in α on opposite sides of \bar{h}, then the half-planes κ, λ lie on opposite sides of the plane $\bar{\chi}$.

Proof. Take points $K \in k, L \in l$. Since, by hypothesis, the rays k, l lie in α on opposite sides of \bar{h}, the open interval $(K L)$ is bound to meet the line \bar{h} in some point H. But $\bar{h} \subset a, k \subset \kappa, l \subset \lambda$, whence the result.

Corollary 1.2.55.26. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a plane α. If χ, λ lie on opposite sides of the plane $\bar{\kappa}$, then the rays h, l lie in α on opposite sides of \bar{k}.

Proof. Obviously, the rays h, k, l lie in the same plane, namely, the plane of the section. Also, neither of the rays h, l lie on the line \bar{k}. ${ }^{208}$ Therefore, the rays h, l lie either on one side or on opposite sides of the line \bar{k}. But if h, l lie on the same side of \bar{k} then χ, λ lie on the same side of the plane $\bar{\kappa}$ (see C 1.2 .55 .23), contrary to hypothesis. Thus, we see that h, l lie in α on opposite sides of \bar{k}, q.e.d.

Lemma 1.2.55.27. If a half-plane λ with the same edge as half-planes χ, κ lies inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, then the half-plane κ lies inside the dihedral angle $\widehat{\chi^{c} \kappa}$.

Proof. Using L 1.2.55.13, L 1.2.55.19 we have $\lambda \subset \operatorname{Int}(\widehat{\chi \kappa}) \Rightarrow \kappa \subset \operatorname{Ext} \widehat{\chi \lambda} \& \lambda \kappa \bar{\chi} \& \lambda \neq \kappa \Rightarrow \kappa \subset \operatorname{Int}(\widehat{\chi \kappa})$.

[^70]

Figure 1.94: If a point C lies inside a dihedral angle $\widehat{A a D}$, and a point B inside a dihedral angle $\widehat{A a C}$, then the half-plane a_{B} lies inside the dihedral angle $\widehat{A a D}$, and the half-plane a_{C} lies inside the dihedral angle $\widehat{B a D}$.

Lemma 1.2.55.28. If a point C lies inside a dihedral angle $\widehat{A a D}$, and a point B inside a dihedral angle $\widehat{A a C}$, then the half-plane a_{B} lies inside the dihedral angle $\widehat{A a D}$, and the half-plane a_{C} lies inside the dihedral angle $\widehat{B a D} .{ }^{209}$

Proof. (See Fig. 1.49.) $C \in \operatorname{Int}(\widehat{A a D}) \stackrel{\text { L1.2.55.18 }}{\Longrightarrow} \exists F[A F D] \& F \in a_{C} . B \in \operatorname{Int}(\widehat{A a C}) \xrightarrow{\text { L1.2.55.18 }} \exists E[A E F] \& E \in a_{B}$. $[A E F] \&[A F D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A E D] \&[E F D]$. Hence, using L 1.2.55.5, L 1.2.55.3, we can write $A \in a_{A} \& E \in a_{B} \& F \in$ $a_{C} \& D \in a_{D} \&[A E D] \&[E F D] \Rightarrow a_{B} \subset \operatorname{Int}(\widehat{A a D}) \& a_{C} \subset \operatorname{Int}(\widehat{B a D})$.

Lemma 1.2.55.29. If a half-plane a_{B} lies inside a dihedral angle $\widehat{A a C}$, the ray a_{C} lies inside a dihedral $\widehat{B a D}$, and at least one of the half-planes a_{B}, a_{C} lies on the same side of the plane $\alpha_{a A}$ as the half-plane a_{D}, then the half-planes a_{B}, a_{C} both lie inside the dihedral angle $\widehat{A a D}$.

Proof. Note that we can assume $a_{B} a_{D} \alpha_{a A}$ without any loss of generality, because by the definition of dihedral angle $a_{B} \subset \operatorname{Int} \widehat{A a C} \Rightarrow a_{B} a_{C} a_{O A}$, and if $a_{C} a_{D} \alpha_{a A}$, we have $a_{B} a_{C} \alpha_{a A} \& a_{C} a_{D} \alpha_{a A} \stackrel{\text { L1.2.52.2 }}{\Longrightarrow} a_{B} a_{D} \alpha_{a A} . a_{B} a_{D} \alpha_{a A} \& a_{B} \neq$ $a_{D} \stackrel{\text { L1.2.55.22 }}{\Longrightarrow} a_{B} \subset \operatorname{Int}(\widehat{A a D}) \vee a_{D} \subset \operatorname{Int}(\widehat{A a B})$. If $a_{B} \subset \operatorname{Int}(\widehat{A a D})$ (see Fig. 1.95, a)), then using the preceding lemma (L 1.2.55.28), we immediately obtain $a_{C} \subset \operatorname{Int}(\widehat{A a D})$. But if $a_{D} \subset \operatorname{Int}(\widehat{\operatorname{AaB}})$ (see Fig. 1.95, b.), observing that $a_{B} \subset \operatorname{Int}(\widehat{A a C})$, we have by the same lemma $a_{B} \subset \operatorname{Int}(\widehat{D a C})$, which, by C 1.2.55.11, contradicts $a_{C} \subset \operatorname{Int}(\widehat{B a D})$.

Lemma 1.2.55.30. Suppose that a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that a line b is skew to the line $a=A_{1} A_{n}{ }^{210}$ Then the half-planes $b_{A_{1}}, b_{A_{2}}, \ldots, b_{A_{n}}$ are in order $\left[b_{A_{1}} b_{A_{2}} \ldots b_{A_{n}}\right]$, that is, $b_{A_{j}} \subset \operatorname{Int} \widehat{A_{i} b A_{k}}$ whenever either $i<j<k$ or $k<j<i$.

Proof. Follows from L 1.2.7.3, L 1.2.55.10, L 1.2.55.4.
Lemma 1.2.55.31. Suppose half-planes κ, λ lie on the same side of a plane $\bar{\chi}$ (containing a third half-plane χ), the half-planes χ, λ lie on opposite sides of the half-plane $\bar{\kappa}$, and the points H, L lie on the half-planes χ, λ, respectively. Then the half-plane κ lies inside the dihedral angle $\widehat{\chi \lambda}$ and meets the open interval $(H L)$ at some point K.

[^71]

Figure 1.95: If a half-plane a_{B} lies inside a dihedral angle $\widehat{A a C}$, the ray a_{C} lies inside a dihedral $\widehat{B a D}$, and at least one of the half-planes a_{B}, a_{C} lies on the same side of the plane $\alpha_{a A}$ as the half-plane a_{D}, then the half-planes a_{B}, a_{C} both lie inside the dihedral angle $\widehat{A a D}$.

Proof. $H \in \chi \& K \in \lambda \& \chi \bar{\kappa} \lambda \Rightarrow \exists K K \in \bar{\kappa} \&[H K L]$. [HKL]\&H $\bar{\chi} \stackrel{\text { L1.2.53.9 }}{\Longrightarrow} K L \bar{\chi}$. Hence $K \in \kappa$, for, obviously, $K \neq O$, and, assuming $K \in \kappa^{c}$, we would have: $\kappa \lambda \bar{\chi} \& \kappa c \bar{h} i \kappa^{c} \stackrel{\text { L1.2.18.5 }}{\Longrightarrow} \lambda \bar{\chi} \kappa^{c}$, which, in view of $L \in \lambda, K \in \kappa^{c}$, would imply $L \bar{\chi} K$ - a contradiction. Finally, $H \in \chi \& L \in \lambda \&[H K L] \xrightarrow{\text { L1.2.55.10 }} K \in \widehat{\chi \lambda} \xrightarrow{\text { L1.2.55.4 }} k \subset \widehat{\chi \lambda}$.

Lemma 1.2.55.32. Suppose that the half-planes χ, κ, λ have the same edge and the half-planes χ, λ lie on opposite sides of the plane $\bar{\kappa}$ (so that the dihedral angles $\widehat{\chi \kappa}, \widehat{\kappa \lambda}$ are adjacent). Then the half-planes χ, λ lie on the same side of the plane $\bar{\chi}$ iff the half-plane λ lies inside the dihedral angle $\widehat{\chi^{c} \kappa}$, and the half-planes κ, λ lie on opposite sides of the plane $\bar{\chi}$ iff the half-plane χ^{c} lies inside the dihedral angle $\widehat{\kappa \lambda}$. Also, the first case takes place iff the half-plane κ lies between the half-planes χ, λ, and the second case iff the half-plane κ^{c} lies between the half-planes χ, λ.

Proof. Note that $\lambda \bar{\kappa} \chi \& \chi^{c} \bar{\kappa} \chi \stackrel{\text { L1.2.52.4 }}{\Longrightarrow} \chi^{c} \lambda \bar{\kappa}$. Suppose first that the half-planes κ, λ lie on the same side of the plane $\bar{\chi}$. Then we can write $\chi^{c} \lambda \bar{\kappa} \& \kappa \lambda \bar{\chi} \Rightarrow \lambda \subset$ Int $\widehat{\chi^{c} \kappa}$. Conversely, form the definition of interior we have $\lambda \subset \operatorname{Int} \widehat{\chi^{c} \kappa} \Rightarrow \kappa \lambda \bar{\chi}$. Suppose now that the half-planes κ, λ lie on opposite sides of the plane $\bar{\chi}$. Then, obviously, the half-plane λ cannot lie inside the dihedral angle $\widehat{\chi^{c} \kappa}$, for otherwise κ, λ would lie on the same side of χ. Hence by L 1.2 .55 .22 we have $\chi^{c} \subset \widehat{\kappa \lambda}$. Conversely, if $\chi^{c} \subset$ Int $\widehat{\kappa \lambda}$, the half-planes κ, λ lie on opposite sides of the plane $\bar{\lambda}$ in view of L 1.2.55.22. ${ }^{211}$ Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.55.31) and (in the second case) the observation that $\lambda \bar{\chi} \kappa \& \kappa^{c} \bar{\chi} \kappa \stackrel{\text { L1.2.52.4 }}{\Longrightarrow} \kappa^{c} \lambda \bar{\chi}$. (See also C 1.2.55.9).

Lemma 1.2.55.33. Suppose that the half-planes χ, κ, λ have the same edge a and the half-planes χ, λ lie on opposite sides of the plane $\bar{\kappa}$. Then either the half-plane κ lies inside the dihedral angle $\widehat{\chi \lambda}$, or the half-plane κ^{c} lies inside the dihedral angle $\widehat{\chi \lambda}$, or $\lambda=\chi^{c}$. (In the last case we again have either $\kappa \subset$ Int $\widehat{\chi \chi^{c}}$ or $\kappa^{c} \subset$ Int $\widehat{\chi \chi^{c}}$ depending on which side of the plane $\bar{\kappa}$ (i.e. which of the two half-planes having the plane $\bar{\kappa}$ as its edge) is chosen as the interior of the straight dihedral angle $\left.\widehat{\chi \chi^{c}}\right)$.

Proof. Take points $H \in \chi, L \in \lambda$. Then $\chi \bar{\kappa} \lambda$ implies that there is a point $K \in \bar{\kappa}$ such that [HKL]. Then, obviously, either $K \in \kappa$, or $K \in a$, or $K \in \kappa^{c}$. If $K \in a$ then $L \in \kappa^{c}$ (see L1.2.19.8) and thus $\lambda=\chi^{c}$ (see L 1.2.51.6). If $K \notin a$ then the points H, L and the line a are not coplanar. ${ }^{212}$ Therefore, the proper (nonstraight) dihedral angle $\widehat{\chi \lambda}$ exists (see L 1.2.21.1, L 1.2.55.2). Hence by L 1.2.55.5, L 1.2.55.3 we have either $H \in \chi \& L \in \lambda \&[H K L] \& K \in \kappa \Rightarrow \kappa \subset$ Int $\widehat{\chi \lambda}$, or $H \in \chi \& L \in \lambda \&[H K L] \& K \in \kappa^{c} \Rightarrow \kappa^{c} \subset$ Int $\widehat{\chi \lambda}$, depending on which of the half-planes κ, κ^{c} the point K belongs to.

Betweenness Relation for Half-Planes

We shall refer to a collection of half-planes emanating from a common edge a as a pencil of half-planes or a half-plane pencil, which will be written sometimes as $\mathcal{S}^{(a)}$. The line a will, naturally, be called the edge, or origin, of the pencil. If two or more half-planes lie in the same pencil (i.e. have the same edge), they will sometimes be called equioriginal (to each other).

Theorem 1.2.55. Given a plane α, a line a lying in α, and a point A lying outside α, the set (pencil) \mathfrak{J} of all halfplanes with the edge a, lying in on the same side of the plane α as the point $A{ }^{213}$, admits a generalized betweenness relation.

To be more precise, we say that a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes $a_{A} \in \mathfrak{J}$ and $a_{C} \in \mathfrak{J}$ iff a_{B} lies inside the dihedral angle $\widehat{A a C}$, i.e. iff $a_{B} \subset \operatorname{Int}(\widehat{A a C})$. ${ }^{214}$ Then the following properties hold, corresponding to Pr 1.2.1$\operatorname{Pr} 1.2 .7$ in the definition of generalized betweenness relation:

1. If a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes $a_{A} \in \mathfrak{J}$ and $a_{C} \in \mathfrak{J}$, then a_{B} also lies between a_{C} and a_{A}, and a_{A}, a_{B}, a_{C} are distinct half-planes.
2. For every two half-planes $a_{A}, a_{B} \in \mathfrak{J}$ there is a half-plane $a_{C} \in \mathfrak{J}$ such that a_{B} lies between a_{A} and a_{C}.
3. If a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes $a_{A}, a_{C} \in \mathfrak{J}$, the half-plane a_{C} cannot lie between the rays a_{A} and a_{B}.
4. For any two half-planes $a_{A}, a_{C} \in \mathfrak{J}$ there is a half-plane $a_{B} \in \mathfrak{J}$ between them.
5. Among any three distinct half-planes $a_{A}, a_{B}, a_{C} \in \mathfrak{J}$ one always lies between the others.
6. If a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes $a_{A}, a_{C} \in \mathfrak{J}$, and the half-plane a_{C} lies between a_{B} and $a_{D} \in \mathfrak{J}$, both a_{B}, a_{C} lie between a_{A} and a_{D}.
7. If a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes $a_{A}, a_{C} \in \mathfrak{J}$, and the half-plane a_{C} lies between a_{A} and $a_{D} \in \mathfrak{J}$, then a_{B} lies also between a_{A}, a_{D}, and a_{C} lies between a_{B} and a_{D}. The converse is also true. That is, for all half-planes of the pencil \mathfrak{J} we have $\left[a_{A} a_{B} a_{C}\right] \&\left[a_{A} a_{C} a_{D}\right] \Leftrightarrow\left[a_{A} a_{B} a_{D}\right] \&\left[a_{B} a_{C} a_{D}\right]$.

The statements of this theorem are easier to comprehend and prove when given the following formulation in "native" terms.

[^72]1. If a half-plane $a_{B} \in \mathfrak{J}$ lies inside the angle $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, it also lies inside the dihedral angle $\widehat{C a A}$, and the half-planes a_{A}, a_{B}, O_{C} are distinct.
2. For every two half-planes $a_{A}, a_{B} \in \mathfrak{J}$ there is a half-plane $a_{C} \in \mathfrak{J}$ such that the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C}$.
3. If a half-plane $a_{B} \in \mathfrak{J}$ lies inside a dihedral angle $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, the half-plane a_{C} cannot lie inside the dihedral angle $\widehat{A a B}$.
4. For any two half-planes $a_{A}, a_{C} \in \mathfrak{J}$, there is a half-plane $a_{B} \in \mathfrak{J}$ which lies inside the dihedral angle $\widehat{A a C}$.
5. Among any three distinct half-planes $a_{A}, a_{B}, a_{C} \in \mathfrak{J}$ one always lies inside the dihedral angle formed by the other two.
6. If a half-plane $a_{B} \in \mathfrak{J}$ lies inside an angle $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, and the half-plane a_{C} lies inside $\widehat{B a D}$, then both a_{B} and a_{C} lie inside the dihedral angle $\widehat{A a D}$.
7. If a half-plane $a_{B} \in \mathfrak{J}$ lies inside a dihedral angle $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, and the half-plane a_{C} lies inside $\widehat{A a D}$, then a_{B} also lies inside $\widehat{A a D}$, and the half-plane a_{C} lies inside the dihedral angle $\widehat{B a D}$. The converse is also true. That is, for all half-planes of the pencil \mathfrak{J} we have $a_{B} \subset \operatorname{Int}(\widehat{A a C}) \& a_{C} \subset \operatorname{Int}(\widehat{A a D}) \Leftrightarrow a_{B} \subset \operatorname{Int}(\widehat{A a D}) \& a_{C} \subset \operatorname{Int}(\widehat{\operatorname{BaD}})$.

Proof. 1. Follows from the definition of $\operatorname{Int}(\widehat{A a C})$.
2. See L 1.2.55.20.
3. See C 1.2.55.11.
4. See L 1.2.55.21.
5. By C 1.1.6.6 there is a point D lying in α outside a. By T 1.1.2 we have $\alpha=\alpha_{a D}$. Then $a_{A} a_{B} \alpha \& a_{A} \neq$ $a_{B} \& a_{A} a_{C} \alpha \& a_{A} \neq a_{C} \& a_{B} a_{C} \alpha \& a_{B} \neq a_{C} \stackrel{\text { L1.2.55.22 }}{\Longrightarrow}\left(a_{A} \subset \operatorname{Int}(\widehat{D a B}) \vee a_{B} \subset \operatorname{Int}(\widehat{D a A})\right) \&\left(a_{A} \subset \operatorname{Int}(\widehat{D a C}) \vee a_{C} \subset\right.$ $\operatorname{Int}(\widehat{D a A})) \&\left(a_{B} \subset \operatorname{Int}(\widehat{D a C}) \vee a_{C} \subset(\widehat{D a B})\right)$. Suppose $a_{A} \subset \operatorname{Int}(\widehat{D a B}) .{ }^{215}$ If $a_{B} \subset \operatorname{Int}(\widehat{D a C})$ (see Fig. 1.96, a) then $a_{A} \subset \operatorname{Int}(\widehat{D a B}) \& a_{B} \subset \operatorname{Int}(\widehat{D a C}) \stackrel{\text { L1.2.55.28 }}{\Longrightarrow} a_{B} \subset \operatorname{Int}(\widehat{A a C})$. Now suppose $a_{C} \subset \operatorname{Int}(\widehat{D a B})$. If $a_{C} \subset \operatorname{Int}(\widehat{D a A})$ (see Fig. 1.96, b) then $a_{C} \subset \operatorname{Int}(\widehat{D a A}) \& a_{A} \subset(\widehat{D a B}) \stackrel{\text { L1.2.55.28 }}{\rightleftharpoons} a_{A} \subset \operatorname{Int}(\widehat{B a C})$. Finally, if $a_{A} \subset \operatorname{Int}(\widehat{\operatorname{DaC}})$ (see Fig. 1.96, c) then $a_{A} \subset \operatorname{Int}(\widehat{D a C}) \& a_{C} \subset \operatorname{Int}(\widehat{D a B}) \stackrel{\text { L1.2.55.28 }}{\Longrightarrow} a_{C} \subset \operatorname{Int}(\widehat{A a B})$.
6. (See Fig. 1.97.) Choose a point $E \in \alpha, E \notin a$, so that $a_{B} \subset \operatorname{Int}(\widehat{E a D}) .{ }^{216} a_{B} \subset \operatorname{Int}(\widehat{E a D}) \& a_{C} \subset$ $\operatorname{Int}(\widehat{B a D}) \stackrel{\text { L1.2.55.28 }}{\Longrightarrow} a_{C} \subset \operatorname{Int}(\widehat{E a D}) \& a_{B} \subset \operatorname{Int}(\widehat{E a C})$. Using the definition of interior, and then L 1.2.18.1, L 1.2.18.2, we can write $a_{B} \subset \operatorname{Int}(\widehat{\operatorname{EaC}}) \& a_{B} \subset \operatorname{Int}(\widehat{A a C}) \Rightarrow a_{B} a_{E} \alpha_{a C} \& a_{B} a_{A} \alpha_{a C} \Rightarrow a_{A} a_{C} \alpha_{a C}$. Using the definition of the interior of $(\widehat{E a C})$, we have $a_{A} a_{E} \alpha_{a C} \& a_{A} a_{C} \alpha_{a E} \Rightarrow a_{A} \subset \operatorname{Int}(\widehat{E a C}) . a_{A} \subset \operatorname{Int}(\widehat{E a C}) \& a_{C} \subset$ $\operatorname{Int}(\widehat{E a D}) \stackrel{\text { L1.2.55.28 }}{\Longrightarrow} a_{C} \subset \operatorname{Int}(\widehat{A a D})$. Finally, $a_{C} \subset \operatorname{Int}(\widehat{A a D}) \& a_{B} \subset \operatorname{Int}(\widehat{A a C}) \stackrel{\text { L1.2.55.28 }}{\Longrightarrow} a_{B} \subset \operatorname{Int}(\widehat{E a D})$.
7. See L 1.2.55.28.

Given a pencil \mathfrak{J} of half-planes, all lying on a given side of a plane α, define an open dihedral angular interval $\left(a_{A} a_{C}\right)$ formed by the half-planes $a_{A}, a_{C} \in \mathfrak{J}$, as the set of all half-planes $a_{B} \in \mathfrak{J}$ lying inside the dihedral angle $\widehat{A a C}$. That is, for $a_{A}, a_{C} \in \mathfrak{J}$ we let $\left(a_{A} a_{C}\right) \rightleftharpoons\left\{a_{B} \mid a_{B} \subset \operatorname{Int}(\widehat{A a C})\right\}$. In analogy with the general case, we shall refer to $\left[a_{A} a_{C}\right),\left(a_{A} a_{C}\right],\left[a_{A} a_{C}\right]$ as half-open, half-closed, and closed dihedral angular intervals, respectively. ${ }^{217}$ In what follows, open dihedral angular intervals, half-open, half-closed and closed dihedral angular intervals will be collectively referred to as dihedral angular interval-like sets.

Given a pencil \mathfrak{J} of half-planes having the same edge a and all lying on the same side of a plane α as a given point O, the following L 1.2 .56 .1 - T 1.2.61 hold. ${ }^{218}$

Lemma 1.2.56.1. If a half-plane $a_{B} \in \mathfrak{J}$ lies between half-planes a_{A}, a_{C} of the pencil \mathfrak{J}, the half-plane a_{A} cannot lie between the half-planes a_{B} and a_{C}. In other words, if a half-plane $a_{B} \in \mathfrak{J}$ lies inside $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, then the half-plane a_{A} cannot lie inside the dihedral angle $\widehat{B a C}$.

Lemma 1.2.56.2. Suppose each of $\lambda, \mu \in \mathfrak{J}$ lies inside the dihedral angle formed by $\chi, \kappa \in \mathfrak{J}$. If a half-plane $\nu \in \mathfrak{J}$ lies inside the dihedral angle $\widehat{\lambda \mu}$, it also lies inside the dihedral angle $\widehat{\chi \kappa}$. In other words, if half-planes $\lambda, \mu \in \mathfrak{J}$ lie between half-planes $\chi, \kappa \in \mathfrak{J}$, the open dihedral angular interval $(\lambda \mu)$ is contained in the open dihedral angular interval $(\chi \kappa)^{219}$, i.e. $(\lambda \mu) \subset(\chi \kappa)$. (see Fig 1.98)

[^73]

Figure 1.96: Among any three distinct half-planes $a_{A}, a_{B_{l}, 0 f G} \in \mathfrak{J}$ one always lies inside the dihedral angle formed by

Figure 1.97: If a half-plane $a_{B} \in \mathfrak{J}$ lies inside an angle $\widehat{A a C}$, where $a_{A}, a_{C} \in \mathfrak{J}$, and the half-plane a_{C} lies inside $\widehat{B a D}$, then both a_{B} and a_{C} lie inside the dihedral angle $\widehat{A a D}$.

Figure 1.98: If half-planes $\lambda, \mu \in \mathfrak{J}$ lie between half-planes $\chi, \kappa \in \mathfrak{J}$, the open dihedral angular interval $(\lambda \mu)$ is contained in the open dihedral angular interval ($\chi \kappa$)

Figure 1.99: If $o \in \mathfrak{J}$ divides $\chi, \kappa \in \mathfrak{J}$, as well as χ and $\lambda \in \mathfrak{J}$, it does not divide κ, λ.

Lemma 1.2.56.3. Suppose each side of an (extended) dihedral angles $\widehat{\lambda \mu}$ (where $\lambda, \mu \in \mathfrak{J}$) either lies inside an (extended) dihedral angle $\widehat{\chi \kappa}$, where $\chi, \kappa \in \mathfrak{J}$, or coincides with one of its sides. Then if a half-plane $\nu \in \mathfrak{J}$ lies inside $\widehat{\lambda \mu}$, it also lies inside the dihedral angle $\widehat{\chi \kappa} .{ }^{220}$
Lemma 1.2.56.4. If a half-plane $\lambda \in \mathfrak{J}$ lies between half-planes $\chi, \kappa \in \mathfrak{J}$, none of the half-planes of the open dihedral angular interval $(\chi \lambda)$ lie on the open dihedral angular interval $(\lambda \kappa)$. That is, if a half-plane $\lambda \in \mathfrak{J}$ lies inside $\widehat{\chi \kappa}$, none of the half-planes ${ }^{221}$ lying inside the dihedral angle $\widehat{\chi \lambda}$ lie inside the dihedral angle $\widehat{\lambda \kappa}$.
Proposition 1.2.56.5. If two (distinct) half-planes $\lambda \in \mathfrak{J}, \mu \in \mathfrak{J}$ lie inside the dihedral angle $\widehat{\chi \kappa}$, where $\chi \in \mathfrak{J}$, $\kappa \in \mathfrak{J}$, then either the half-plane λ lies inside the dihedral angle $\widehat{\chi \mu}$, or the half-plane μ lies inside the dihedral angle $\widehat{\chi \lambda}$.

Lemma 1.2.56.6. Each of $\lambda, \mu \in \mathfrak{J}$ lies inside the closed dihedral angular interval formed by $\chi, \kappa \in \mathfrak{J}$ (i.e. each of the half-planes λ, μ either lies inside the dihedral angle $\widehat{\chi \kappa}$ or coincides with one of its sides) iff all the half-planes $\nu \in \mathfrak{J}$ lying inside the dihedral angle $\widehat{\lambda \mu}$ lie inside the dihedral angle $\widehat{\kappa \lambda}$.
Lemma 1.2.56.7. If a half-plane $\lambda \in \mathfrak{J}$ lies between half-planes χ, κ of the pencil \mathfrak{J}, any half-plane of the open dihedral angular interval $(\chi \kappa)$, distinct from λ, lies either on the open angular interval $(\chi \lambda)$ or on the open dihedral angular interval $(\lambda \kappa)$. In other words, if a half-plane $\lambda \in \mathfrak{J}$ lies inside $\widehat{\chi \kappa}$, formed by half-planes χ, κ of the pencil \mathfrak{J}, any other (distinct from λ) half-plane lying inside $\widehat{\chi \kappa}$, also lies either inside $\widehat{\chi \lambda}$ or inside $\widehat{\lambda \kappa}$.

Lemma 1.2.56.8. If a half-plane $o \in \mathfrak{J}$ divides half-planes $\chi, \kappa \in \mathfrak{J}$, as well as χ and $\lambda \in \mathfrak{J}$, it does not divide κ, λ (see Fig. 1.99).

Betweenness Relation for n Half-Planes with Common Edge

Lemma 1.2.56.9. Suppose $\chi_{1}, \chi_{2}, \ldots, \chi_{n}(, \ldots)$ is a finite (countably infinite) sequence of half-planes of the pencil \mathfrak{J} with the property that a half-plane of the sequence lies between two other half-planes of the sequence ${ }^{222}$ if its number has an intermediate value between the numbers of these half-planes. (see Fig. 1.100) Then the converse of this property is true, namely, that if a half-plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence, its number has an intermediate value between the numbers of these two half-planes. That is, $\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, $\left.\left.\mathbb{N}\right)\left((i<j<k) \vee(k<j<i) \Rightarrow\left[\chi_{i} \chi_{j} \chi_{k}\right]\right)\right) \Rightarrow\left(\forall i, j, k \in \mathbb{N}_{n}\right.$ (respectively, \mathbb{N}) $\left.\left(\left[\chi_{i} \chi_{j} \chi_{k}\right] \Rightarrow(i<j<k) \vee(k<j<i)\right)\right)$.

[^74]

Figure 1.100: Suppose $\chi_{1}, \chi_{2}, \ldots, \chi_{n}(, \ldots)$ is a finite (countably infinite) sequence of half-planes of the pencil \mathfrak{J} with the property that a half-plane of the sequence lies between two other half-planes of the sequence if its number has an intermediate value between the numbers of these half-planes. Then the converse of this property is true, namely, that if a half-plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence, its number has an intermediate value between the numbers of these two half-planes.

Let an infinite (finite) sequence of half-planes χ_{i} of the pencil \mathfrak{J}, where $i \in \mathbb{N}\left(i \in \mathbb{N}_{n}, n \geq 4\right)$, be numbered in such a way that, except for the first and the last, every half-plane lies inside the dihedral angle formed by the two half-planes of sequence with numbers, adjacent (in \mathbb{N}) to that of the given half-plane. Then:
Lemma 1.2.56.10. - A half-plane from this sequence lies inside the dihedral angle formed by two other members of this sequence iff its number has an intermediate value between the numbers of these two half-planes.

Lemma 1.2.56.11. - An arbitrary half-plane of the pencil \mathfrak{J} cannot lie inside of more than one of the dihedral angles formed by pairs of half-planes of the sequence having adjacent numbers in the sequence.

Lemma 1.2.56.12. - In the case of a finite sequence, a half-plane which lies between the end (the first and the last, $n^{\text {th }}$) half-planes of the sequence, and does not coincide with the other half-planes of the sequence, lies inside at least one of the dihedral angles, formed by pairs of half-planes with adjacent numbers.

Lemma 1.2.56.13. - All of the open dihedral angular intervals $\left(\chi_{i} \chi_{i+1}\right)$, where $i=1,2, \ldots, n-1$, lie inside the open dihedral angular interval $\left(\chi_{1} \chi_{n}\right)$. In other words, any half-plane κ, lying inside any of the dihedral angles $\widehat{\chi_{i}, \chi_{i+1}}$, where $i=1,2, \ldots, n-1$, lies inside the dihedral angle $\widehat{\chi_{1}, \chi_{n}}$, i.e. $\forall i \in\{1,2, \ldots, n-1\} k \subset \operatorname{Int}\left(\widehat{\chi_{i}, \chi_{i+1}}\right) \Rightarrow \kappa \subset$ $\operatorname{Int}\left(\widehat{\chi_{1}, \chi_{n}}\right)$.

Lemma 1.2.56.14. - The half-open dihedral angular interval $\left[\chi_{1} \chi_{n}\right)$ is a disjoint union of the half-closed dihedral angular intervals $\left[\chi_{i} \chi_{i+1}\right)$, where $i=1,2, \ldots, n-1$:
$\left[\chi_{1} \chi_{n}\right)=\bigcup_{i=1}^{n-1}\left[\chi_{i} \chi_{i+1}\right)$.
Also,
The half-closed dihedral angular interval $\left(\chi_{1} \chi_{n}\right]$ is a disjoint union of the half-closed dihedral angular intervals ($\chi_{i} \chi_{i+1}$], where $i=1,2, \ldots, n-1$:

$$
\left(\chi_{1} \chi_{n}\right]=\bigcup_{i=1}^{n-1}\left(\chi_{i} \chi_{i+1}\right]
$$

Proof.
If a finite (infinite) sequence of half-planes χ_{i} of the pencil $\mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4(n \in \mathbb{N})$ has the property that if a halfplane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its number has an intermediate value between the numbers of these two half-planes, we say that the half-planes $\chi_{1}, \chi_{2}, \ldots, \chi_{n}(, \ldots)$ are in order $\left[\chi_{1} \chi_{2} \ldots \chi_{n}(\ldots)\right]$.

Theorem 1.2.56. Any finite sequence of half-planes $\chi_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4$ can be renumbered in such a way that a half-plane from the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its number has an intermediate value between the numbers of these two half-planes. In other words, any finite (infinite) sequence of half-planes $h_{i} \in \mathfrak{J}, i \in \mathbb{N}_{n}, n \geq 4$ can be put in order $\left[\chi_{1} \chi_{2} \ldots \chi_{n}\right]$.
Lemma 1.2.56.12. For any finite set of half-planes $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\}$ of an open dihedral angular interval $(\chi \kappa) \subset \mathfrak{J}$ there is a half-plane λ on ($\chi \kappa$) not in that set.

Proposition 1.2.56.13. Every open dihedral angular interval in \mathfrak{J} contains an infinite number of half-planes.
Corollary 1.2.56.14. Every dihedral angular interval-like set in \mathfrak{J} contains an infinite number of half-planes.

Basic Properties of Dihedral Angular Rays

Given a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, and two distinct half-planes o, $\chi, \chi \neq o$ of the pencil \mathfrak{J}, define the dihedral angular ray o_{χ}, emanating from its origin, or initial half-plane o, as the set of all half-planes $\kappa \neq o$ of the pencil \mathfrak{J} such that the half-plane o does not divide the half-planes $\chi, \kappa .{ }^{223}$ That is, for $o, \chi \in \mathfrak{J}, o \neq \chi$, we define $o_{\chi} \rightleftharpoons\{\kappa \mid \kappa \subset \mathfrak{J} \& \kappa \neq o \& \neg[\chi o \kappa]\}$. ${ }^{224}$
Lemma 1.2.57.1. Any half-plane χ lies on the dihedral angular ray o_{χ}.
Lemma 1.2.57.2. If a half-plane κ lies on a dihedral angular ray o_{χ}, the half-plane χ lies on the dihedral angular ray o_{κ}. That is, $\kappa \in o_{\chi} \Rightarrow \chi \in o_{\kappa}$.
Lemma 1.2.57.3. If a half-plane κ lies on a dihedral angular ray o_{χ}, the dihedral angular ray o_{χ} coincides with the dihedral angular ray o_{κ}.

Lemma 1.2.57.4. If dihedral angular rays o_{χ} and o_{κ} have common half-planes, they are equal.

[^75]Lemma 1.2.57.5. The relation "to lie in the pencil \mathfrak{J} on the same side of a given half-plane $o \in \mathfrak{J}$ as" is an equivalence relation on $\mathfrak{J} \backslash\{o\}$. That is, it possesses the properties of:

1) Reflexivity: A half-plane h always lies on the same side of the half-plane o as itself;
2) Symmetry: If a half-plane κ lies on the same side of the half-plane o as χ, the half-plane χ lies on the same side of o as κ.
3) Transitivity: If a half-plane κ lies on the same side of the half-plane o as χ, and a half-plane λ lies on the same side of o as κ, then λ lies on the same side of o as χ.
Lemma 1.2.57.6. A half-plane κ lies on the opposite side of ofrom χ iff o divides χ and κ.
Lemma 1.2.57.7. The relation "to lie in the pencil \mathfrak{J} on the opposite side of the given half-plane ofrom..." is symmetric.

If a half-plane κ lies in the pencil \mathfrak{J} on the same side (on the opposite side) of the half-plane o as (from) a half-plane χ, in view of symmetry of the relation we say that the half-planes χ and κ lie in the set \mathfrak{J} on the same side (on opposite sides) of o.
Lemma 1.2.57.8. If half-planes χ and κ lie on one dihedral angular ray $o_{\lambda} \subset \mathfrak{J}$, they lie in the pencil \mathfrak{J} on the same side of the half-plane o. If, in addition, $\chi \neq \kappa$, then either χ lies between o and κ, or κ lies between o and χ.
Lemma 1.2.57.9. If a half-plane λ lies in the pencil \mathfrak{J} on the same side of the half-plane o as a half-plane χ, and a half-plane μ lies on the opposite side of o from χ, then the half-planes λ and μ lie on opposite sides of o. ${ }^{225}$

Lemma 1.2.57.10. If half-planes λ and μ lie in the pencil \mathfrak{J} on the opposite side of the half-plane o from a half-plane $\chi,{ }^{226}$ then λ and μ lie on the same side of o.
Lemma 1.2.57.11. Suppose a half-plane λ lies on a dihedral angular ray o_{χ}, a half-plane μ lies on a dihedral angular ray o_{κ}, and o lies between χ and κ. Then o also lies between λ and μ.
Lemma 1.2.57.12. A half-plane $o \in \mathfrak{J}$ divides half-planes $\chi \in \mathfrak{J}$ and $\kappa \in \mathfrak{J}$ iff the dihedral angular rays o_{χ} and o_{κ} are disjoint, $o_{\chi} \cap o_{\kappa}=\emptyset$, and their union, together with the ray o, gives the pencil \mathfrak{J}, i.e. $\mathfrak{J}=o_{\chi} \cup o_{\kappa} \cup\{o\}$. That is, $[\chi o \kappa] \Leftrightarrow\left(\mathfrak{J}=o_{\chi} \cup o_{\kappa} \cup\{o\}\right) \&\left(o_{\chi} \cap o_{\kappa}=\emptyset\right)$.
Lemma 1.2.57.13. A dihedral angular ray o_{χ} contains the open dihedral angular interval (o α).
Lemma 1.2.57.14. For any finite set of half-planes $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\}$ of a dihedral angular ray o_{χ}, there is a half-plane λ on o_{χ} not in that set.
Lemma 1.2.57.15. If a half-plane κ lies between half-planes o and χ then the dihedral angular rays o_{κ} and o_{χ} are equal.

Lemma 1.2.57.16. If a half-plane χ lies between half-planes o and κ, the half-plane κ lies on the dihedral angular ray o_{χ}.
Lemma 1.2.57.17. If dihedral angular rays o_{χ} and $o^{\prime}{ }_{\kappa}$ are equal, their origins coincide.
Lemma 1.2.56.18. If a dihedral angle ($=$ abstract dihedral angular interval) $\widehat{\chi_{0} \chi_{n}}$ is divided into n dihedral angles $\widehat{\chi_{0} \chi_{1}}, \widehat{\chi_{1} \chi_{2}} \ldots, \widehat{\chi_{n-1}}{ }_{n}$ (by the half-planes $\chi_{1}, \chi_{2}, \ldots \chi_{n-1}$), ${ }^{227}$ the half-planes $\chi_{1}, \chi_{2}, \ldots \chi_{n-1}, \chi_{n}$ all lie on the same side of the half-plane χ_{0}, and the dihedral angular rays $\chi_{0_{\chi_{1}}}, \chi_{0_{\chi_{2}}}, \ldots, \chi_{0_{\chi_{n}}}$ are equal. ${ }^{228}$

Theorem 1.2.56. Every dihedral angular ray contains an infinite number of half-planes.

Linear Ordering on Dihedral Angular Rays

Suppose χ, κ are two half-planes on a dihedral angular ray o_{μ}. Let, by definition, $(\chi \prec \kappa)_{o_{\mu}} \stackrel{\text { def }}{\Longleftrightarrow}[o h k]$. If $\chi \prec \kappa$, ${ }^{229}$ we say that the half-plane χ precedes the half-plane κ on the dihedral angular ray o_{μ}, or that the half-plane κ succeeds the half-plane χ on the dihedral angular ray o_{μ}.
Lemma 1.2.57.1. If a half-plane χ precedes a half-plane κ on the dihedral angular ray o_{μ}, and κ precedes a half-plane λ on the same dihedral angular ray, then χ precedes λ on o_{μ} :

$$
\chi \prec \kappa \& \kappa \prec \lambda \Rightarrow \chi \prec \lambda \text {, where } \chi, \kappa, \lambda \in o_{\mu} .
$$

Proof.

[^76]Lemma 1.2.57.2. If χ, κ are two distinct half-planes on the dihedral angular ray o_{μ} then either χ precedes κ, or κ precedes χ; if χ precedes κ then κ does not precede χ.

Proof.
For half-planes χ, κ on a dihedral angular ray o_{μ} we let, by definition, $\chi \preceq \kappa \stackrel{\text { def }}{\Longleftrightarrow}(\chi \prec \kappa) \vee(\chi=\kappa)$.
Theorem 1.2.57. Every dihedral angular ray is a chain with respect to the relation \preceq.

Line Ordering on Pencils of Half-Planes

Let $o \in \mathfrak{J}, \pi \in \mathfrak{J},[\pi \imath \rho]$. Define the relation of direct (inverse) ordering on the pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, as follows:

Call o_{π} the first dihedral angular ray, and o_{ρ} the second dihedral angular ray. A half-plane χ precedes a half-plane κ in the pencil \mathfrak{J} in the direct (inverse) order iff:

- Both χ and κ lie on the first (second) dihedral angular ray and κ precedes χ on it; or
- χ lies on the first (second) dihedral angular ray, and κ lies on the second (first) dihedral angular ray or coincides with o; or
- $\chi=o$ and κ lies on the second (first) dihedral angular ray; or
- Both χ and κ lie on the second (first) dihedral angular ray, and χ precedes κ on it.

Thus, a formal definition of the direct ordering on the pencil \mathfrak{J} can be written down as follows:
$\left(\chi \prec_{1} \kappa\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\chi \in o_{p i} \& \kappa \in o_{p i} \& \kappa \prec \chi\right) \vee\left(\chi \in o_{\pi} \& \kappa=o\right) \vee\left(\chi \in o_{\pi} \& \kappa \in o_{\rho}\right) \vee\left(\chi=o \& \kappa \in o_{\rho}\right) \vee\left(\chi \in o_{\rho} \& \kappa \in\right.$ $\left.o_{\rho} \& \chi \prec \kappa\right)$,
and for the inverse ordering: $\left(\chi \prec_{2} \kappa\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\chi \in o_{\rho} \& \kappa \in o_{\rho} \& \kappa \prec \chi\right) \vee\left(\chi \in o_{\rho} \& \kappa=o\right) \vee\left(\chi \in o_{\rho} \& \kappa \in o_{\pi}\right) \vee(\chi=$ $\left.o \& \kappa \in o_{\pi}\right) \vee\left(\chi \in o_{\pi} \& \kappa \in o_{\pi} \& \chi \prec \kappa\right)$.

The term "inverse order" is justified by the following trivial
Lemma 1.2.58.1. χ precedes κ in the inverse order iff κ precedes χ in the direct order.
For our notion of order (both direct and inverse) on the pencil \mathfrak{J} to be well defined, they have to be independent, at least to some extent, on the choice of the origin o of the pencil \mathfrak{J}, as well as on the choice of the half-planes π and ρ, forming, together with the half-plane o, dihedral angular rays o_{π} and o_{ρ}, respectively.

Toward this end, let $o^{\prime} \in \mathfrak{J}, \pi^{\prime} \in \mathfrak{J},\left[\pi^{\prime} o^{\prime} \rho^{\prime}\right]$, and define a new direct (inverse) ordering with displaced origin (ODO) on the pencil \mathfrak{J}, as follows:

Call o^{\prime} the displaced origin, $o^{\prime}{ }_{\pi^{\prime}}$ and $o^{\prime}{ }_{\rho^{\prime}}$ the first and the second displaced dihedral angular rays, respectively. A half-plane χ precedes a half-plane κ in the set \mathfrak{J} in the direct (inverse) ODO iff:

- Both χ and κ lie on the first (second) displaced dihedral angular ray, and κ precedes χ on it; or
- χ lies on the first (second) displaced dihedral angular ray, and κ lies on the second (first) displaced dihedral angular ray or coincides with o^{\prime}; or
- $\chi=o^{\prime}$ and κ lies on the second (first) displaced dihedral angular ray; or
- Both χ and κ lie on the second (first) displaced dihedral angular ray, and χ precedes κ on it.

Thus, a formal definition of the direct ODO on the set \mathfrak{J} can be written down as follows:
$\left(\chi \prec_{1}^{\prime} \kappa\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\chi \in o^{\prime} \pi^{\prime} \& \kappa \in o^{\prime} \pi^{\prime} \& \kappa \prec \chi\right) \vee\left(\chi \in o^{\prime} \pi^{\prime} \& \kappa=o^{\prime}\right) \vee\left(\chi \in o^{\prime}{ }_{\pi^{\prime}} \& \kappa \in o^{\prime}{ }_{\rho^{\prime}}\right) \vee\left(\chi=o^{\prime} \& \kappa \in o^{\prime}{ }_{\rho^{\prime}}\right) \vee(\chi \in$ $\left.o^{\prime}{ }_{\rho^{\prime}} \& \kappa \in o^{\prime}{ }_{\rho^{\prime}} \& \chi \prec \kappa\right)$,
and for the inverse ordering: $\left(\chi \prec_{2}^{\prime} \kappa\right)_{\mathfrak{J}} \stackrel{\text { def }}{\Longleftrightarrow}\left(\chi \in o^{\prime}{ }_{\rho^{\prime}} \& \kappa \in o^{\prime}{ }_{\rho^{\prime}} \& \kappa \prec \chi\right) \vee\left(\chi \in o^{\prime}{ }_{\rho^{\prime}} \& \kappa=o^{\prime}\right) \vee\left(\chi \in o^{\prime}{ }_{\rho^{\prime}} \& \kappa \in\right.$ $\left.o^{\prime}{ }_{\pi^{\prime}}\right) \vee\left(\chi=o^{\prime} \& \kappa \in o^{\prime} \pi^{\prime}\right) \vee\left(\chi \in o^{\prime} \pi^{\prime} \& \kappa \in o^{\prime} \pi^{\prime} \& \chi \prec \kappa\right)$.

Lemma 1.2.58.2. If the origin o^{\prime} of the displaced dihedral angular ray $o^{\prime} \pi^{\prime}$ lies on the dihedral angular ray o_{π} and between o and π^{\prime}, then the dihedral angular ray o_{π} contains the dihedral angular ray $o^{\prime}{ }_{\pi^{\prime}}, o^{\prime}{ }_{\pi^{\prime}} \subset o_{\pi}$.

Lemma 1.2.58.3. Let the displaced origin o^{\prime} be chosen in such a way that o^{\prime} lies on the dihedral angular ray o_{π}, and the half-plane o lies on the dihedral angular ray $o^{\prime}{ }_{\rho^{\prime}}$. If a half-plane κ lies on both dihedral angular rays o_{π} and $o^{\prime} \rho^{\prime}$, then it divides o and o^{\prime}.

Lemma 1.2.58.4. An ordering with the displaced origin o^{\prime} on a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, coincides with either direct or inverse ordering on that pencil (depending on the choice of the displaced dihedral angular rays). In other words, either for all half-planes χ, κ in \mathfrak{J} we have that χ precedes κ in the ODO iff χ precedes κ in the direct order; or for all half-planes χ, κ in \mathfrak{J} we have that χ precedes κ in the ODO iff χ precedes κ in the inverse order.

Lemma 1.2.58.5. Let χ, κ be two distinct half-planes in a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, and on which some direct or inverse order is defined. Then either χ precedes κ in that order, or κ precedes χ, and if χ precedes κ, κ does not precede χ, and vice versa.

For half-planes χ, κ in a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, and where some direct or inverse order is defined, we let $\chi \preceq{ }_{i} \kappa \stackrel{\text { def }}{\Longleftrightarrow}\left(\chi \prec_{i} \kappa\right) \vee(\chi=$ kappa), where $i=1$ for the direct order and $i=2$ for the inverse order.

Theorem 1.2.58. Every set \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation \preceq_{i}.

Theorem 1.2.59. If a half-plane κ lies between half-planes χ and λ, then in any ordering of the kind defined above, defined on the pencil \mathfrak{J}, containing these rays, either χ precedes κ and κ precedes λ, or λ precedes κ and κ precedes χ; conversely, if in some order, defined on the pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, admitting a generalized betweenness relation and containing half-planes χ, κ, λ, we have that χ precedes κ and κ precedes λ, or λ precedes κ and κ precedes χ, then κ lies between χ and λ. That is,

$$
\forall \chi, \kappa, \lambda \in \mathfrak{J}[\chi \kappa \lambda] \Leftrightarrow(\chi \prec \kappa \& \kappa \prec \lambda) \vee(\lambda \prec \kappa \& \kappa \prec \chi) .
$$

Complementary Dihedral Angular Rays

Lemma 1.2.60.1. An dihedral angular interval (o α) is the intersection of the dihedral angular rays o_{χ} and χ_{o}, i.e. $(o \chi)=o_{\chi} \cap \chi_{o}$.

Given a dihedral angular ray o_{χ}, define the dihedral angular ray o_{χ}^{c}, complementary in the pencil \mathfrak{J} to the dihedral angular ray o_{χ}, as $o_{\chi}^{c} \rightleftharpoons \mathfrak{J} \backslash\left(\{o\} \cup o_{\chi}\right)$. In other words, the dihedral angular ray o_{χ}^{c}, complementary to the dihedral angular ray o_{χ}, is the set of all half-planes lying in the pencil \mathfrak{J} on the opposite side of the half-plane o from the half-plane χ. An equivalent definition is provided by

Lemma 1.2.60.2. $o_{\chi}^{c}=\{\kappa \mid[\kappa o \chi]\}$. We can also write $o_{\chi}^{c}=o_{\mu}$ for any half-plane $\mu \in \mathfrak{J}$ such that $[\mu o \chi]$.
Lemma 1.2.60.3. The dihedral angular ray $\left(o_{\chi}^{c}\right)^{c}$, complementary to the dihedral angular ray o_{χ}^{c}, complementary to the given dihedral angular ray o_{h}, coincides with the dihedral angular ray $o_{\chi}:\left(o_{\chi}^{c}\right)^{c}=o_{\chi}$.
Lemma 1.2.60.4. Given a hal-plane λ on an dihedral angular ray o_{χ}, the dihedral angular ray o_{χ} is a disjoint union of the half - open dihedral angular interval ($o \lambda$] and the dihedral angular ray λ_{o}^{c}, complementary to the dihedral angular ray λ_{o} :

$$
o_{h}=(o l] \cup l_{o}^{c} .
$$

Lemma 1.2.60.5. Given in a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, a half-plane κ, distinct from a half-plane $o \in \mathfrak{J}$, the half-plane κ lies either on o_{χ} or on o_{χ}^{c}, where $\chi \in \mathfrak{J}, \chi \neq o$.
Theorem 1.2.60. Let a finite sequence of half-planes $\chi_{1}, \chi_{2}, \ldots, \chi_{n}, n \in \mathbb{N}$, from the pencil \mathfrak{J}, be numbered in such a way that, except for the first and (in the finite case) the last, every half-plane lies between the two half-planes with adjacent (in \mathbb{N}) numbers. Then the dihedral angular ray $\chi_{\chi_{\chi_{n}}}$ is a disjoint union of half-closed dihedral angular intervals $\left(\chi_{i} \chi_{i+1}\right], i=1,2, \ldots, n-1$, with the dihedral angular ray $\chi_{n_{\chi_{k}}}^{c}$, complementary to the dihedral angular ray $\chi_{n_{\chi_{k}}}$, where $k \in\{1,2, \ldots, n-1\}$, i.e.

$$
\chi_{\chi_{\chi_{n}}}=\bigcup_{i=1}^{n-1}\left(\chi_{i} \chi_{i+1}\right] \cup \chi_{n \chi_{k}}^{c}
$$

Sets of Half-Planes on Dihedral Angular Rays

Given a half-plane o in a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, a nonempty set $\mathfrak{B} \subset \mathfrak{J}$ is said to lie in the pencil \mathfrak{J} on the same side (on the opposite side) of the ray o as (from) a nonempty set $\mathfrak{A} \subset \mathfrak{J}$ iff for all half-planes $\chi \in \mathfrak{A}$ and all half-planes $\kappa \in \mathfrak{B}$, the half-plane κ lies on the same side (on the opposite side) of the half-plane o as (from) the half-plane $\chi \in \mathfrak{A}$. If the set \mathfrak{A} (the set \mathfrak{B}) consists of a single element, we say that the set \mathfrak{B} (the half-plane κ) lies in the pencil \mathfrak{J} on the same side of the half-plane o as the half-plane χ (the set \mathfrak{A}).
Lemma 1.2.61.1. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side of the half-plane o as a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the pencil \mathfrak{J} on the same side of the half-plane o as the set \mathfrak{B}.

Lemma 1.2.61.2. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side of the half-plane o as a set $\mathfrak{A} \subset \mathfrak{J}$, and a set $\mathfrak{C} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the same side of the half-plane o as the set \mathfrak{B}, then the set \mathfrak{C} lies in the pencil \mathfrak{J} on the same side of the half-plane o as the set \mathfrak{A}.
Lemma 1.2.61.3. If a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the set \mathfrak{J} on the opposite side of the half-plane o from a set $\mathfrak{A} \subset \mathfrak{J}$, then the set \mathfrak{A} lies in the set \mathfrak{J} on the opposite side of the half-plane o from the set \mathfrak{B}.

In view of symmetry of the relations, established by the lemmas above, if a set $\mathfrak{B} \subset \mathfrak{J}$ lies in the pencil \mathfrak{J} on the same side (on the opposite side) of the half-plane o as a set (from a set) $\mathfrak{A} \subset \mathfrak{J}$, we say that the sets \mathfrak{A} and \mathfrak{B} lie in the pencil \mathfrak{J} on one side (on opposite sides) of the half-plane o.

Lemma 1.2.61.4. If two distinct half-planes χ, κ lie on an dihedral angular ray o_{λ}, the open dihedral angular interval $(\chi \kappa)$ also lies on the dihedral angular ray o_{λ}.

Given a dihedral angle $\widehat{\chi \text { kappa }},{ }^{230}$ whose sides χ, κ both lie in the pencil \mathfrak{J}, such that the open dihedral angular interval ($\chi \kappa$) does not contain $o \in \mathfrak{J}$, we have (L 1.2.61.5-L 1.2.61.7):

Lemma 1.2.61.5. - If one of the ends of $(\chi \kappa)$ lies on the dihedral angular ray o_{λ}, the other end is either on o_{λ} or coincides with o.

Lemma 1.2.61.6. - If $(h k)$ has half-planes in common with the dihedral angular ray o_{λ}, either both ends of ($\chi \kappa$) lie on o_{λ}, or one of them coincides with o.

Lemma 1.2.61.7. - If $(\chi \kappa)$ has common points with the dihedral angular ray o_{λ}, the interval $(\chi \kappa)$ lies on o_{λ}, $(\chi \kappa) \subset o_{\lambda}$.

Lemma 1.2.61.8. If χ and κ lie on one dihedral angular ray o_{λ}, the complementary dihedral angular rays χ_{o}^{c} and κ_{o}^{c} lie in the pencil \mathfrak{J} on one side of the half-plane o.

Theorem 1.2.61. A half-plane o in a pencil \mathfrak{J} of half-planes lying on the same side of a plane α as a given point Q, which admits a generalized betweenness relation, separates the rest of the half-planes in this pencil into two non-empty classes (dihedral angular rays) in such a way that...

Properties of Convex Polygons

A polygon $A_{1} A_{2} \ldots A_{n}$ is called convex iff for any side $A_{i} A_{i+1}$ for $i=1,2, \ldots, n$ (where, of course, $A_{n+1}=A_{1}$) the set $\mathcal{P} \backslash\left[A_{i} A_{i+1}\right]$ lies completely on one side of the line $a_{A_{i} A_{i+1}}$. ${ }^{231}$

Lemma 1.2.62.1. Every triangle is a convex polygon.
Proof.
Lemma 1.2.62.2. Suppose that a polygon $A_{1} A_{2} \ldots A_{n}, n \geq 4$, has the following property: for any side $A_{i} A_{i+1}$ for $i=1,2, \ldots, n$ (where, of course, $A_{n+1}=A_{1}$) the remaining vertices of the polygon lie on the same side of the corresponding line $a_{A_{i} A_{i+1}}$. Then the polygon is convex.

Proof. Follows from L 1.2.19.9.
Lemma 1.2.62.3. If points A, C lie on opposite sides of the line $a_{B D}$, and B, D lie on opposite sides of $a_{A C}$, then the quadrilateral $A B C D$ is convex. ${ }^{232}$

Proof. According to T 1.2.41, the diagonals $(A C),(B D)$ meet in a point O. The result is then easily seen using L 1.2.21.6, L 1.2.21.4 and the definition of interior of the angle.

Lemma 1.2.62.4. Suppose $A_{1} A_{2} \ldots A_{n}$, where $n \geq 4$, is a convex polygon, where the vertices A_{k}, A_{l} are both adjacent to the vertex A_{i}. Then for any other vertex A_{j} (distinct from A_{i}, A_{k}, A_{l}) of the same polygon the ray $A_{i A_{j}}$ lies completely inside the angle $\angle A_{k} A_{i} A_{l}$. ${ }^{233}$

Proof. Follows directly from the definitions of convexity and the interior of angle. ${ }^{234} \square$
Lemma 1.2.62.5. Consider a trapezoid $A B C D$ with $a_{B C} \| a_{A D}$. If the vertices C, D lie on one side of the line $a_{A B}$ formed by the other two vertices, ${ }^{235}$ then $A B C D$ is convex. ${ }^{236}$

Proof. See C 1.2.47.4, L 1.2.62.3.
Theorem 1.2.62. Every convex polygon is simple.

Proof.

[^77]Consider two non-adjacent vertices A_{i}, A_{j} of a polygon $A_{1} A_{2} \ldots A_{n}$ (assuming the polygon in quetion does have two non-adjacent vertices; this obviously cannot be the case for a triangle), there are evidently two open paths with A_{i}, A_{j} as the ends. We shall refer to these paths as the (open) separation paths generated by A_{i}, A_{j} and associated with the polygon $A_{1} A_{2} \ldots A_{n}$, and denote them $\operatorname{Path} 1\left(A_{1} A_{2} \ldots A_{n}\right)$ and $\operatorname{Path} 2\left(A_{1} A_{2} \ldots A_{n}\right)$, the choice of numbers 1,2 being entirely coincidental. Sometimes (whenever it is well understood which polygon is being considered) we shall omit the parentheses.

Consider two non-adjacent vertices A_{i}, A_{j} of a convex polygon $A_{1} A_{2} \ldots A_{n}$.
Lemma 1.2.63.1. The open interval $\left(A_{i} A_{j}\right)$ does not meet either of the separation paths (generated by A_{i}, A_{j} and associated with $A_{1} A_{2} \ldots A_{n}$). ${ }^{237}$

Proof. Consider one of the separation paths, say, Path1. Suppose the contrary to what is stated by the lemma, i.e. that the open interval $\left(A_{i} A_{j}\right)$ meets the side-line $\left[A_{k} A_{l}\right]$ of Path1. This means that the points A_{i}, A_{j} lie on the opposite sides of the line $a_{A_{k} A_{l}},{ }^{238}$ which contradicts the convexity of the polygon $A_{1} A_{2} \ldots A_{n}$. This contradiction shows that in reality $\left(A_{i} A_{j}\right)$ does not meet Path1 (and by the same token it does not meet Path2).

Lemma 1.2.63.2. The separation paths Path1, Path 2 lie on opposite sides of the line $a_{A_{i} A_{j}}$.
Proof. Suppose the contrary, i.e. that the paths Path1, Path2 lie on the same side of the line $a_{A_{i} A_{j}}$. ${ }^{239}$ Consider the vertices A_{k}, A_{l} of Path1, Path2,respectively, adjacent on the polygon $A_{1} A_{2} \ldots A_{n}$ to A_{i}. Using L 1.2.21.21, we can assume without loss of generality that the ray A_{k} lies inside the angle $\angle A_{j} A_{i} A_{l}$. But this implies that the vertices A_{j}, A_{l} of the polygon $A_{1} A_{2} \ldots A_{n}$ lie on opposite sides of the line $a_{A_{i} A_{k}}$ containing the side $A_{i} A_{k}$, which contradicts the convexity of $A_{1} A_{2} \ldots A_{n}$. \square

Lemma 1.2.63.3. Straightening of convex polygons preserves their convexity.

Proof. We need to show that for any side of the new polygon the remaining vertices lie on the same side of the line containing that side. This is obvious for all sides except the one formed as the result of straightening. (In fact, straightening can only reduce the number of sides for which the condition of convexity must be satisfied.) But for the latter this is an immediate consequence of L 1.2 .63 .1 . Indeed, given the side $A_{i} A_{j}$ resulting from straightening, the remaining vertices of the new polygon are also vertices of one of the separation paths generated by A_{i}, A_{j}, associated with the original polygon $A_{1} A_{2} \ldots A_{n}$.

Lemma 1.2.63.4. If vertices A_{p}, A_{q} lie on different separation paths (generated by A_{i}, A_{j}) then the ray $A_{i_{A_{j}}}$ (in particular, the point A_{j} and the open interval $\left(A_{i} A_{j}\right)$) lies completely inside the angle $\angle A_{p} A_{i} A_{q}$.

Proof. Follows from L 1.2.63.3, L 1.2.62.4. ${ }^{240}$
Consider a path $A_{1} A_{2} \ldots A_{n}{ }^{241}$ (in particular, a polygon) and a connected collinear set \mathcal{A}.
We shall define a single instance of traversal of the path $A_{1} A_{2} \ldots A_{n}$ by the set \mathcal{A}, or, which is by definition the same, a single instance of traversal of the set \mathcal{A} by the path $A_{1} A_{2} \ldots A_{n}$ as one of the following situations taking place:

- (Type I traversal): A point $A \in \mathcal{A}$ lies on the side $A_{i} A_{i+1}$ of the path and this is the only point that the set and the side have in common;
- (Type II traversal): A vertex A_{i} lies in the set \mathcal{A}, and the adjacent vertices A_{i-1}, A_{i+1} lie on opposite sides of the line containing the set \mathcal{A}.
- (Type III traversal): Vertices A_{i}, A_{i+1} lie in the set \mathcal{A}, and the vertices A_{i-1}, A_{i+2} lie on opposite sides of the line containing the set \mathcal{A}.

242
Lemma 1.2.63.5. Proof.
Theorem 1.2.64. Proof.

[^78]

Figure 1.101: Given an interval $A B$, on any ray $A_{X^{\prime}}^{\prime}$ there is a point B^{\prime} such that $A B \equiv A^{\prime} B^{\prime}$.

Figure 1.102: If intervals $A B, B C$ are congruent to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, B$ lies between A, C and B^{\prime} lies between A^{\prime}, C^{\prime}, the interval $A C$ is congruent to $A^{\prime} C^{\prime}$.

1.3 Congruence

Hilbert's Axioms of Congruence

The axioms A 1.3.1 - A 1.3.3 define the relation of congruence on the class of intervals, i.e. for all two - element point sets: $\rho \subset\left\{\{A, B\} \mid A, B \in \mathcal{C}^{P t}\right\}^{2}$. If a pair $(A B, C D) \in \rho$, we say that the interval $A B$ is congruent to the interval $C D$ and write $A B \equiv C D$. The axiom A 1.3.4 defines the relation of congruence on the class of all angles. If angles $\angle(h, k)$ and $\angle(l, m)$ are in this relation, we say that the angle $\angle(h, k)$ is congruent to the angle $\angle(l, m)$ and write $\angle(h, k) \equiv \angle(l, m)$.

Axiom 1.3.1. Given an interval $A B$, on any ray $A_{X^{\prime}}^{\prime}$ there is a point B^{\prime} such that $A B$ is congruent to the interval $A^{\prime} B^{\prime}, A B \equiv A^{\prime} B^{\prime}$. (See Fig. 1.101.)

Axiom 1.3.2. If intervals $A^{\prime} B^{\prime}$ and $A^{\prime \prime} B^{\prime \prime}$ are both congruent to the same interval $A B$, the interval $A^{\prime} B^{\prime}$ is congruent to the interval $A^{\prime \prime} B^{\prime \prime}$. That is, $A^{\prime} B^{\prime} \equiv A B \& A^{\prime \prime} B^{\prime \prime} \equiv A B \Rightarrow A^{\prime} B^{\prime} \equiv A^{\prime \prime} B^{\prime \prime}$.

Axiom 1.3.3. If intervals $A B, B C$ are congruent to intervals $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, respectively, where the point B lies between the points A and C and the point B^{\prime} lies between A^{\prime} and C^{\prime}, then the interval $A C$ is congruent to the interval $A^{\prime} C^{\prime}$. That is, $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \Rightarrow A C \equiv A^{\prime} C^{\prime}$. (See Fig. 1.102)

Axiom 1.3.4. Given an angle $\angle(h, k)$, for any ray h^{\prime} in a plane $\alpha^{\prime} \supset h^{\prime}$ containing this ray, and for any point $A \in \mathcal{P}_{\alpha^{\prime}} \backslash \mathcal{P}_{\bar{h}}$, there is exactly one ray k^{\prime} with the same origin O^{\prime} as h^{\prime}, such that the ray k^{\prime} lies in α^{\prime} on the same side of \bar{h} as A, and the angle $\angle(h, k)$ is congruent to the angle $\angle\left(h^{\prime}, k^{\prime}\right)$.

Every angle is congruent to itself: $\angle(h, k) \equiv \angle(h, k)$.
A point set \mathcal{A} is said to be pointwise congruent, or isometric, to a point set \mathcal{B}, written $\mathcal{A} \equiv \mathcal{B}$, iff there is a bijection $\phi: \mathcal{A} \rightarrow \mathcal{B}$, called isometry, congruence, or (rigid) motion, or which maps (abstract) intervals formed by points of the set \mathcal{A} to congruent intervals formed by points of the set \mathcal{B} : for all $A_{1}, A_{2} \in \mathcal{A}$ such that $A_{1} \neq A_{2}$, we have $A_{1} A_{2} \equiv B_{1} B_{2}$, where $B_{1}=\phi\left(A_{1}\right), B_{2}=\phi\left(A_{2}\right)$. Observe that, by definition, all motions are injective, i.e. they transform distinct points into distinct points.

A finite (countably infinite) sequence of points A_{i}, where $i \in \mathbb{N}_{n}(i \in \mathbb{N}), n \geq 2$, is said to be congruent to a finite (countably infinite) sequence of points B_{i}, where $i \in \mathbb{N}_{n}(i \in \mathbb{N})$, if every interval $A_{i} A_{j}, i \neq j, i, j \in \mathbb{N}_{n}(i, j \in \mathbb{N})$ formed by a pair of points from the first sequence, is congruent to the corresponding (i.e. formed by the points with the same numbers) interval $B_{i} B_{j}, i \neq j, i, j \in \mathbb{N}_{n}(i, j \in \mathbb{N})$ formed by a pair of points of the second sequence.

A path $A_{1} A_{2} \ldots A_{n}$, in particular, a polygon, is said to be weakly congruent to a path $B_{1} B_{2} \ldots B_{m}$ (we write this as $A_{1} A_{2} \ldots A_{n} \simeq B_{1} B_{2} \ldots B_{m}$) iff $m=n^{243}$ and each side of the first path is congruent to the corresponding ${ }^{244}$ side of the second path. That is,

$$
A_{1} A_{2} \ldots A_{n} \simeq B_{1} B_{2} \ldots B_{m} \stackrel{\text { def }}{\Longleftrightarrow}(m=n) \&\left(\forall i \in \mathbb{N}_{n-1} A_{i} A_{i+1} \equiv B_{i} B_{i+1}\right) .
$$

A path $A_{1} A_{2} \ldots A_{n}$, in particular, a polygon, is said to be congruent to a path $B_{1} B_{2} \ldots B_{m}$, written $A_{1} A_{2} \ldots A_{n} \equiv$ $B_{1} B_{2} \ldots B_{m}$, iff

- the path $A_{1} A_{2} \ldots A_{n}$ is weakly congruent to the path $B_{1} B_{2} \ldots B_{n}$; and

[^79]

Figure 1.103: Congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}, \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ imply $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}$.

- each angle between adjacent sides of the first path is congruent to the corresponding angle ${ }^{245}$ between adjacent sides of the second path. That is,

$$
\begin{aligned}
& A_{1} A_{2} \ldots A_{n} \equiv B_{1} B_{2} \ldots B_{n} \stackrel{\text { def }}{\Longrightarrow} A_{1} A_{2} \ldots A_{n} \simeq B_{1} B_{2} \ldots B_{n} \& \\
& \left(\forall i \in\{2,3, \ldots, n-1\} \angle A_{i-1} A_{i} A_{i+1} \equiv \angle B_{i-1} B_{i} B_{i+1}\right) \&\left(A_{1}=A_{n} \& B_{1}=B_{n} \Rightarrow \angle A_{n-1} A_{n} A_{2} \equiv \angle B_{n-1} B_{n} B_{2}\right)
\end{aligned}
$$

A path $A_{1} A_{2} \ldots A_{n}$ is said to be strongly congruent to a path $B_{1} B_{2} \ldots B_{n}$, written $A_{1} A_{2} \ldots A_{n} \cong B_{1} B_{2} \ldots B_{n}$, iff the contour of $A_{1} A_{2} \ldots A_{n}$ is pointwise congruent to the contour of $B_{1} B_{2} \ldots B_{n}$. That is,

$$
A_{1} A_{2} \ldots A_{n} \cong B_{1} B_{2} \ldots B_{n} \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{P}_{A_{1} A_{2} \ldots A_{n}}=\mathcal{P}_{B_{1} B_{2} \ldots B_{n}}
$$

Axiom 1.3.5. Given triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$, congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}, \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ imply $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}$. (See Fig. 1.103)

Basic Properties of Congruence

Lemma 1.3.1.1. Given triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$, congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}, \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ imply $\angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} .{ }^{246}$ (See Fig. 1.103)

Proof. Immediately follows from A 1.3.5.
Theorem 1.3.1. Congruence is an equivalence relation on the class of all (abstract) intervals, i.e., it is reflexive, symmetric, and transitive.

Proof. Given an interval $A B$, by A 1.3.1 $\exists A^{\prime} B^{\prime} A B \equiv A^{\prime} B^{\prime}$.
Reflexivity: $A B \equiv A^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\text { A1.3.2 }}{\Longrightarrow} A B \equiv A B .^{247}$
Symmetry: $A^{\prime} B^{\prime} \equiv A^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \xrightarrow{\mathrm{A} 1.3 .2} A^{\prime} B^{\prime} \equiv A B$.
Transitivity: $A B \equiv A^{\prime} B^{\prime} \& A^{\prime} B^{\prime} \equiv A^{\prime \prime} B^{\prime \prime} \Rightarrow A^{\prime} B^{\prime} \equiv A B \& A^{\prime} B^{\prime} \equiv A^{\prime \prime} B^{\prime \prime} \stackrel{\mathrm{A1.3.2}}{\Longrightarrow} A B \equiv A^{\prime \prime} B^{\prime \prime}$.
Corollary 1.3.1.2. Congruence of geometric figures is an equivalence relation (on the class of all geometric figures.) Congruence of finite or countably infinite sequences is an equivalence relation (on the class of all such sequences.) Weak congruence is an equivalence relation (on the class of all paths (in particular, polygons.)) That is, all these relations have the properties of reflexivity, symmetry, and transitivity.

Proof.
Owing to symmetry, implied by T 1.3.1, of the relation of congruence of intervals, if $A_{1} A_{2} \equiv B_{1} B_{2}$, i.e. if the interval $A_{1} A_{2}$ is congruent to the interval $B_{1} B_{2}$, we can say also that the intervals $A_{1} A_{2}$ and $B_{1} B_{2}$ are congruent.

Similarly, because of C 1.3.1.2, if $A_{1} A_{2} \ldots A_{n} \simeq B_{1} B_{2} \ldots B_{n}$ instead of saying that the path $A_{1} A_{2} \ldots A_{n}$ is weakly congruent to the path $B_{1} B_{2} \ldots B_{n}$, one can say that the paths $A_{1} A_{2} \ldots A_{n}, B_{1} B_{2} \ldots B_{n}$ are weakly congruent (to each other).

The following simple technical facts will allow us not to worry too much about how we denote paths, especially polygons, in studying their congruence.

Proposition 1.3.1.3. If a path (in particular, a polygon) $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ is weakly congruent to a path (in particular, a polygon) $B_{1} B_{2} B_{3} \ldots B_{n-1} B_{n}$, the paths $A_{2} A_{3} \ldots A_{n-1} A_{n} A_{1}$ and $B_{2} B_{3} \ldots B_{n-1} B_{n} B_{1}$ are also weakly congruent, as are the paths $A_{3} A_{4} \ldots A_{n} A_{1} A_{2}$ and $B_{3} B_{4} \ldots, \ldots, A_{n} A_{1} \ldots A_{n-2} A_{n-1}$ and $B_{n} B_{1} \ldots B_{n-2} B_{n-1}$. Furthermore, the paths $A_{n} A_{n-1} A_{n-2} \ldots A_{2} A_{1}$ and $B_{n} B_{n-1} B_{n-2} \ldots B_{2} B_{1}, A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{n}$ and $B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{n}$, $\ldots, A_{1} A_{n} A_{n-1} \ldots A_{3} A_{2}$ and $B_{1} B_{n} B_{n-1} \ldots B_{3} B_{2}$ are then weakly congruent as well. Written more formally, if

[^80]a path (in particular, a polygon) $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ is weakly congruent to a path (in particular, a polygon) $B_{1} B_{2} B_{3} \ldots B_{n-1} B_{n}$, the paths $A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(n-1)} A_{\sigma(n)}$ and $B_{\sigma(1)} B_{\sigma(2)} \ldots B_{\sigma(n-1)} A_{\sigma(n)}$ are also weakly congruent, and more generally, the paths $A_{\sigma^{k}(1)} A_{\sigma^{k}(2)} \ldots A_{\sigma^{k}(n-1)} A_{\sigma^{k}(n)}$ and $B_{\sigma^{k}(1)} B_{\sigma^{k}(2)} \ldots B_{\sigma^{k}(n-1)} B_{\sigma^{k}(n)}$ are weakly congruent, where σ is the permutation
\[

\sigma=\left($$
\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}
$$\right)
\]

i.e. $\sigma(i)=i+1, i=1,2, \ldots n-1, \sigma(n)=1$, and $k \in \mathbb{N}$. Furthermore, the paths $A_{\tau^{k}(1)} A_{\tau^{k}(2)} \ldots A_{\tau^{k}(n-1)} A_{\tau^{k}(n)}$ and $B_{\tau^{k}(1)} B_{\tau^{k}(2)} \ldots B_{\tau^{k}(n-1)} B_{\tau^{k}(n)}$ are weakly congruent, where τ is the permutation

$$
\tau=\sigma^{-1}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
n & 1 & \ldots & n-2 & n-1
\end{array}\right)
$$

i.e. $\tau(1)=n, \tau(i)=i-1, i=2,3, \ldots n$, and $k \in\{0\} \cup \mathbb{N}$.

Proposition 1.3.1.4. If a polygon $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ (i.e., a path $A_{1} A_{2} \ldots A_{n} A_{n+1}$ with $A_{n+1}=A_{1}$) is congruent to a polygon $B_{1} B_{2} B_{3} \ldots B_{n-1} B_{n}$ (i.e., a path $B_{1} B_{2} \ldots B_{n} B_{n+1}$ with $B_{n+1}=B_{1}$), the polygon $A_{2} A_{3} \ldots A_{n-1} A_{n} A_{1}$ is congruent to the polygon $B_{2} B_{3} \ldots B_{n-1} B_{n} B_{1}$, and $A_{3} A_{4} \ldots A_{n} A_{1} A_{2}$ is congruent to $B_{3} B_{4} \ldots, \ldots, A_{n} A_{1} \ldots A_{n-2} A_{n-1}$ is congruent to $B_{n} B_{1} \ldots B_{n-2} B_{n-1}$. Furthermore, the polygon $A_{n} A_{n-1} A_{n-2} \ldots A_{2} A_{1}$ is congruent to the polygon $B_{n} B_{n-1} B_{n-2} \ldots B_{2} B_{1}, A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{n}$ is congruent to $B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{n}, \ldots, A_{1} A_{n} A_{n-1} \ldots A_{3} A_{2}$ is congruent to $B_{1} B_{n} B_{n-1} \ldots B_{3} B-2$. Written more formally, if a polygon $A_{1} A_{2} A_{3} \ldots A_{n-1} A_{n}$ is congruent to a polygon $B_{1} B_{2} B_{3} \ldots B_{n-1} B_{n}$, the polygon $A_{\sigma(1)} A_{\sigma(2)} \ldots A_{\sigma(n-1)} A_{\sigma(n)}$ is congruent to the polygon $B_{\sigma(1)} B_{\sigma(2)} \ldots B_{\sigma(n-1)} A_{\sigma(n)}$, and more generally, the polygon $A_{\sigma^{k}(1)} A_{\sigma^{k}(2)} \ldots A_{\sigma^{k}(n-1)} A_{\sigma^{k}(n)}$ is congruent to the polygon $B_{\sigma^{k}(1)} B_{\sigma^{k}(2)} \ldots B_{\sigma^{k}(n-1)} B_{\sigma^{k}(n)}$, where σ is the permutation

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}\right)
$$

i.e. $\sigma(i)=i+1, i=1,2, \ldots n-1, \sigma(n)=1$, and $k \in \mathbb{N}$. Furthermore, the polygon $A_{\tau^{k}(1)} A_{\tau^{k}(2)} \ldots A_{\tau^{k}(n-1)} A_{\tau^{k}(n)}$ is congruent to the polygon $B_{\tau^{k}(1)} B_{\tau^{k}(2)} \ldots B_{\tau^{k}(n-1)} B_{\tau^{k}(n)}$, where τ is the permutation

$$
\tau=\sigma^{-1}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
n & 1 & \ldots & n-2 & n-1
\end{array}\right)
$$

i.e. $\tau(1)=n, \tau(i)=i-1, i=2,3, \ldots n$, and $k \in\{0\} \cup \mathbb{N}$.

Proposition 1.3.1.5. Suppose finite sequences of n points $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$, where $n \geq 3$, have the property that every point of the sequence, except the first $\left(A_{1}, B_{1}\right)$ and the last $\left(A_{n}, B_{n}\right.$, respectively), lies between the two points of the sequence with the numbers adjacent (in \mathbb{N}) to the number of the given point. Then if all intervals formed by pairs of points of the sequence $A_{1}, A_{2}, \ldots, A_{n}$ with adjacent (in \mathbb{N}) numbers are congruent to the corresponding intervals ${ }^{248}$ of the sequence $B_{1}, B_{2}, \ldots, B_{n}$, the intervals formed by the first and the last points of the sequences are also congruent, $A_{1} A_{n} \equiv B_{1} B_{n}$. To recapitulate in more formal terms, let $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}, n \geq 3$, be finite point sequences such that $\left[A_{i} A_{i+1} A_{i+2}\right]$, $\left[B_{i} B_{i+1} B_{i+2}\right]$ for all $i \in \mathbb{N}_{n-2}$ (i.e. $\forall i=1,2, \ldots n-2)$. Then congruences $A_{i} A_{i+1} \equiv B_{i} B_{i+1}$ for all $i \in \mathbb{N}_{n-1}$ imply $A_{1} A_{n} \equiv B_{1} B_{n}$.

Proof. By induction on n. For $n=3$ see A 1.3.3. Now suppose $A_{1} A_{n-1} \equiv B_{1} B_{n-1}$ (induction!). ${ }^{249}$ We have $\left[A_{1} A_{n-1} A_{n}\right],\left[B_{1} B_{n-1} B_{n}\right]$ by L 1.2.7.3. Therefore, $\left[A_{1} A_{n-1} A_{n}\right] \&\left[B_{1} B_{n-1} B_{n}\right] \& A_{1} A_{n-1} \equiv B_{1} B_{n-1} \& A_{n-1} A_{n} \equiv$ $B_{n-1} B_{n} \stackrel{\text { A1.3.3 }}{\Longrightarrow} A_{1} A_{n} \equiv B_{1} B_{n}$.

Lemma 1.3.2.1. Let points B_{1}, B_{2} lie on one side of a line $a_{A C}$, and some angle $\angle(h, k)$ be congruent to both $\angle C A B_{1}$ and $C A B_{2}$. Then the angles $\angle C A B_{1}, \angle C A B_{2}$, and, consequently, the rays $A_{B_{1}}, A_{B_{2}}$, are identical.

Proof. (See Fig. 1.104.) $B_{1} B_{2} a_{A C} \& B_{1} \in A_{B_{1}} \& B_{2} \in A_{B_{2}} \stackrel{\mathrm{T1.2.19}}{\Longrightarrow} A_{B_{1}} A_{B_{2}} a_{A C} . \quad \angle(h, k) \equiv \angle C A B_{1} \& \angle(h, k) \equiv$ $\angle C A B_{2} \& A_{B_{1}} A_{B_{2}} a_{A C} \stackrel{\text { A1.3.4 }}{\Longrightarrow} \angle C A B_{1}=\angle C A B_{2} \Rightarrow A_{B_{1}}=A_{B_{2}} .{ }^{250}$

Corollary 1.3.2.2. If points B_{1}, B_{2} lie on one side of a line $a_{A C}$, and the angle $\angle C A B_{1}$ is congruent to the angle $\angle C A B_{2}$ then $\angle C A B_{1}=\angle C A B_{2}$ and, consequently, $A_{B_{1}}=A_{B_{2}}$.

Proof. By A 1.3.4 $\angle C A B_{1} \equiv \angle C A B_{1}$, so we can let $\angle(h, k) \rightleftharpoons C A B_{1}$ and use L 1.3.2.1.

[^81]

Figure 1.104: If points B_{1}, B_{2} lie on one side of $a_{A C}$, and some angle $\angle(h, k)$ is congruent to both $\angle C A B_{1}, C A B_{2}$, then the angles $\angle C A B_{1}, \angle C A B_{2}$, and, consequently, the rays $A_{B_{1}}, A_{B_{2}}$, are identical.

Figure 1.105: Given an interval $A B$, on any ray A_{X}^{\prime} there is at most one point B^{\prime} such that $A B$ is congruent to the interval $A^{\prime} B^{\prime}$

Theorem 1.3.2. Given an interval $A B$, on any ray A_{X}^{\prime} there is exactly one point B^{\prime} such that $A B$ is congruent to the interval $A^{\prime} B^{\prime}, A B \equiv A^{\prime} B^{\prime}$.

Proof. (See Fig. 1.105.) To show that given an interval $A B$, on any ray A_{X}^{\prime} there is at most one point B^{\prime} such that $A B$ is congruent to the interval $A^{\prime} B^{\prime}$, suppose the contrary, i.e. $\exists B^{\prime \prime} \in A^{\prime}{ }_{B^{\prime}}$ such that $A B \equiv A^{\prime} B^{\prime}, A B \equiv A^{\prime} B^{\prime \prime}$. By L 1.1.2.1 $\exists C^{\prime} \notin a_{A^{\prime} B^{\prime}} . B^{\prime \prime} \in A^{\prime} B^{\prime} \stackrel{\mathrm{L} 1.2 .11 .3}{\Longrightarrow} A^{\prime}{ }_{B^{\prime \prime}}=A^{\prime} B^{\prime \prime} \stackrel{\text { A1.3.4 }}{\Longrightarrow} \angle B^{\prime} A^{\prime} C^{\prime} \equiv \angle B^{\prime \prime} A^{\prime} C^{\prime} . \quad A B \equiv A^{\prime} B^{\prime} \& A B \equiv$ $A^{\prime} B^{\prime \prime} \xrightarrow{\mathrm{T} 1.3 .1} A^{\prime} B^{\prime} \equiv A^{\prime} B^{\prime \prime} . A^{\prime} B^{\prime} \equiv A^{\prime} B^{\prime \prime} \& A^{\prime} C^{\prime} \equiv A^{\prime} C^{\prime} \& \angle B^{\prime} A^{\prime} C^{\prime} \equiv \angle B^{\prime \prime} A^{\prime} C^{\prime} \stackrel{\text { L1.3.1.1 }}{\Longrightarrow} \angle A^{\prime} C^{\prime} B^{\prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime} . B^{\prime \prime} \in$ $A^{\prime} B_{B^{\prime}} \stackrel{\text { L1.2.19.8 }}{\Longrightarrow} B^{\prime \prime} \in\left(a_{A^{\prime} C^{\prime}}\right)_{B^{\prime}} . B^{\prime} B^{\prime \prime} a_{A^{\prime} C^{\prime}} \& \angle C^{\prime} A^{\prime} B^{\prime} \equiv \angle C^{\prime} A^{\prime} B^{\prime \prime} \stackrel{\text { C1.3.2.2 }}{\Longrightarrow} C^{\prime}{ }_{B^{\prime}}=C^{\prime}{ }_{B^{\prime \prime}} .{ }^{251}$ But, on the other hand, $B^{\prime \prime} \in a_{A^{\prime} B^{\prime}} \& B^{\prime \prime} \neq B^{\prime} \stackrel{\mathrm{P} 1.1 .1 .1}{\Longrightarrow} a_{A^{\prime} B^{\prime}}=a_{B^{\prime} B^{\prime \prime}}$, and $C^{\prime} \notin a_{A^{\prime} B^{\prime}}=a_{B^{\prime} B^{\prime \prime}} \stackrel{\mathrm{CL1.1.2.3}}{\Longrightarrow} B^{\prime \prime} \notin a_{B^{\prime} C^{\prime}} \stackrel{\mathrm{L} 1.2 .11 .1}{\Longrightarrow} C^{\prime}{ }_{B^{\prime}} \neq C^{\prime}{ }_{B^{\prime \prime}}-\mathrm{a}$ contradiction.

Congruence of Triangles: SAS \& ASA

A triangle with (at least) two congruent sides is called an isosceles triangle. In an isosceles triangle $\triangle A B C$ with $A B \equiv C B$ the side $A C$ is called the base of the triangle $\triangle A B C$, and the angles $\angle B A C$ and $\angle A C B$ are called its base angles. (See Fig. 1.106.)

Theorem 1.3.3. In an isosceles triangle $\triangle A B C$ with $A B \equiv C B$ the base angles $\angle B A C, \angle A C B$ are congruent.
Proof. Consider $\triangle A B C, \triangle C B A$. Then $A B \equiv C B \& C B \equiv A B \& \angle A B C \equiv \angle C B A \stackrel{\text { A1.3.5 }}{\Longrightarrow} \angle C A B \equiv \angle A C B$.
Theorem 1.3.4 (First Triangle Congruence Theorem (SAS)). Let two sides, say, $A B$ and $A C$, and the angle $\angle B A C$ between them, of a triangle $\triangle A B C$, be congruent, respectively, to sides $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$, and the angle $\angle B^{\prime} A^{\prime} C^{\prime}$ between them, of a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then the triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Proof. (See Fig. 1.107.) By A 1.3.5, L 1.3.1.1 $A B \equiv A^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime} \& \angle A \equiv \angle A^{\prime} \Rightarrow \angle B \equiv \angle B^{\prime} \& \angle C \equiv$ $\angle C^{\prime} .{ }^{252}$ Show $B C \equiv B^{\prime} C^{\prime}$. By A 1.3.1.1 $\exists C^{\prime \prime} \in B^{\prime} C^{\prime} B C \equiv B^{\prime} C^{\prime \prime} . C^{\prime \prime} \in B_{C^{\prime}}^{\prime} \stackrel{\mathrm{L} 1.2 .11 .3}{\Longrightarrow} B^{\prime}{ }_{C^{\prime \prime}}=B_{C^{\prime}}^{\prime} \Rightarrow$ $\angle A^{\prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime \prime} . A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime \prime} \& \angle B \equiv \angle B^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime \prime} . C^{\prime \prime} \in B^{\prime}{ }_{C^{\prime}} \stackrel{\text { L1.2.19.8 }}{\Longrightarrow} C^{\prime \prime} \in\left(a_{A^{\prime} B^{\prime}}\right)_{C^{\prime}}$.

[^82]

Figure 1.106: An isosceles triangle with $A B \equiv C B$.

Figure 1.107: $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}$, and $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ imply $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$. (SAS, or The First Triangle Congruence Theorem)
$\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime \prime} \& C^{\prime} C^{\prime \prime} a_{A^{\prime} B^{\prime}} \stackrel{\text { L1.3.2.1 }}{\Longrightarrow} A^{\prime} C^{\prime}=A_{C^{\prime \prime}}$. Finally, $C^{\prime \prime}=C^{\prime}$, because otherwise $C^{\prime \prime} \neq C^{\prime} \& C^{\prime \prime} \in a_{B^{\prime} C^{\prime}} \cap a_{A^{\prime} C^{\prime}} \& C^{\prime} \in a_{B^{\prime} C^{\prime}} \cap a_{A^{\prime} C^{\prime}} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{A^{\prime} C^{\prime}}=a_{B^{\prime} C^{\prime}}-$ a contradiction.

Theorem 1.3.5 (Second Triangle Congruence Theorem (ASA)). Let a side, say, $A B$, and the two angles $\angle A$ and $\angle B$ adjacent to it (i.e. the two angles of $\triangle A B C$ having $A B$ as a side) of a triangle $\triangle A B C$, be congruent respectively to a side $A^{\prime} B^{\prime}$ and two angles, $\angle A^{\prime}$ and $\angle B^{\prime}$, adjacent to it, of a triangle $\angle A^{\prime} B^{\prime} C^{\prime}$. Then the triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Proof. (See Fig. 1.108.) By hypothesis, $A B \equiv A^{\prime} B^{\prime} \& \angle A \equiv \angle A^{\prime} \& \angle B \equiv \angle B^{\prime}$. By A $1.3 .1 \exists C^{\prime \prime} C^{\prime \prime} \in A^{\prime} C^{\prime} \& A C \equiv$ $A^{\prime} C^{\prime \prime} . \quad C^{\prime \prime} \in A_{C^{\prime}}^{\prime} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} A^{\prime} C^{\prime \prime}=A^{\prime} C^{\prime} \Rightarrow \angle B^{\prime} A^{\prime} C^{\prime} \equiv \angle B^{\prime} A^{\prime} C^{\prime \prime} . A B \equiv A^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime \prime} \& \angle A B C \equiv$ $\angle A^{\prime} B^{\prime} C^{\prime \prime} \stackrel{\text { A1.3.5 }}{\Longrightarrow} \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime \prime} . C^{\prime \prime} \in A^{\prime} C^{\prime} \stackrel{\mathrm{L} 1.2 .19 .8}{\Longrightarrow}\left(a_{A^{\prime} B^{\prime}}\right)_{C^{\prime}} . \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime \prime}$ $\& C^{\prime} C^{\prime \prime} a_{A^{\prime} B^{\prime}} \stackrel{\text { A1.3.4 }}{\Longrightarrow} B^{\prime} C^{\prime}=B^{\prime} C^{\prime \prime}$. Finally, $C^{\prime \prime}=C^{\prime}$, because otherwise $C^{\prime \prime} \neq C^{\prime} \& C^{\prime \prime} \in a_{B^{\prime} C^{\prime}} \cap a_{A^{\prime} C^{\prime}} \& C^{\prime} \in$ $a_{B^{\prime} C^{\prime}} \cap a_{A^{\prime} C^{\prime}} \stackrel{\text { A1.1.2 }}{\Longrightarrow} a_{A^{\prime} C^{\prime}}=a_{B^{\prime} C^{\prime}}-$ a contradiction.

Congruence of Adjacent Supplementary and Vertical Angles

Theorem 1.3.6. If an angle $\angle(h, k)$ is congruent to an angle $\angle\left(h^{\prime}, k^{\prime}\right)$, the angle $\angle\left(h^{c}, k\right)$ adjacent supplementary to the angle $\angle(h, k)$ is congruent to the angle $\angle\left(h^{\prime c}, k^{\prime}\right)$ adjacent supplementary to the angle $\angle\left(h^{\prime}, k^{\prime}\right)$. ${ }^{253}$

Proof. (See Fig. 1.109.) Let B and B^{\prime} be the common origins of the triples (3-ray pencils) of rays h, k, h^{c} and $h^{\prime}, k^{\prime}, h^{\prime c}$, respectively. Using L 1.2.11.3, A 1.3.1, we can choose points $A \in h, C \in k, D \in h^{c}$ and $A^{\prime} \in h^{\prime}, C^{\prime} \in k^{\prime}, D^{\prime} \in h^{\prime c}$ in such a way that $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, B D \equiv B^{\prime} D^{\prime}$. Then also, by hypothesis, $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}$. We have $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B C \equiv$

[^83]

Figure 1.108: $A B \equiv A^{\prime} B^{\prime}, \angle A \equiv \angle A^{\prime}$, and $\angle B \equiv \angle B^{\prime}$ imply $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$. (ASA, or The Second Triangle Congruence Theorem)

Figure 1.109: If angles $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ are congruent, their adjacent supplementary angles $\angle\left(h^{c}, k\right), \angle\left(h^{\prime c}, k^{\prime}\right)$ are also congruent.
$\triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow A C \equiv A^{\prime} C^{\prime} \& \angle C A B \equiv \angle C^{\prime} A^{\prime} B^{\prime} . A B \equiv A^{\prime} B^{\prime} \& B D \equiv B^{\prime} D^{\prime} \&[A B D] \&\left[A^{\prime} B^{\prime} D^{\prime}\right] \stackrel{\mathrm{A1.3} \cdot 3}{\Longrightarrow} A D \equiv A^{\prime} D^{\prime}$. $[A B D] \&\left[A^{\prime} B^{\prime} D^{\prime}\right] \stackrel{\mathrm{L} 1.2 .15 .1}{\Longrightarrow} B \in A_{D} \cap D_{A} \& A^{\prime}{ }_{D^{\prime}} \cap D^{\prime}{ }_{A^{\prime}} \Rightarrow B \in A_{D} \& B^{\prime} \in A^{\prime}{ }_{D^{\prime}} \& B \in D_{A} \& B^{\prime} \in D^{\prime}{ }_{A^{\prime}} \xrightarrow{\mathrm{L} 1.2 .11 .3}$ $A_{B}=A_{D} \& A^{\prime}{ }_{B^{\prime}}=A^{\prime}{ }_{D^{\prime}} \& D_{B}=D_{A} \& D^{\prime}{ }_{B^{\prime}}=D^{\prime}{ }_{A^{\prime}} \Rightarrow \angle C A B=\angle C A D \& \angle C^{\prime} A^{\prime} B^{\prime}=\angle C^{\prime} A^{\prime} D^{\prime} \& \angle C D B=$ $\angle C D A \& \angle C^{\prime} D^{\prime} B^{\prime}=\angle C^{\prime} D^{\prime} A^{\prime} . \quad \angle C A B \equiv \angle C^{\prime} A^{\prime} B^{\prime} \& \angle C A B=\angle C A D \& \angle C^{\prime} A^{\prime} B^{\prime}=\angle C^{\prime} A^{\prime} D^{\prime} \Rightarrow \angle C A D \equiv$ $\angle C^{\prime} A^{\prime} D^{\prime} . A C \equiv A^{\prime} C^{\prime} \& A D \equiv A^{\prime} D^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \xrightarrow{\mathrm{T1.3.4}} \triangle A C D \equiv \triangle A^{\prime} C^{\prime} D^{\prime} \Rightarrow C D \equiv C^{\prime} D^{\prime} \& \angle C D A \equiv$ $\angle C^{\prime} D^{\prime} A^{\prime} . \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime} \& \angle C D A=\angle C D B \& \angle C^{\prime} D^{\prime} A^{\prime}=\angle C^{\prime} D^{\prime} B^{\prime} \stackrel{\text { A1.3.5 }}{\Longrightarrow} \angle C B D \equiv \angle C^{\prime} B^{\prime} D^{\prime}$.

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.6.
Corollary 1.3.6.1. Suppose $\angle(h, k), \angle(k, l)$ are two adjacent supplementary angles (i.e. $\left.l=h^{c}\right)$ and $\angle\left(h^{\prime}, k^{\prime}\right)$, $\angle\left(k^{\prime}, l^{\prime}\right)$ are two adjacent angles such that $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$. Then the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)$ are adjacent supplementary, i.e. $l^{\prime}=h^{\prime c}$. (See Fig. 1.110.)

Proof. Since, by hypothesis, $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)$ are adjacent, by definition of adjacency the rays h^{\prime}, l^{\prime} lie on opposite sides of \bar{k}^{\prime}. Since the angles $\angle(h, k), \angle(k, l)$ are adjacent supplementary, as are the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, h^{\prime c}\right)$, we have by T 1.3.6 $\angle(k, l) \equiv \angle\left(k^{\prime}, h^{\prime c}\right)$. We also have, obviously, $h^{\prime} \overline{k^{\prime}} h^{\prime c}$. Hence $h^{\prime} \bar{k}^{\prime} l^{\prime} \& h^{\prime} \overline{k^{\prime}} h^{\prime c} \xrightarrow{\text { L1.2.18.4 }} l^{\prime} h^{\prime c} \overline{k^{\prime}}$. $\angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right) \& \angle(k, l) \equiv \angle\left(k^{\prime}, h^{\prime c}\right) \& l^{\prime} h^{\prime c} \overline{k^{\prime}} \stackrel{\text { A1.3.4 }}{\Longrightarrow} h^{\prime c}=l^{\prime}$. Thus, the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)$ are adjacent supplementary, q.e.d.

Corollary 1.3.6.2. Consider two congruent intervals $A C, A^{\prime} C^{\prime}$ and points $B, B^{\prime}, D, D^{\prime}$ such that $\angle B A C \equiv$ $\angle B^{\prime} A^{\prime} C^{\prime}, \angle D C A \equiv \angle D^{\prime} C^{\prime} A^{\prime}$, the points B, D lie on the same side of the line $a_{A C}$, and the points B^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} C^{\prime}}$. Suppose further that the lines $a_{A B}, a_{C D}$ meet in some point E. Then the lines $a_{A^{\prime} B^{\prime}}$ and $a_{C^{\prime} D^{\prime}}$ meet in a point E^{\prime} such that the triangles $\triangle A E C, \triangle A^{\prime} E^{\prime} C^{\prime}$ are congruent. Furthermore, if the points B, E lie on the same side of the line $a_{A C}$ then the points B^{\prime}, E^{\prime} lie on the same side of the line $a_{A^{\prime} C^{\prime}}$, and if the points B, E lie on the opposite sides of the line $a_{A C}$ then the points B^{\prime}, E^{\prime} lie on the opposite sides of the line $a_{A^{\prime} C^{\prime}}$. Thus, if the rays A_{B}, C_{D} meet in E, then the rays $A^{\prime}{ }_{B^{\prime}}$ meet ray $C^{\prime}{ }_{D^{\prime}}$ in some point E^{\prime}.

Figure 1.110: Suppose $\angle(h, k), \angle(k, l)$ are adjacent supplementary, $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)$ are adjacent, and $\angle(h, k) \equiv$ $\angle\left(h^{\prime}, k^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$. Then $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)$ are adjacent complementary, i.e. $l^{\prime}=h^{\prime c}$.

Figure 1.111: $\angle(h, k)$ is congruent to its vertical angle $\angle\left(h^{c}, k^{c}\right)$.

Proof. Consider first the case where $E \in A_{B}$, that is, the points B, D, E all lie on the same side of $a_{A C}$ (see L 1.2.19.8, L 1.2.17.1). Using A 1.3 .1 take $E^{\prime} \in A^{\prime}{ }_{B^{\prime}}$ such that $A E \equiv A^{\prime} E^{\prime}$. Then $A C \equiv A^{\prime} C^{\prime} \& A E \equiv A^{\prime} E^{\prime} \& \angle E A C \equiv$ $\angle E^{\prime} A^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A E C \equiv \triangle A^{\prime} E^{\prime} C^{\prime} \Rightarrow \angle A C E \equiv \angle A^{\prime} C^{\prime} E^{\prime} .{ }^{254}$ Taking into account that $E \in C_{D} \xrightarrow{\text { L1.2.11.15 }} \angle A C D=$ $\angle A C E$, we can write $\angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \& \angle A C E \equiv \angle A^{\prime} C^{\prime} E^{\prime} \& D^{\prime} E^{\prime} a_{A^{\prime} C^{\prime}} \stackrel{\text { A1.3.4 }}{\Longrightarrow} A^{\prime}{ }_{E^{\prime}}=A^{\prime} D_{D^{\prime}}$.

Now suppose that the points B, E lie on the opposite sides of the line $a_{A C}$. Then (see L1.2.17.10) the points D, E lie on the opposite sides of $a_{A C}$. Taking points $G, H, G^{\prime}, H^{\prime}$ such that $[B A G],[D C H],\left[B^{\prime} A^{\prime} G^{\prime}\right],\left[D^{\prime} C^{\prime} H^{\prime}\right]$ and thus $\angle G A C=\operatorname{adjsp} \angle B A C, \angle H C A=\operatorname{adj} s p \angle D C A, \angle G^{\prime} A^{\prime} C^{\prime}=\operatorname{adj} s p \angle B^{\prime} A^{\prime} C^{\prime}, \angle H^{\prime} C^{\prime} A^{\prime}=\operatorname{adjsp} \angle D^{\prime} C^{\prime} A^{\prime}$, we see that $\angle G A C \equiv \angle G^{\prime} A^{\prime} C^{\prime}, \angle H C A \equiv \angle H^{\prime} C^{\prime} A^{\prime}$ by hypothesis and in view of T 1.3.6. Using L 1.2.17.9, L 1.2.17.10 we can write $B a_{A C} G \& B D a_{A C} \& D a_{A C} H \Rightarrow G H a_{A C}, B a_{A C} E \& B a_{A C} G \Rightarrow E G a_{A C}, B^{\prime} a_{A^{\prime} C^{\prime}} G^{\prime} \& B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}} \& D^{\prime} a_{A^{\prime} C^{\prime}} H^{\prime} \Rightarrow$ $G^{\prime} H^{\prime} a_{A^{\prime} C^{\prime}}, B^{\prime} a_{A^{\prime} C^{\prime}} E^{\prime} \& B^{\prime} a_{A^{\prime} C^{\prime}} G^{\prime} \Rightarrow E^{\prime} G^{\prime} a_{A^{\prime} C^{\prime}}$. Thus, the remainder of the proof is essentially reduced to the case already considered.

Theorem 1.3.7. Every angle $\angle(h, k)$ is congruent to its vertical angle $\angle\left(h^{c}, k^{c}\right)$.
Proof. $\angle\left(h^{c}, k\right)=\operatorname{adjsp} \angle(h, k) \& \angle\left(h^{c}, k\right)=\operatorname{adjsp} \angle\left(h^{c}, k^{c}\right) \& \angle\left(h^{c}, k\right) \equiv \angle\left(h^{c}, k\right) \stackrel{\text { T1.3.6 }}{\Longrightarrow} \angle(h, k) \equiv \angle\left(h^{c}, k^{c}\right)$. (See Fig. 1.111.)

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.7.
Corollary 1.3.7.1. If angles $\angle(h, k)$ and $\angle\left(h^{c}, k^{\prime}\right)$ (where h^{c} is, as always, the ray complementary to the ray h) are congruent and the rays k, k^{\prime} lie on opposite sides of the line \bar{h}, then the angles $\angle(h, k)$ and $\angle\left(h^{c}, k^{\prime}\right)$ are vertical angles. (See Fig. 1.112.)

Proof. ${ }^{255}$ By the preceding theorem (T 1.3.7) the vertical angles $\angle(h, k), \angle\left(h^{c}, k^{c}\right)$ are congruent. We have also $k \bar{h} k^{c} \& k \bar{h} k^{\prime} \stackrel{\text { L1.2.18.4 }}{\Longrightarrow} k^{c} k^{\prime} \bar{h}$. Therefore, $\angle(h, k) \equiv \angle\left(h^{c}, k^{c}\right) \& \angle(h, k) \equiv \angle\left(h^{c}, k^{\prime}\right) \& k^{c} k^{\prime} \bar{h} \xrightarrow{\text { A1.3.4 }} k^{\prime}=k^{c}$, which completes the proof.

An angle $\angle\left(h^{\prime}, l^{\prime}\right)$, congruent to an angle $\angle(h, l)$, adjacent supplementary to a given angle $\angle(h, k),{ }^{256}$, is said to be supplementary to the angle $\angle(h, k)$. This fact is written as $\angle\left(h^{\prime}, l^{\prime}\right) \operatorname{suppl} \angle(h, k)$. Obviously (see T 1.3.1), this relation is also symmetric, which gives as the right to speak of the two angles $\angle(h, k), \angle(h, l)$ as being supplementary (to each other).

[^84]

Figure 1.112: If angles $\angle(h, k), \angle\left(h^{c}, k^{\prime}\right)$ are congruent and k, k^{\prime} lie on opposite sides of \bar{h}, then the angles $\angle(h, k)$, $\angle\left(h^{c}, k^{\prime}\right)$ are vertical angles and thus are congruent.

Right Angles and Orthogonality

An angle $\angle(h, k)$ congruent to its adjacent supplementary angle $\angle\left(h^{c}, k\right)$ is called a right angle. An angle which is not a right angle is called an oblique angle.

If $\angle(h, k)$ is a right angle, the ray k, as well as the line \bar{k}, are said to be perpendicular, or orthogonal, to ray h, as well as the line \bar{h}, written $k \perp l$. (respectively, the fact that the line \bar{k} is perpendicular to the line \bar{h} is written as $\bar{k} \perp \bar{h}$, etc.) The ray k is also called simply a perpendicular to \bar{h}, and the vertex O of the right angle $\angle(h, k)$ is called the foot of the perpendicular k. If $P \in\{O\} \cup k$, the point O is called the orthogonal projection ${ }^{257}$ of the point P on the line \bar{h}. Furthermore, if $Q \in h$, the interval $O Q$ is called the (orthogonal) projection of the interval $O P$ on the line \bar{k}.

In general, we shall call the orthogonal projection ${ }^{258}$ of the point A on line a and denote by $\operatorname{proj}(A, a)$:

- The point A itself if $A \in a$;
- The foot O of the perpendicular to a drawn through A.

Also, if A, B are points each of which lies either outside or on some line a, the interval $A^{\prime} B^{\prime}$ formed by the orthogonal projections A^{\prime}, B^{\prime} (assuming A^{\prime}, B^{\prime} are distinct!) of the points A, B, respectively, on $a,{ }^{259}$ is called the orthogonal projection of the interval $A B$ on the line a and denoted $\operatorname{proj}(A B, a)$.

Note that orthogonality of lines is well defined, because if $\angle(h, k)$ is a right angle, we have $\angle(h, k) \equiv \angle$, so that $\angle\left(h^{c}, k\right), \angle\left(h, k^{c}\right), \angle\left(h^{c}, k^{c}\right)$ are also right angles.

The concept of projection can be extended onto the case of non-orthogonal projections. Consider a line a on which one of the two possible orders is defined, an angle $\angle(h, k)$, and a point A. We define the projection $B=\operatorname{proj}(A, a, \angle(h, k))^{260}$ of the point A on our oriented line under the given angle $\angle(h, k)$ as follows: If $A \in a$ then $B \rightleftharpoons A$. If $A \notin a$ then B is the (only) point with the property $\angle B A C \equiv \angle(h, k)$, where C is a point succeeding A in the chosen order. ${ }^{261}$ The uniqueness of this point can easily be shown using T 1.3.17. ${ }^{262}$

Lemma 1.3.8.1. Given a line $a_{O A}$, through any point C not on it at least one perpendicular to $a_{O A}$ can be drawn.
Proof. Using A 1.3.4, L 1.2.11.3, A 1.3.1, choose B so that $\angle A O C \equiv \angle A O B \& O_{B} \subset\left(a_{O A}\right)_{C}^{c} \& O C \equiv O B \Rightarrow$ $\exists D D \in a_{O A} \&[C D B]$. If $D=O$ (See Fig. 1.113, a).) then $\angle A O B=\operatorname{adjsp} \angle A O C$, whence, taking into account $\angle A O C \equiv \angle A O B$, we conclude that $\angle A O C$ is a right angle. If $D \in O_{A}$ (See Fig. 1.113, b).) then from L 1.2.11.3 it follows that $O_{D}=O_{A}$ and therefore $\angle A O C=\angle D O C, \angle A O B=\angle D O B$. Together with $\angle A O C \equiv \angle A O B$, this gives $\angle D O C \equiv \angle D O B$. We then have $O A \equiv O A \& O C \equiv O B \& \angle D O C \equiv \angle D O B \stackrel{\text { A1.3.5 }}{ } \angle O D C \equiv \angle O D B$. Since also [CDB], angle $\angle O D C$ is right. If $D \in O_{A}^{c}$ (See Fig. 1.113, c).) then $\angle D O C=\operatorname{adjsp} \angle A O C \& \angle D O B=$ adjsp $\angle A O B \& \angle A O C \equiv \angle A O B \stackrel{\text { T1.3.6 }}{\Longrightarrow} \angle D O C \equiv \angle D O B$. Finally, $O D \equiv O D \& O C \equiv O_{B} \& \angle D O C \equiv \angle D O B \xrightarrow{\text { A1.3.5 }}$ $\angle O D C \equiv \angle O D B$.

Theorem 1.3.8. Right angles exist.
Proof. Follows immediately from L 1.3.8.1.

[^85]

Figure 1.113: Construction for proof of T 1.3.8. $\angle A O C$ in a) and $\angle O D C$ in b), c) are right angles.

Figure 1.114: Let B and B^{\prime} divide A, C and A^{\prime}, C^{\prime}, respectively. Then $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}$ imply $B C \equiv B^{\prime} C^{\prime}$.

Lemma 1.3.8.2. Any angle $\angle\left(h^{\prime}, k^{\prime}\right)$ congruent to a right angle $\angle(h, k)$, is a right angle.
Proof. Indeed, by T 1.3.6, T 1.3.11 we have $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k) \& \angle(h, k) \equiv \angle\left(h^{c}, k\right) \Rightarrow \angle\left(h^{\prime c}, k^{\prime}\right) \equiv \angle\left(h^{c}, k\right) \& \angle\left(h^{\prime}, k^{\prime}\right) \equiv$ $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{c}, k\right) \Rightarrow \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime c}, k^{\prime}\right)$.

Lemma 1.3.8.3. Into any of the two half-planes into which the line a divides the plane α, one and only one perpendicular to a with O as the foot can be drawn. ${ }^{263}$

Proof. See T 1.3.8, A 1.3.4.

Congruence and Betweenness for Intervals

Lemma 1.3.9.1. If intervals $A B, A^{\prime} B^{\prime}$, as well as $A C, A^{\prime} C^{\prime}$, are congruent, B divides A, C, and B^{\prime}, C^{\prime} lie on one side of A^{\prime}, then B^{\prime} divides A^{\prime}, C^{\prime}, and $B C, B^{\prime} C^{\prime}$ are congruent. ${ }^{264}$

Proof. (See Fig. 1.114.) By A $1.3 .1 \quad \exists C^{\prime \prime} \quad C^{\prime \prime} \quad \in \quad\left(B_{A^{\prime}}\right)^{c} \& B C \quad \equiv \quad B^{\prime} C^{\prime \prime}$. $C^{\prime \prime} \in\left(B^{\prime}{ }_{A^{\prime}}\right)^{c} \stackrel{\mathrm{~L} 1.2 .15 .2}{\Longrightarrow}\left[A^{\prime} B^{\prime} C^{\prime \prime}\right] . \quad\left[A^{\prime} B^{\prime} C^{\prime}\right] \&\left[A^{\prime} B^{\prime} C^{\prime \prime}\right] \stackrel{\mathrm{L} 1.2 .11 .13}{\Longrightarrow} B^{\prime} \in A_{C^{\prime}}^{\prime} \& B^{\prime} \in A^{\prime} C^{\prime \prime} \stackrel{\text { L1.2.11.4 }}{\Longrightarrow} A_{C^{\prime}}^{\prime}=A_{C^{\prime \prime}}^{\prime \prime}$. $A C \equiv A^{\prime} C^{\prime} \& A C \equiv A^{\prime} C^{\prime \prime} \& A_{C^{\prime}}^{\prime}=A^{\prime} C^{\prime \prime} \stackrel{\mathrm{A} 1.3 .1}{\Longrightarrow} A^{\prime} C^{\prime}=A^{\prime} C^{\prime \prime} \Rightarrow C^{\prime}=C^{\prime \prime}$.

Corollary 1.3.9.2. Given congruent intervals $A C, A^{\prime} C^{\prime}$, for any point $B \in(A C)$ there is exactly one point $B^{\prime} \in$ $\left(A^{\prime} C^{\prime}\right)$ such that $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}$.

[^86]Proof. Using A 1.3.1, choose $B^{\prime} \in A^{\prime} C^{\prime}$ so that $A B \equiv A^{\prime} B^{\prime}$. Then apply L 1.3.9.1. Uniqueness follows from T 1.3.1.

Proposition 1.3.9.3. Let point pairs B, C and B^{\prime}, C^{\prime} lie either both on one side or both on opposite sides of the points A and A^{\prime}, respectively. Then congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}$ imply $B C \equiv B^{\prime} C^{\prime}$.

Proof. First, suppose $B \in A_{C}, B^{\prime} \in A_{C^{\prime}}^{\prime} . B \in A_{C} \& B \neq C \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[A B C] \vee[A C B]$. Let $[A B C]$. ${ }^{265}$ Then $[A B C] \& B^{\prime} \in A_{C^{\prime}}^{\prime} \& A B \equiv A^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime} \xrightarrow{\text { L1.3.9.1 }} B C \equiv B^{\prime} C^{\prime}$.

If B, C and B^{\prime}, C^{\prime} lie on opposite sides of A and A^{\prime}, respectively, we have $[B A C] \&\left[B^{\prime} A^{\prime} C^{\prime}\right] \& A B \equiv A^{\prime} B^{\prime} \& A C \equiv$ $A^{\prime} C^{\prime} \xrightarrow{\mathrm{A} 1.3 .3} B C \equiv B^{\prime} C^{\prime}$.

Corollary 1.3.9.4. Let intervals $A B, A^{\prime} B^{\prime}$, as well as $A C, A^{\prime} C^{\prime}$, be congruent. Then if the point B lies between the points A, C, the point C^{\prime} lies outside the interval $A^{\prime} B^{\prime}$ (i.e. C^{\prime} lies in the set Ext $A^{\prime} B^{\prime}=\mathcal{P}_{a_{A^{\prime} B^{\prime}}} \backslash\left[A^{\prime} B^{\prime}\right]$).

Proof. $[A B C] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} C \in A_{B} . B^{\prime} \neq C^{\prime}$, because otherwise $A^{\prime} B^{\prime} \equiv A B \& A^{\prime} C^{\prime} \equiv A C \& B=C \& C \in A_{B} \xrightarrow{\text { A1.3.1 }}$ $B=C$ - a contradiction. Also, $C^{\prime} \notin\left(A^{\prime} B^{\prime}\right)$, because otherwise $\left[A^{\prime} C^{\prime} B^{\prime}\right] \& C \in A_{B} \& A^{\prime} B^{\prime} \equiv A B \& A^{\prime} C^{\prime} \equiv A C \xrightarrow{\text { L1.3.9.1 }}$ $[A C B] \Rightarrow \neg[A B C]$ - a contradiction.

Congruence and Betweenness for Angles

At this point it is convenient to extend the notion of congruence of angles to include straight angles. A straight angle $\angle\left(h, h^{c}\right)$ is, by definition, congruent to any straight angle $\angle\left(k, k^{c}\right)$, including itself, and not congruent to any extended angle that is not straight.

This definition obviously establishes congruence of straight angles as an equivalence relation.
Theorem 1.3.9. Let h, k, l and $h^{\prime}, k^{\prime}, l^{\prime}$ be planar 3-ray pencils with the origins O and O^{\prime}, respectively. Let also pairs of rays h, k and h^{\prime}, k^{\prime} lie in corresponding planes α and α^{\prime} either both on one side or both on opposite sides of the lines l, l^{\prime}, respectively. ${ }^{266}$ In the case when h, k lie on opposite sides of l we require further that the rays h, k do not lie on one line. ${ }^{267}$ Then congruences $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$ imply $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. (See Fig. 1.115.) Let h, k lie in α on the same side of \bar{l}. Then, by hypothesis, h^{\prime}, k^{\prime} lie in α^{\prime} on the same side of \bar{l}^{\prime}. Using A 1.3.1, choose $K \in k, K^{\prime} \in k^{\prime}, L \in l, L^{\prime} \in l^{\prime}$ so that $O K \equiv O^{\prime} K^{\prime}, O L \equiv O^{\prime} L^{\prime}$. Then, obviously, by L 1.2.11.3 $\angle(k, l)=\angle K O L, \angle\left(k^{\prime}, l^{\prime}\right)=\angle K^{\prime} O^{\prime} L^{\prime} . ~ h k \bar{l} \& h^{\prime} k^{\prime} \overline{l^{\prime}} \& h \neq k \& h^{\prime} \neq k^{\prime} \xrightarrow{\text { L1.2.21.21 }}(h \subset \operatorname{Int} \angle(k, l) \vee$ $k \subset \operatorname{Int} \angle(h, l)) \&\left(h^{\prime} \subset \angle\left(k^{\prime}, l^{\prime}\right) \vee k^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, l^{\prime}\right)\right)$. Without loss of generality, we can assume $h \subset \operatorname{Int} \angle(k, l)$, $h^{\prime} \subset \operatorname{Int} \angle\left(k^{\prime}, l^{\prime}\right) .{ }^{268}$

The rest of the proof can be done in two ways:
$(\# 1) h \subset \operatorname{Int} \angle(k, l) \& K \in k \& L \in l \xrightarrow{\text { L1.2.21.10 }} \exists H \quad H \in h \&[L H K]$. By A 1.3.1 $\exists H^{\prime} H^{\prime} \in h^{\prime} \& O H \equiv$ $O^{\prime} H^{\prime} . \quad O L \equiv O^{\prime} L^{\prime} \& O H \equiv O^{\prime} H^{\prime} \& O K \equiv O^{\prime} K^{\prime} \& \angle H O L \equiv \angle H^{\prime} O^{\prime} L^{\prime} \& \angle K O L \equiv \angle K^{\prime} O^{\prime} L^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle O H L \equiv$ $\triangle O^{\prime} H^{\prime} L^{\prime} \& \triangle O K L \equiv \triangle O^{\prime} K^{\prime} L^{\prime} \Rightarrow H L \equiv H^{\prime} L^{\prime} \& K L \equiv K^{\prime} L^{\prime} \& \angle O L H \equiv \angle O^{\prime} H^{\prime} L^{\prime} \& \angle O L K \equiv \angle O^{\prime} L^{\prime} K^{\prime} \& \angle O K L \equiv$ $\angle O^{\prime} K^{\prime} L^{\prime} .[L H K] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} L_{H}=L_{K} \Rightarrow \angle O L H=\angle O L K$. By definition of the interior of the angle $\angle\left(l^{\prime}, k^{\prime}\right)$, we have $K^{\prime} \in k^{\prime} \& H^{\prime} \in h^{\prime} \& h^{\prime} \subset \operatorname{Int} \angle\left(l^{\prime}, k^{\prime}\right) \Rightarrow H^{\prime} K^{\prime} a_{O^{\prime} L^{\prime}} .{ }^{269} \quad \angle O L H=\angle O L K \& \angle O L H \equiv \angle O^{\prime} L^{\prime} H^{\prime} \& \angle O L K \equiv$ $O^{\prime} L^{\prime} K^{\prime} \& H^{\prime} K^{\prime} a_{O^{\prime} L^{\prime}} \stackrel{\text { L1.3.2.1 }}{\Longrightarrow} \angle O^{\prime} L^{\prime} H^{\prime}=\angle O^{\prime} L^{\prime} K^{\prime} \Rightarrow L_{H^{\prime}}^{\prime}=L_{K^{\prime}}^{\prime} \Rightarrow H^{\prime} \in a_{L^{\prime} K^{\prime}} . h^{\prime} \subset \operatorname{Int} \angle\left(l^{\prime}, k^{\prime}\right) \& K^{\prime} \in k^{\prime} \& L^{\prime} \in$ $l^{\prime} \xrightarrow{\text { L1.2.21.10 }} \exists H^{\prime \prime} H^{\prime \prime} \in h^{\prime} \&\left[L^{\prime} H^{\prime \prime} K^{\prime}\right] . L^{\prime} \notin a_{O^{\prime} H^{\prime}} \& H^{\prime} \in a_{O^{\prime} H^{\prime}} \cap a_{L^{\prime} K^{\prime}} \& H^{\prime \prime} \in a_{O^{\prime} H^{\prime}} \cap a_{L^{\prime} K^{\prime}} \xrightarrow{\mathrm{L} 1.2 .1 .5} H^{\prime \prime}=H^{\prime},{ }^{270}$ whence $\left[L^{\prime} H^{\prime} K^{\prime}\right] .[L H K] \&\left[L^{\prime} H^{\prime} K^{\prime}\right] \& L H \equiv L^{\prime} H^{\prime} \& L K \equiv L^{\prime} K^{\prime} \xrightarrow{\text { L1.3.9.1 }} H K \equiv H^{\prime} K^{\prime} .[K H L] \&\left[K^{\prime} H^{\prime} L^{\prime}\right] \xrightarrow{\text { L1.2.11.15 }}$ $K_{H}=K_{L} \& K_{H^{\prime}}^{\prime}=K_{L^{\prime}}^{\prime} \Rightarrow \angle O K H=\angle O K L \& \angle O^{\prime} K^{\prime} H^{\prime}=\angle O^{\prime} K^{\prime} L^{\prime}$. Combined with $\angle O K L \equiv \angle O^{\prime} K^{\prime} L^{\prime}$, this gives $\angle O K H \equiv \angle O^{\prime} K^{\prime} H^{\prime} . O K \equiv O^{\prime} K^{\prime} \& H K \equiv H^{\prime} K^{\prime} \& \angle O K H \equiv \angle O^{\prime} K^{\prime} H^{\prime} \stackrel{\text { A1.3.5 }}{\Longrightarrow} \angle K O H \equiv \angle K^{\prime} O^{\prime} H^{\prime} \Rightarrow$ $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.

Now suppose h, k and h^{\prime}, k^{\prime} lie in the respective planes α and α^{\prime} on opposite sides of \bar{l} and $\overline{l^{\prime}}$, respectively. By hypothesis, in this case h^{c} and k are distinct. Then we also have $k^{\prime} \neq h^{\prime c}$, for otherwise we would have $k^{\prime}=h^{\prime} \& \angle\left(h^{\prime}, l^{\prime}\right) \equiv \angle(h, l) \& \angle\left(l^{\prime}, k^{\prime}\right) \equiv \angle(l, k) \& h \bar{l} k \stackrel{\mathrm{C1.3.6} \cdot 1}{\Longrightarrow} k=h^{c}$ - a contradiction. Now we can write $h \bar{l} k \& h^{\prime} \bar{l}^{\prime} k^{\prime} \& h^{c} \bar{l} h \& h^{\prime} c \overline{l^{\prime}} h^{\prime} \xrightarrow{\mathrm{L} 1.2 .18 .4} h^{c} k \bar{l} \& h^{\prime c} k^{\prime} \bar{l}^{\prime} . \angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right) \xrightarrow{\mathrm{T} 1.3 .6} \angle\left(h^{c}, l\right) \equiv\left(h^{\prime c}, l^{\prime}\right)$. Using the first part

[^87]

Figure 1.115: Construction for proof of T 1.3.9, P 1.3.9.5.
of this proof, we can write, $h^{c} k \bar{l} \& h^{\prime c} k^{\prime} \overline{l^{\prime}} \& \angle\left(h^{c}, l\right) \equiv \angle\left(h^{\prime c}, l^{\prime}\right) \& \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right) \Rightarrow \angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, k^{\prime}\right) \xrightarrow{\mathrm{T} 1.3 .6}$ $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.
(\#2) $O K \equiv O^{\prime} K^{\prime} \& O L \equiv O^{\prime} L^{\prime} \& \angle K O L \equiv \angle K^{\prime} O^{\prime} L^{\prime} \stackrel{\mathrm{T} 1.3 .4}{\Longrightarrow} \triangle O K L \equiv \triangle O^{\prime} K^{\prime} L^{\prime} \Rightarrow K L \equiv K^{\prime} L^{\prime} \& \angle O L K \equiv$ $\angle O^{\prime} L^{\prime} K^{\prime} \& \angle O K L \equiv \angle O^{\prime} K^{\prime} L^{\prime} . h \subset \operatorname{Int} \angle(k, l) \& K \in k \& L \in l \& h^{\prime} \subset \operatorname{Int} \angle\left(k^{\prime}, l^{\prime}\right) \& K^{\prime} \in k^{\prime} \& L^{\prime} \in l^{\prime} \xrightarrow{\mathrm{L} 1.2 .21 .10}$ $(\exists H H \in h \&[L H K]) \&\left(\exists H^{\prime} H^{\prime} \in h^{\prime} \&\left[L^{\prime} H^{\prime} K^{\prime}\right]\right) .[L H K] \&\left[L^{\prime} H^{\prime} K^{\prime}\right] \stackrel{L 1.2 .11 .15}{\Longrightarrow} L_{H}=L_{K} \& L_{H^{\prime}}^{\prime}=L_{K^{\prime}}^{\prime} \& K_{H}=$ $K_{L} \& K_{H^{\prime}}^{\prime}=K_{L^{\prime}}^{\prime} \Rightarrow \angle O L H=\angle O L K \& \angle O^{\prime} L^{\prime} H^{\prime}=\angle O^{\prime} L^{\prime} K^{\prime} \& \angle O K H=\angle O K L \& \angle O^{\prime} K^{\prime} H^{\prime}=\angle O^{\prime} K^{\prime} L^{\prime}$. Combined with $\angle O L K \equiv \angle O^{\prime} L^{\prime} K^{\prime}, \angle O K L \equiv \angle O^{\prime} K^{\prime} L$, this gives $\angle O L H \equiv \angle O^{\prime} L^{\prime} H^{\prime}, \angle O K H \equiv \angle O^{\prime} K^{\prime} H^{\prime}$. $O L \equiv O^{\prime} L^{\prime} \& \angle H O L \equiv \angle H^{\prime} O^{\prime} L^{\prime} \& \angle O L H \equiv \angle O^{\prime} L^{\prime} H^{\prime} \stackrel{\mathrm{T} 1.3 .5}{\Rightarrow} \triangle O H L \equiv \angle O^{\prime} H^{\prime} L^{\prime} \Rightarrow L H \equiv L^{\prime} H^{\prime} \& \angle L H O \equiv$ $\angle L^{\prime} H^{\prime} O^{\prime}$. Since $[L H K],\left[L^{\prime} H^{\prime} K^{\prime}\right]$, we have $\angle K H O=\operatorname{adjsp} \angle L H O \& \angle K^{\prime} H^{\prime} O^{\prime}=\operatorname{adjsp} \angle L^{\prime} H^{\prime} O^{\prime} . \angle L H O \equiv$ $\angle L^{\prime} H^{\prime} O^{\prime} \& \angle K H O=\operatorname{adjsp} \angle L H O \& \angle K^{\prime} H^{\prime} O^{\prime}=\operatorname{adjsp} \angle L^{\prime} H^{\prime} O^{\prime} \stackrel{\mathrm{T} 1.3 .6}{\Longrightarrow} \angle K H O \equiv \angle K^{\prime} H^{\prime} O^{\prime} .[L H K] \&\left[L^{\prime} H^{\prime} K^{\prime}\right]$ $\& L K \equiv L^{\prime} K^{\prime} \& L H \equiv L^{\prime} H^{\prime} \stackrel{\mathrm{L} 1.3 .9 .1}{\Longrightarrow} H K \equiv H^{\prime} K^{\prime} . H K \equiv H^{\prime} K^{\prime} \& \angle O H K \equiv \angle O^{\prime} H^{\prime} K^{\prime} \& \angle O K H \equiv \angle O^{\prime} K^{\prime} H^{\prime} \xrightarrow{\text { A1.3.5 }}$ $\angle H O K \equiv \angle H^{\prime} O^{\prime} K^{\prime} \Rightarrow \angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. The rest is as in $(\# 1)$.

Proposition 1.3.9.5. Let h, k, l and $h^{\prime}, k^{\prime}, l^{\prime}$ be planar 3-ray pencils with the origins O and O^{\prime}. If the ray h lies inside the angle $\angle(l, k)$, and the rays h^{\prime}, k^{\prime} lie on one side of the line $\overline{l^{\prime}}$, the congruences $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$ imply $h^{\prime} \subset \operatorname{Int} \angle\left(l^{\prime}, k^{\prime}\right) .{ }^{271}$

Proof. (See Fig. 1.115.) ${ }^{272}$ Using A 1.3.1, choose $K \in k, K^{\prime} \in k^{\prime}, L \in l, L^{\prime} \in l^{\prime}$ so that $O K \equiv O^{\prime} K^{\prime}, O L \equiv O^{\prime} L^{\prime}$. Then, obviously, by L 1.2.11.3 $\angle(k, l)=\angle K O L, \angle\left(k^{\prime}, l^{\prime}\right)=\angle K^{\prime} O^{\prime} L^{\prime} . O L \equiv O^{\prime} L^{\prime} \& O K \equiv O^{\prime} K^{\prime} \& \angle K O L \equiv$ $\angle K^{\prime} O^{\prime} L^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \& \triangle O K L \equiv \triangle O^{\prime} K^{\prime} L^{\prime} \Rightarrow \& K L \equiv K^{\prime} L^{\prime} \& \angle O L K \equiv \angle O^{\prime} L^{\prime} K^{\prime} . \quad h \subset \operatorname{Int} \angle(k, l) \& K \in k \& L \in$ $l \xrightarrow{\mathrm{~L} 1.2 .21 .10} \exists H \quad H \in h \&[L H K] . \quad[L H K] \& K L \equiv K^{\prime} L^{\prime} \xrightarrow{\mathrm{C} 1.3 .9 .2} \exists H^{\prime}\left[L^{\prime} H^{\prime} K^{\prime}\right] \& L H \equiv L^{\prime} H^{\prime} \& K H \equiv K^{\prime} H^{\prime}$. $[L H K] \&\left[L^{\prime} H^{\prime} K^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} L_{H}=L_{K} \& L_{H^{\prime}}^{\prime}=L_{K^{\prime}}^{\prime} \Rightarrow \angle O L H=\angle O L K \& \angle O^{\prime} L^{\prime} H^{\prime}=\angle O^{\prime} L^{\prime} K^{\prime}$. Combined with $\angle O L K \equiv \angle O^{\prime} L^{\prime} K^{\prime}$, this gives $\angle O L H \equiv \angle O^{\prime} L^{\prime} H^{\prime} . O L \equiv O^{\prime} L^{\prime} \& L H \equiv L^{\prime} H^{\prime} \& \angle O L H \equiv \angle O^{\prime} L^{\prime} H^{\prime} \xrightarrow{\text { A1.3.5 }}$ $\angle H O L \equiv \angle H^{\prime} O^{\prime} L^{\prime}$. By L 1.2.21.6, L 1.2.21.4 $K^{\prime} \in k^{\prime} \& L^{\prime} \in l^{\prime} \&\left[L^{\prime} H^{\prime} K^{\prime}\right] \Rightarrow O_{H^{\prime}}^{\prime} \subset \operatorname{Int} \angle\left(k^{\prime}, l^{\prime}\right) \Rightarrow O_{H^{\prime}}^{\prime} k^{\prime} \bar{l}^{\prime}$. Also, by hypothesis, $k^{\prime} h^{\prime} \overline{l^{\prime}}$, and therefore $O_{H^{\prime}} k^{\prime} \overline{l^{\prime}} \& k^{\prime} h^{\prime} \overline{l^{\prime}} \in l \stackrel{\text { L1.2.18.2 }}{\Longrightarrow} O_{L^{\prime}} h^{\prime} \bar{l}^{\prime}$. Finally, $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right) \& \angle H O L \equiv$ $\angle H^{\prime} O^{\prime} L^{\prime} \& \angle(h, l)=\angle H O L \& O_{H^{\prime}}^{\prime} h^{\prime} \bar{l}^{\prime} \in l \xrightarrow{\text { A1.3.4 }} h^{\prime} \subset \operatorname{Int} \angle\left(l^{\prime}, k^{\prime}\right)$.

Corollary 1.3.9.6. Let rays h, k and h^{\prime}, k^{\prime} lie on one side of lines \bar{l} and \bar{l}^{\prime}, and let the angles $\angle(l, h), \angle(l, k)$ be congruent, respectively, to the angles $\angle\left(l^{\prime}, h^{\prime}\right), \angle\left(l^{\prime}, k^{\prime}\right)$. Then if the ray h^{\prime} lies outside the angle $\angle\left(l^{\prime}, k^{\prime}\right)$, the ray h lies outside the angle $\angle(l, k)$.

Proof. Indeed, if $h=k$ then $h=k \& \angle(l, h) \equiv \angle\left(l^{\prime}, h^{\prime}\right) \& \angle(l, k) \equiv \angle\left(l^{\prime}, k^{\prime}\right) \& h^{\prime} k^{\prime} \bar{l}^{\prime} \stackrel{\mathrm{A} 1.3 .4}{\Longrightarrow} \angle\left(l^{\prime}, h^{\prime}\right)=\angle\left(l^{\prime}, k^{\prime}\right) \Rightarrow h^{\prime}=$ k^{\prime} - a contradiction; if $h \subset \operatorname{Int} \angle(l, k)$ then $h \subset \operatorname{Int} \angle(l, k) \& h^{\prime} k^{\prime} \bar{l}^{\prime} \& \angle(l, h) \equiv \angle\left(l^{\prime}, h^{\prime}\right) \& \angle(l, k) \equiv \angle\left(l^{\prime}, k^{\prime}\right) \xrightarrow{\text { P1.3.9.5 }} h^{\prime} \subset$ Int $\angle\left(l^{\prime}, k^{\prime}\right)$ - a contradiction.

Proposition 1.3.9.7. Let an angle $\angle(l, k)$ be congruent to an angle $\angle\left(l^{\prime}, k^{\prime}\right)$. Then for any ray h of the same origin as l, k, lying inside the angle $\angle(l, k)$, there is exactly one ray h^{\prime} with the same origin as l^{\prime}, k^{\prime}, lying inside the angle $\angle\left(l^{\prime}, k^{\prime}\right)$ such that $\angle(l, h) \equiv \angle\left(l^{\prime}, h^{\prime}\right), \angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. Using A 1.3.4, choose h^{\prime} so that $h^{\prime} k^{\prime} \overline{l^{\prime}} \& \angle(l, h) \equiv \angle\left(l^{\prime}, h^{\prime}\right)$. The rest follows from P 1.3.9.5, T 1.3.9.

[^88]
Congruence of Triangles:SSS

Lemma 1.3.10.1. If points Z_{1}, Z_{2} lie on opposite sides of a line $a_{X Y}$, the congruences $X Z_{1} \equiv X Z_{2}, Y Z_{1} \equiv Y Z_{2}$ imply $\angle X Y Z_{1} \equiv X Y Z_{2} \quad$ (and $\angle Y X Z_{1} \equiv \angle Y X Z_{2}$).

Proof. $Z_{1} a_{X Y} Z_{2} \Rightarrow \exists X^{\prime} X^{\prime} \in a_{X Y} \&\left[Z_{1} X^{\prime} Z_{2}\right]$. Observe that the lines $a_{X Y}, a_{Z_{1} Z_{2}}$ meet only in X^{\prime}, because $Z_{1} \notin$ $a_{X Y} \Rightarrow a_{Z_{1} Z_{2}} \neq a_{X Y}$, and therefore for any Y^{\prime} such that $Y^{\prime} \in a_{X Y}, Y^{\prime} \in a_{Z_{1} Z_{2}}$, we have $X^{\prime} \in a_{X Y} \cap a_{Z_{1} Z_{2}} \& Y^{\prime} \in$ $a_{X Y} \cap a_{Z_{1} Z_{2}} \stackrel{\text { T1.1.1 }}{\Longrightarrow} Y^{\prime}=X^{\prime} .{ }^{273}$ We also assume that $Y \notin a_{Z_{1} Z_{2}}$. ${ }^{274}$ For the isosceles triangle $\triangle Z_{1} Y Z_{2}$ the theorem T 1.3.3 gives $Y Z_{1} \equiv Y Z_{2} \Rightarrow \angle Y Z_{1} Z_{2} \equiv Y Z_{2} Z_{1}$. On the other hand, $\left[Z_{1} X^{\prime} Z_{2}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} Z_{1 X^{\prime}}=$ $Z_{1 Z_{2}} \& Z_{2 X^{\prime}}=Z_{2 Z_{1}} \Rightarrow \angle Y Z_{1} X^{\prime}=\angle Y Z_{1} Z_{2} \& \angle Y Z_{2} X^{\prime}=\angle Y Z_{2} Z_{1}$. Therefore, $\angle Y Z_{1} Z_{2} \equiv \angle Y Z_{2} Z_{1} \& \angle Y Z_{1} X^{\prime}=$ $\angle Y Z_{1} Z_{2} \& \angle Y Z_{2} Z=\angle Y Z_{2} Z_{1} \Rightarrow \angle Y Z_{1} X^{\prime} \equiv \angle Y Z_{2} X^{\prime}$.

Let Z_{1}, Z_{2}, X be collinear, i.e. $X \in a_{Z_{1} Z_{2}}$ (See Fig. 1.116, a)). Then we have $X \in a_{X Y} \cap a_{Z_{1} Z_{2}} \Rightarrow X^{\prime}=X$, and we can write $X Z_{1} \equiv X Z_{2} \& Y Z_{1} \equiv Y Z_{2} \& \angle Y Z_{1} X^{\prime} \equiv \angle Y Z_{2} X^{\prime} \xrightarrow{\text { T1.3.4 }} \triangle X Y Z_{1} \equiv \triangle X Y Z_{2} \Rightarrow \angle X Y Z_{1} \equiv$ $\angle X Y Z_{2} \& \angle Y X Z_{1} \equiv X Y Z_{2} .{ }^{275}$

Now suppose neither X nor Y lie on $a_{Z_{1} Z_{2}}$. In this case $X^{\prime} \in a_{X Y} \& X^{\prime} \neq X \neq Y \xrightarrow{\text { T1.2.2 }}\left[X^{\prime} X Y\right] \vee\left[X^{\prime} Y X\right] \vee$ $\left[X X^{\prime} Y\right]$. Suppose $\left[X^{\prime} X Y\right]$ (See Fig. 1.116, b)). ${ }^{276}$ Then $Y \in Z_{i Y} \& X^{\prime} \in Z_{i X^{\prime}} \& X \in Z_{i X} \xrightarrow{\text { L1.2.21.6,L1.2.21.4 }}$ $Z_{i} \subset \operatorname{Int} \angle Y Z_{i} X^{\prime}$, where $i=1,2 . \quad\left[X^{\prime} X Y\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} X^{\prime}{ }_{X}=X^{\prime}{ }_{Y} \Rightarrow \angle Z_{1} X^{\prime} X=\angle Z_{1} X^{\prime} Y \& \angle Z_{2} X^{\prime} X=$ $\angle Z_{2} X^{\prime} Y$. Furthermore, arguing exactly as above, we see that $X Z_{1} X^{\prime}=\angle X Z_{1} Z_{2} \& \angle X Z_{2} X^{\prime}=\angle X Z_{2} Z_{1}$, whence $\angle X Z_{1} X^{\prime} \equiv \angle X Z_{2} X^{\prime}$. Using T 1.3.9 we obtain $\angle X Z_{1} Y \equiv \angle X Z_{2} Y$, which allows us to write $X Z_{1} \equiv X Z_{2} \& Y Z_{1} \equiv$ $Y Z_{2} \& \angle X Z_{1} Y \equiv \angle X Z_{2} Y \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle X Z_{1} Y \equiv \triangle X Z_{2} Y \Rightarrow \angle X Y Z_{1} \equiv X Y Z_{2} \& \angle Y X Z_{1} \equiv \angle Y X Z_{2}$.

Finally, suppose $\left[X X^{\prime} Y\right]$ (See Fig. 1.116, c)). Then $\left[X X^{\prime} Y\right] \Rightarrow\left[Y X^{\prime} X\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} Y_{X^{\prime}}=Y_{X} \Rightarrow \angle X Y Z_{i} \equiv$ $\angle X^{\prime} Y Z_{i}$, where $i=1,2$. Together with $\angle X^{\prime} Y Z_{1} \equiv \angle X^{\prime} Y Z_{2}$, this gives $\angle X Y Z_{1} \equiv \angle X Y Z_{2}$.

Theorem 1.3.10 (Third Triangle Congruence Theorem (SSS)). If all sides of a triangle $\triangle A B C$ are congruent to the corresponding sides of a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$, i.e. if $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, A C \equiv A^{\prime} C^{\prime}$, the triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$. In other words, if a triangle $\triangle A B C$ is weakly congruent to a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$, this implies that the triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Proof. (See Fig. 1.117.) By hypothesis, $\triangle A B C \simeq \triangle A^{\prime} B^{\prime} C^{\prime}$, i.e., $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, A C \equiv A^{\prime} C^{\prime}$. Using A 1.3.4, A 1.3.1, L 1.2.11.3, choose $B^{\prime \prime}$ so that $C^{\prime}{ }_{B^{\prime \prime}} C^{\prime}{ }_{B^{\prime}} a_{A^{\prime} C^{\prime}}, \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime}, B C \equiv B^{\prime \prime} C^{\prime}$, and then choose $B^{\prime \prime \prime}$ so that $C^{\prime}{ }_{B^{\prime \prime \prime}} a_{A^{\prime} C^{\prime}} C^{\prime}{ }_{B^{\prime \prime}} .{ }^{277}$ Then we have $A C \equiv A^{\prime} C^{\prime} \& B C \equiv B^{\prime \prime} C^{\prime} \& \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B C \equiv$ $\triangle A^{\prime} B^{\prime \prime} C^{\prime} \Rightarrow A B \equiv A^{\prime} B^{\prime \prime} . A^{\prime} C^{\prime} \equiv A^{\prime} C^{\prime} \& B^{\prime \prime} C^{\prime} \equiv B^{\prime \prime \prime} C^{\prime} \& \angle A^{\prime} C^{\prime} B^{\prime \prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime \prime} \stackrel{\mathrm{T} 1.3 .4}{\Longrightarrow} \triangle A^{\prime} B^{\prime \prime} C^{\prime} \equiv \triangle A^{\prime} B^{\prime \prime \prime} C^{\prime} \Rightarrow$ $A B \equiv A^{\prime} B^{\prime \prime}$. Since $A B \equiv A^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime \prime} \& A^{\prime} B^{\prime \prime} \equiv A^{\prime} B^{\prime \prime \prime} \& B C \equiv B^{\prime} C^{\prime} \& B C \equiv B^{\prime \prime} C^{\prime} \& B^{\prime \prime} C^{\prime} \equiv B^{\prime \prime \prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .1}$ $A^{\prime} B^{\prime \prime \prime} \equiv A^{\prime} B^{\prime} \& A^{\prime} B^{\prime \prime \prime} \equiv A^{\prime} B^{\prime \prime} \& B^{\prime \prime \prime} C^{\prime} \equiv B^{\prime} C^{\prime} \& B^{\prime \prime \prime} C^{\prime} \equiv B^{\prime \prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .1} B^{\prime \prime} C^{\prime} \equiv B^{\prime} C^{\prime}, B^{\prime \prime} B^{\prime} a_{A^{\prime} C^{\prime}} \& B^{\prime \prime \prime} a_{A^{\prime} C^{\prime}} B^{\prime \prime} \xrightarrow{\mathrm{L1} 2.17 .10}$ $B^{\prime \prime \prime} a_{A^{\prime} C^{\prime}} B^{\prime}$, we have $A^{\prime} B^{\prime \prime \prime} \equiv A^{\prime} B^{\prime \prime} \& B^{\prime \prime \prime} C^{\prime} \equiv B^{\prime \prime} C^{\prime} \& B^{\prime \prime \prime} a_{A^{\prime} C^{\prime}} B^{\prime \prime} \stackrel{\text { L1.3.10.1 }}{\Longrightarrow} \angle A^{\prime} C^{\prime} B^{\prime \prime \prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime}, A^{\prime} B^{\prime \prime \prime} \equiv$ $A^{\prime} B^{\prime} \& B^{\prime \prime \prime} C^{\prime} \equiv B^{\prime} C^{\prime} \& B^{\prime \prime \prime} a_{A^{\prime} C^{\prime}} B^{\prime}$. Finally, $\angle A^{\prime} C^{\prime} B^{\prime \prime \prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime} \& \angle A^{\prime} C^{\prime} B^{\prime \prime \prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& C^{\prime}{ }_{B^{\prime \prime}} C^{\prime} B_{B^{\prime}} a_{A^{\prime} C^{\prime}} \xrightarrow{\text { A1.3.4 }}$ $\angle A^{\prime} C^{\prime} B^{\prime \prime}=\angle A^{\prime} C^{\prime} B^{\prime} \Rightarrow C^{\prime}{ }_{B^{\prime \prime}}=C^{\prime}{ }_{B^{\prime \prime}}, C^{\prime} B^{\prime \prime} \equiv C^{\prime} B^{\prime} \& C^{\prime}{ }_{B^{\prime \prime}}=C^{\prime}{ }_{B^{\prime}} \stackrel{\text { A1.3.1 }}{ }{ }^{1} B^{\prime \prime}=B^{\prime}$.

Congruence of Angles and Congruence of Paths as Equivalence Relations

Lemma 1.3.11.1. If angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ are both congruent to an angle $\angle(h, k)$, the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ are congruent to each other, i.e., $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ and $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. (See Fig. 1.118.) Denote $O, O^{\prime}, O^{\prime \prime}$ the vertices of the angles $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right), \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$, respectively. Using A 1.3.1, choose $H \in h, K \in k, H^{\prime} i n h^{\prime}, K^{\prime} \in k^{\prime}, H^{\prime \prime} \in h^{\prime \prime}$ so that $O H \equiv O^{\prime} H^{\prime}, O K \equiv O^{\prime} K^{\prime}, O H \equiv O^{\prime \prime} H^{\prime \prime}$, $O K \equiv O^{\prime \prime} K^{\prime \prime}$, whence by T 1.3.1 $O^{\prime} H^{\prime} \equiv O H, O^{\prime} K^{\prime} \equiv O K, O^{\prime \prime} H^{\prime \prime} \equiv O H, O^{\prime \prime} K^{\prime \prime} \equiv O K$, and by L 1.2.21.1 $\angle H O K=$ $\angle(h, k), \angle H^{\prime} O^{\prime} K^{\prime}=\angle\left(h^{\prime}, k^{\prime}\right), \angle H^{\prime \prime} O^{\prime \prime} K^{\prime \prime}=\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$. Then we have $O^{\prime} H^{\prime} \equiv O H \& O^{\prime} K^{\prime} \equiv O K \& \angle H^{\prime} O^{\prime} K^{\prime} \equiv$ $\angle H O K \& O^{\prime \prime} H^{\prime \prime} \equiv O H \& O^{\prime \prime} K^{\prime \prime} \equiv O K \& \angle H^{\prime \prime} O^{\prime \prime} K^{\prime \prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle H^{\prime} O^{\prime} K^{\prime} \equiv \triangle H O K \& \triangle H^{\prime \prime} O^{\prime \prime} K^{\prime \prime} \equiv \triangle H O K \Rightarrow$ $K^{\prime} H^{\prime} \equiv K H \& K^{\prime \prime} H^{\prime \prime} \equiv K H \stackrel{\mathrm{~T} 1.3 .1}{\Longrightarrow} K^{\prime} H^{\prime} \equiv K^{\prime \prime} H^{\prime \prime}$. Also, $O^{\prime} H^{\prime} \equiv O H \& O^{\prime \prime} H^{\prime \prime} \equiv O H \& O^{\prime} K^{\prime} \equiv O K \& O^{\prime \prime} K^{\prime \prime} \equiv$

[^89]

Figure 1.116: If points Z_{1}, Z_{2} lie on opposite sides of a line $a_{X Y}$, the congruences $X Z_{1} \equiv X Z_{2}, Y Z_{1} \equiv Y Z_{2}$ imply $\angle X Y Z_{1} \equiv X Y Z_{2}$. In a) Z_{1}, Z_{2}, X are collinear, i.e. $X \in a_{Z_{1} Z_{2}}$; in b), c) X, Y do not lie on $a_{Z_{1} Z_{2}}$ and $\left[X^{\prime} X Y\right.$] in b), $\left[X X^{\prime} Y\right]$ in c).

Figure 1.117: if $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, A C \equiv A^{\prime} C^{\prime}$, the triangle $\triangle A B C$ is congruent to the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ (SSS, or The Third Triangle Congruence Theorem).

Figure 1.118: $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)$ and $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right) \equiv \angle(h, k)$ imply $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ and $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.
$O K \xrightarrow{\mathrm{~T} 1.3 .1} O^{\prime} H^{\prime} \equiv O^{\prime \prime} H^{\prime \prime} \& O^{\prime} K^{\prime} \equiv O^{\prime \prime} K^{\prime \prime}$. Finally, $O^{\prime} H^{\prime} \equiv O^{\prime \prime} H^{\prime \prime} \& O^{\prime} K^{\prime} \equiv O^{\prime \prime} K^{\prime \prime} \& K^{\prime} H^{\prime} \equiv K^{\prime \prime} H^{\prime \prime} \xrightarrow{\mathrm{T} 1.3 .10}$ $\triangle H^{\prime} O^{\prime} K^{\prime} \equiv \triangle H^{\prime \prime} O^{\prime \prime} K^{\prime \prime} \Rightarrow \angle H^{\prime} O^{\prime} K^{\prime} \equiv \angle H^{\prime \prime} O^{\prime \prime} K^{\prime \prime} \Rightarrow \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$.

Theorem 1.3.11. Congruence of angles is a relation of equivalence on the class of all angles, i.e. it possesses the properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity follows from A 1.3.4.
Symmetry: Let $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. Then $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \& \angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \stackrel{\text { L1.3.11.1 }}{\Longrightarrow} \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)$.
Transitivity: $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \& \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle\left(h^{\prime \prime}, k^{\prime \prime}\right) \stackrel{\text { above }}{\Longrightarrow} \angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \& \angle\left(h^{\prime \prime}, k^{\prime \prime}\right) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \xrightarrow{\text { L1.3.11.1 }}$ $\angle(h, k) \equiv \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$.

Therefore, if an angle $\angle(h, k)$ is congruent to an angle $\angle\left(h^{\prime}, k^{\prime}\right)$, we can say the angles $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ are congruent (to each other).
Corollary 1.3.11.2. Congruence of paths (in particular, of polygons) is a relation of equivalence on the class of all paths. That is, any path $A_{1} A_{2} \ldots A_{n}$ is congruent to itself. If a path $A_{1} A_{2} \ldots A_{n}$ is congruent to a path $B_{1} B_{2} \ldots B_{n}$, the path $B_{1} B_{2} \ldots B_{n}$ is congruent to the path $A_{1} A_{2} \ldots A_{n} . A_{1} A_{2} \ldots A_{n} \equiv B_{1} B_{2} \ldots B_{n}, B_{1} B_{2} \ldots B_{n} \equiv C_{1} C_{2} \ldots C_{n}$ implies $A_{1} A_{2} \ldots A_{n} \equiv C_{1} C_{2} \ldots C_{n}$.

Proof.
Again, if a path, in particular, a polygon, $A_{1} A_{2} \ldots A_{n}$ is congruent to a path $B_{1} B_{2} \ldots B_{n}$, we shall also say (and C 1.3.11.2 gives us the right to do so) that the paths $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$ are congruent.

We are now in a position to prove theorem opposite to T 1.3.3.
Theorem 1.3.12. If one angle, say, $\angle C A B$, of a triangle $\triangle A B C$ is congruent to another angle, say, $\angle A C B$, then $\triangle A B C$ is an isosceles triangle with $\angle A B C \equiv \angle A B C$.

Proof. Let in a $\triangle A B C \angle C A B \equiv \angle A C B$. Then by T 1.3.12 $\angle A C B \equiv \angle C A B$ and $A C \equiv \& \angle C A B \equiv \angle A C B \& \angle C A B \equiv$ $\angle A C B \stackrel{\mathrm{~T} 1.3 .11}{\Longrightarrow} \triangle C A B \equiv \triangle A C B \Rightarrow A B \equiv C B$.

Comparison of Intervals

Lemma 1.3.13.1. For any point C lying on an open interval $(A B)$, there are points $E, F \in(A B)$ such that $A C \equiv E F$.

Proof. (See Fig. 1.119.) Suppose $[A C B]$. By T 1.2.1 $\exists F[C F B]$. Then $[A C B] \&[C F B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A C F] \&[A F B]$. $[A C F] \& A F \equiv F A \xrightarrow{\mathrm{C} 1.3 .9 .2} \exists E[F E A] \& A C \equiv F E$. Finally, $[A E F] \&[A F B] \xrightarrow{\mathrm{L} 1.2 .3 .2}[A E B]$.

The following lemma is opposite, in a sense, to L 1.3.13.1

Figure 1.119: Construction for L 1.3.13.1, L 1.3.13.2.

Lemma 1.3.13.2. For any two (distinct) points E, F lying on an open interval $(A B)$, there is exactly one point $C \in(A B)$ such that $E F \equiv A C$.

Proof. (See Fig. 1.119.) By P 1.2.3.4 $[A E F] \vee[A F E]$. Since E, F enter the conditions of the lemma symmetrically, we can assume without any loss of generality that $[A E F]$. Then $A F \equiv F A \&[F E A] \stackrel{\text { C1.3.9.2 }}{\Longrightarrow} \exists!C F E \equiv A C \&[A C F]$. Finally, $[A C F] \&[A F B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A C B]$.

An (abstract) interval $A^{\prime} B^{\prime}$ is said to be shorter, or less, than or congruent to an (abstract) interval $A B$, written $A^{\prime} B^{\prime}<A B$, if there is an interval $C D$ such that the abstract interval $A^{\prime} B^{\prime}$ is congruent to the interval $C D$, and the open interval $(C D)$ is included in the open interval $(A B) .{ }^{278}$ If $A^{\prime} B^{\prime}$ is shorter than or congruent to $A B$, we write this fact as $A^{\prime} B^{\prime} \leqq A B$. Also, if an interval $A^{\prime} B^{\prime}$ is shorter than or congruent to an interval $A B$, we shall say that the (abstract) interval $A B$ is longer, or greater than or congruent to the (abstract) interval $A^{\prime} B^{\prime}$, and write this as $A B \geqq A^{\prime} B^{\prime}$.

If an (abstract) interval $A^{\prime} B^{\prime}$ is shorter than or congruent to an (abstract) interval $A B$, and, on the other hand, the interval $A^{\prime} B^{\prime}$ is known to be incongruent (not congruent) to the interval $A B$, we say that the interval $A^{\prime} B^{\prime}$ is strictly shorter, or strictly less ${ }^{279}$ than the interval $A B$, and write $A^{\prime} B^{\prime}<A B$. If an interval $A^{\prime} B^{\prime}$ is (strictly) shorter than an interval $A B$, we shall say also that the (abstract) interval $A B$ is strictly longer, or strictly greater 280 than (abstract) interval $A^{\prime} B^{\prime}$, and write this as $A B>A^{\prime} B^{\prime}$.

Lemma 1.3.13.3. An interval $A^{\prime} B^{\prime}$ is (strictly) shorter than an interval $A B$ iff:

- 1. There exists a point C on the open interval $(A B)$ such that the interval $A^{\prime} B^{\prime}$ is congruent to the interval AC ; ${ }^{281}$ or
- 2. There are points E, F on the open interval $A B$ such that $A^{\prime} B^{\prime} \equiv E F$.

In other words, an interval $A^{\prime} B^{\prime}$ is strictly shorter than an interval $A B$ iff there is an interval $C D$, whose ends both lie on a half-open $[A B)$ (half-closed interval $(A B]$), such that the interval $A^{\prime} B^{\prime}$ is congruent to the interval $C D$.

Proof. Suppose $A^{\prime} B^{\prime} \equiv A C$ and $C \in(A B)$. Then by L 1.2.3.2, L 1.2.11.13 $C \in(A B) \Rightarrow(A C) \subset A B \& C \in A_{B}$. Therefore, $A^{\prime} B^{\prime} \leqq A B$. Also, $A^{\prime} B^{\prime} \not \equiv A B$, because otherwise $C \in A_{B} \& A^{\prime} B^{\prime} \equiv A C \& A^{\prime} B^{\prime} \equiv A B \xrightarrow{\text { A1.3.1 }} A C=$ $A B \Rightarrow C=B$, whence $C \notin(A B)$ - a contradiction. Thus, we have $A^{\prime} B^{\prime} \leqq A B \& A^{\prime} B^{\prime} \not \equiv A B$, i.e. $A^{\prime} B^{\prime}<A B$.

Suppose $A^{\prime} B^{\prime} \equiv E F$, where $E \in(A B), F \in(A B)$. By L 1.3.13.2 $\exists C C \in(A B) \& E F \equiv A C$. Then $A^{\prime} B^{\prime} \equiv$ $E F \& E F \equiv A C \stackrel{\mathrm{T1.3.1}}{\Longrightarrow} A^{\prime} B^{\prime} \equiv A C$ and $A^{\prime} B^{\prime} \equiv A C \& C \in(A B) \stackrel{\text { above }}{\Longrightarrow} A^{\prime} B^{\prime}<A B$.

Now suppose $A^{\prime} B^{\prime}<A B$. By definition, this means that there exists an (abstract) interval $C D$ such that $(C D) \subset(A B), A^{\prime} B^{\prime} \equiv C D$, and also $A^{\prime} B^{\prime} \not \equiv A B$. Then we have $(C D) \subset(A B) \stackrel{\text { L1.2.16.10 }}{\Longrightarrow} C \in[A B] \& D \in[A B]$, $A^{\prime} B^{\prime} \not \equiv A B \& A^{\prime} B^{\prime} \equiv C D \Rightarrow C D \neq A B$. Therefore, either one of the ends or both ends of the interval $C D$ lie on the open interval $(A B)$. The statement in 1. then follows from L 1.3.13.2, in 2.- from L 1.3.13.3.

Observe that the lemma L 1.3.13.3 (in conjunction with A 1.3.1) indicates that we can lay off from any point an interval shorter than a given interval. Thus, there is actually no such thing as the shortest possible interval.

Corollary 1.3.13.4. If a point C lies on an open interval $(A B)$ (i.e. C lies between A and B), the interval $A C$ is (strictly) shorter than the abstract interval $A B$.

If two (distinct) points E, F lie on an open interval $(A B)$, the interval $E F$ is (strictly) less than the interval $A B$.
Proof. Follows immediately from L 1.3.13.3.
Lemma 1.3.13.5. An interval $A^{\prime} B^{\prime}$ is shorter than or congruent to an interval $A B$ iff there is an interval $C D$ whose ends both lie on the closed interval $[A B]$, such that the interval $A^{\prime} B^{\prime}$ is congruent to the interval $C D$.

Proof. Follows immediately from L 1.2.16.12 and the definition of "shorter than or congruent to".
Lemma 1.3.13.6. If an interval $A^{\prime \prime} B^{\prime \prime}$ is congruent to an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Proof. (See Fig. 1.120.) By definition and L 1.3.13.3, $A^{\prime} B^{\prime}<A B \Rightarrow \exists C C \in(A B) \& A^{\prime} B^{\prime} \equiv A C . A^{\prime \prime} B^{\prime \prime} \equiv$ $A^{\prime} B^{\prime} \& A^{\prime} B^{\prime} \equiv A C \xrightarrow{\mathrm{~T} 1.3 .1} A^{\prime \prime} B^{\prime \prime} \equiv A C . A^{\prime \prime} B^{\prime \prime} \equiv A C \& C \in(A B) \Rightarrow A^{\prime \prime} B^{\prime \prime}<A B . \square$

[^90]

Figure 1.120: If an interval $A^{\prime \prime} B^{\prime \prime}$ is congruent to an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Figure 1.121: If an interval $A^{\prime \prime} B^{\prime \prime}$ is less than an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is congruent to an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Lemma 1.3.13.7. If an interval $A^{\prime \prime} B^{\prime \prime}$ is less than an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is congruent to an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Proof. (See Fig. 1.121.) $A^{\prime \prime} B^{\prime \prime}<A^{\prime} B^{\prime} \Rightarrow \exists C^{\prime} C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \& A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} C^{\prime} . A^{\prime} B^{\prime} \equiv A B \& C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \xrightarrow{\mathrm{C} 1.3 .9 .2}$ $\exists C C \in(A B) \& A^{\prime} C^{\prime} \equiv A C . A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} C^{\prime} \& A^{\prime} C^{\prime} \equiv A C \stackrel{\mathrm{T1.3.1}}{\Longrightarrow} A^{\prime \prime} B^{\prime \prime} \equiv A C . A^{\prime \prime} B^{\prime \prime} \equiv A C \& C \in(A B) \Rightarrow A^{\prime \prime} B^{\prime \prime}<$ $A B$.

Lemma 1.3.13.8. If an interval $A^{\prime \prime} B^{\prime \prime}$ is less than an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Proof. (See Fig. 1.122.) $A^{\prime \prime} B^{\prime \prime}<A^{\prime} B^{\prime} \Rightarrow \exists C^{\prime} C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \& A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} C^{\prime} . A^{\prime} B^{\prime}<A B \Rightarrow \exists D D \in(A B) \& A^{\prime} B^{\prime} \equiv$ $A D . C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \& A^{\prime} B^{\prime} \equiv A D \stackrel{\mathrm{C1.3.9.2}}{ } \exists C C \in(A D) \& A^{\prime} C^{\prime} \equiv A C . A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} C^{\prime} \& A^{\prime} C^{\prime} \equiv A C \xrightarrow{\mathrm{~T} 1.3 .1} A^{\prime \prime} B^{\prime \prime} \equiv A C$. $[A C D] \&[A D B] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[A C B] . A^{\prime \prime} B^{\prime \prime} \equiv A C \&[A C B] \Rightarrow A^{\prime \prime} B^{\prime \prime}<A B$.

Lemma 1.3.13.9. If an interval $A^{\prime \prime} B^{\prime \prime}$ is less than or congruent to an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is less than or congruent to an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than or congruent to the interval $A B$.

Figure 1.122: If an interval $A^{\prime \prime} B^{\prime \prime}$ is less than an interval $A^{\prime} B^{\prime}$ and the interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, the interval $A^{\prime \prime} B^{\prime \prime}$ is less than the interval $A B$.

Proof. We have, using T 1.3.1, L 1.3.13.6, L 1.3.13.7, L 1.3.13.8 on the way: $A^{\prime \prime} B^{\prime \prime} \leqq A^{\prime} B^{\prime} \& A^{\prime} B^{\prime} \leqq A B \Rightarrow\left(A^{\prime \prime} B^{\prime \prime}<\right.$ $\left.A^{\prime} B^{\prime} \vee A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} B^{\prime}\right) \&\left(A^{\prime} B^{\prime}<A B \vee A^{\prime} B^{\prime} \equiv A B\right) \Rightarrow\left(A^{\prime \prime} B^{\prime \prime}<A^{\prime} B^{\prime} \& A^{\prime} B^{\prime}<A B\right) \vee\left(A^{\prime \prime} B^{\prime \prime}<A^{\prime} B^{\prime} \& A^{\prime} B^{\prime} \equiv\right.$ $A B) \vee\left(A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} B^{\prime} \& A^{\prime} B^{\prime}<A B\right) \vee\left(A^{\prime \prime} B^{\prime \prime} \equiv A^{\prime} B^{\prime} \& A^{\prime} B^{\prime} \equiv A B\right) \Rightarrow A^{\prime \prime}<B^{\prime \prime} \vee A^{\prime \prime} B^{\prime \prime} \equiv A B \Rightarrow A^{\prime \prime} B^{\prime \prime} \leqq A B$.

Lemma 1.3.13.10. If an interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, the interval $A B$ cannot be less than the interval $A^{\prime} B^{\prime}$.

Proof. Suppose the contrary, i.e., that both $A^{\prime} B^{\prime}<A B$ and $A B<A^{\prime} B^{\prime}$, that is, $\exists C C \in(A B) \& A^{\prime} B^{\prime} \equiv A C$ and $\exists C^{\prime} C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \& A B \equiv A^{\prime} C^{\prime}$. Then $A^{\prime} B^{\prime} \equiv A C \xrightarrow{\mathrm{~T} 1.3 .1} A C \equiv A^{\prime} B^{\prime}$ and $A C \equiv A^{\prime} B^{\prime} \& A B \equiv A^{\prime} C^{\prime} \&[A C B] \xrightarrow{\mathrm{C1.3.9} 4}$ $C^{\prime} \in E x t A^{\prime} B^{\prime}$ - a contradiction with $C^{\prime} \in\left(A^{\prime} B^{\prime}\right)$.

Lemma 1.3.13.11. If an interval $A^{\prime} B^{\prime}$ is less than an interval $A B$, it cannot be congruent to that interval.
Proof. Suppose the contrary, i.e. that both $A^{\prime} B^{\prime}<A B$ and $A^{\prime} B^{\prime} \equiv A B$. We have then $A^{\prime} B^{\prime}<A B \Rightarrow \exists C C \in$ $(A B) \& A^{\prime} B^{\prime} \equiv A C . \quad[A C B] \stackrel{\text { L1.2.11.13 }}{\Longrightarrow} C \in A_{B} . \quad$ But $A^{\prime} B^{\prime} \equiv A C \& A^{\prime} B^{\prime} \equiv A B \& C \in A_{B} \xrightarrow{\text { A1.3.1 }} C=B-\mathrm{a}$ contradiction.

Corollary 1.3.13.12. If an interval $A^{\prime} B^{\prime}$ is congruent to an interval $A B$, neither $A^{\prime} B^{\prime}$ is shorter than $A B$, nor $A B$ is shorter than $A^{\prime} B^{\prime}$.

Proof. Follows immediately from L 1.3.13.11.
Lemma 1.3.13.13. If an interval $A^{\prime} B^{\prime}$ is less than or congruent to an interval $A B$ and the interval $A B$ is less than or congruent to the interval $A^{\prime} B^{\prime}$, the interval $A^{\prime} B^{\prime}$ is congruent to the interval $A B$.

Proof. $\left(A^{\prime} B^{\prime}<A B \vee A^{\prime} B^{\prime} \equiv A B\right) \&\left(A B<A^{\prime} B^{\prime} \vee A B \equiv A^{\prime} B^{\prime}\right) \Rightarrow A^{\prime} B^{\prime} \equiv A B$, because $A^{\prime} B^{\prime}<A B$ contradicts both $A B<A^{\prime} B^{\prime}$ and $A^{\prime} B^{\prime} \equiv A B$ in view of L 1.3.13.10, L 1.3.13.11.

Lemma 1.3.13.14. If an interval $A^{\prime} B^{\prime}$ is not congruent to an interval $A B$, then either the interval $A^{\prime} B^{\prime}$ is less than the interval $A B$, or the interval $A B$ is less than the interval $A^{\prime} B^{\prime}$.

Proof. Using A 1.3.1, choose points $C \in A_{B}, C^{\prime} \in A^{\prime}{ }_{B^{\prime}}$ so that $A^{\prime} B^{\prime} \equiv A C, A B \equiv A^{\prime} C^{\prime}$. Then $C \neq B$, because $A^{\prime} B^{\prime} \not \equiv A B$ by hypothesis, and $C \in A_{B} \& C \neq B \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[A C B] \vee[A B C]$. We have in the first case (i.e., when $[A C B])[A C B] \& A^{\prime} B^{\prime} \equiv A C \Rightarrow A^{\prime} B^{\prime}<A B$, and in the second case $A B \equiv A^{\prime} C^{\prime} \& A C \equiv A^{\prime} B^{\prime} \&[A B C] \& C^{\prime} \in$ $A^{\prime} B^{\prime} \xrightarrow{\text { L1.3.9.1 }}\left[A^{\prime} C^{\prime} B^{\prime}\right],\left[A^{\prime} C^{\prime} B^{\prime}\right] \& A B \equiv A^{\prime} C^{\prime} \Rightarrow A B<A^{\prime} B^{\prime}$.

An (extended) angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is said to be less than or congruent to an (extended) angle $\angle(h, k)$ if there is an angle $\angle(l, m)$ with the same vertex O as $\angle(h, k)$ such that the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to the angle $\angle(l, m)$ and the interior of the angle $\angle(l, m)$ is included in the interior of the angle $\angle(h, k)$. If $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to $\angle(h, k)$, we shall write this fact as $\angle\left(h^{\prime}, k^{\prime}\right) \leqq \angle(h, k)$. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to an angle $\angle(h, k)$, we shall also say that the angle $\angle(h, k)$ is greater than or congruent to the angle $\angle\left(h^{\prime}, k^{\prime}\right)$, and write this as $\angle(h, k) \geqq \angle\left(h^{\prime}, k^{\prime}\right)$.

If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to an angle $\angle(h, k)$, and, on the other hand, the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is known to be incongruent (not congruent) to the angle $\angle(h, k)$, we say that the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is strictly less ${ }^{282}$ than the angle $\angle(h, k)$, and write this as $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k)$. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is (strictly) less than an angle $\angle(h, k)$, we shall also say that the angle $\angle(h, k)$ is strictly greater ${ }^{283}$ than the angle $\angle\left(h^{\prime}, k^{\prime}\right)$.

Obviously, this definition implies that any non-straight angle is less than a straight angle.
We are now in a position to prove for angles the properties of the relations "less than" and "less than or congruent to" (and, for that matter, the properties of the relations "greater than" and greater than or congruent to") analogous to those of the corresponding relations of (point) intervals. It turns out, however, that we can do this in a more general context. Some definitions are in order.

Generalized Congruence

Let $\mathcal{C}^{g b r}$ be a subclass of the class $\mathcal{C}_{0}^{g b r}$ of all those sets \mathfrak{J} that are equipped with a (weak) generalized betweenness relation. ${ }^{284}$ Generalized congruence is then defined by its properties $\operatorname{Pr} 1.3 .1-\operatorname{Pr} 1.3 .5$ as a relation $\rho \subset \mathfrak{I}^{2}$, where $\mathfrak{I} \rightleftharpoons\left\{\{\mathcal{A}, \mathcal{B}\} \mid \exists \mathfrak{J} \in \mathcal{C}^{g b r} \mathcal{A} \in \mathfrak{J} \& \mathcal{B} \in \mathfrak{J}\right\} .{ }^{285}$ If a pair $(\mathcal{A B}, \mathcal{C D}) \in \rho$, we say that the generalized abstract interval $\mathcal{A B}$

[^91]is congruent to the generalized abstract interval $\mathcal{C D}$ and write, as usual, $\mathcal{A B} \equiv \mathcal{C D}$. We also denote, for convenience, $\mathfrak{J}^{\cup} \rightleftharpoons \bigcup_{\mathfrak{J} \in \mathcal{C}^{g b r}} \mathfrak{J} .{ }^{286}$
Property 1.3.1. Suppose $\mathcal{A B}$ is a generalized abstract interval formed by geometric objects \mathcal{A}, \mathcal{B} lying in a set \mathfrak{J} from the class $\mathcal{C}^{g b r}$. Then for any geometric object $\mathcal{A}^{\prime} \in \mathfrak{J}^{\cup}$ and any geometric object $\mathcal{X}^{\prime} \in \mathfrak{J}^{\cup}$ distinct from \mathcal{A}^{\prime} and such that $\mathcal{A}^{\prime} \mathcal{X}^{\prime} \in \mathfrak{I},{ }^{287}$ there is at least one geometric object $\mathcal{B}^{\prime} \in \mathfrak{J}^{\cup}$ with the properties that $\mathcal{X}^{\prime}, \mathcal{B}^{\prime}$ lie in some set $\mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$ on one side of the geometric object $\mathcal{A}^{\prime 288}$ and such that the generalized interval $\mathcal{A B}$ is congruent to the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

Furthermore, given two distinct geometric objects \mathcal{A}, \mathcal{B}, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J} \in \mathcal{C}^{\text {gbr }}$, and a geometric object $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime} \in$ $\mathcal{C}^{g b r}$, then for any geometric object $\mathcal{X}^{\prime} \in \mathfrak{J}^{\prime}, \mathcal{X}^{\prime} \neq \mathcal{A}^{\prime}$, there is at most ${ }^{289}$ one geometric object \mathcal{B}^{\prime} such that \mathcal{X}^{\prime}, \mathcal{B}^{\prime} lie in the set \mathfrak{J}^{\prime} with generalized betweenness relation on one side of the geometric object \mathcal{A}^{\prime} and the generalized intervals $\mathcal{A B}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ are congruent.

Property 1.3.2. If generalized (abstract) intervals $\mathfrak{A}^{\prime} \mathfrak{B}^{\prime}$, where $\mathcal{A}^{\prime}, \mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}$ and $\mathfrak{A}^{\prime \prime} \mathfrak{B}^{\prime \prime}$, where $\mathcal{A}^{\prime \prime}, \mathcal{B}^{\prime \prime} \in \mathfrak{J}^{\prime \prime}$ are both congruent to a generalized interval $\mathcal{A B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J}$, then the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$.
Property 1.3.3. If generalized intervals $\mathcal{A B}, \mathcal{A}^{\prime} \mathcal{B}^{\prime}$, as well as $\mathcal{A C}, \mathcal{A}^{\prime} \mathcal{C}^{\prime}$, formed by the geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$ and $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$, (where $\mathfrak{J}, \mathcal{J}^{\prime} \in \mathcal{C}^{g b r}$) are congruent, \mathcal{B} divides \mathcal{A}, \mathcal{C}, and \mathcal{B}^{\prime}, \mathcal{C}^{\prime} lie on one side of \mathcal{A}^{\prime}, then \mathcal{B}^{\prime} divides $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$, and $\mathcal{B C}, \mathcal{B}^{\prime} \mathcal{C}^{\prime}$ are congruent. ${ }^{290}$

Property 1.3.4. Suppose a geometric object \mathcal{B} lies in a set $\mathfrak{J} \in \mathcal{C}^{g b r}$ (with generalized betweenness relation) between geometric objects $\mathcal{A} \in \mathfrak{J}, \mathcal{C} \in \mathfrak{J}$. Then any set $\mathfrak{J}^{\prime} \in \mathcal{C}^{\text {gbr }}$ containing the geometric objects \mathcal{A}, \mathcal{C}, will also contain the geometric object \mathcal{B}.
Property 1.3.5. Any generalized interval $\mathcal{A B} \in \mathfrak{I}, \mathcal{A}, \mathcal{B} \in \mathfrak{J}$, has a midpoint, ${ }^{291}$ i.e. $\exists \mathcal{C} \mathcal{A C} \equiv \mathcal{A B}$, where $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$.

The idea of generalized congruence is partly justified by the following L 1.3.13.15, T 1.3.13, although we are not yet in a position to fully prove that congruence of (conventional) intervals is a generalized congruence.

Lemma 1.3.13.15. Congruence of (conventional) intervals satisfies the properties P 1.3.1-P 1.3.3, P 1.3.6. (Here $\mathcal{C}^{g b r}=\left\{\mathfrak{J} \mid \mathfrak{J}=\mathcal{P}_{a}, a \in \mathcal{C}^{L}\right\}$ is the class of contours of all lines.)

Proof. P 1.3.1 - P 1.3.3 in this case follow immediately from, respectively, A 1.3.1, A 1.3.2, and L 1.3.9.1. P 1.3.6 follows from the fact that in view of A 1.1.2 any line a (and thus the set \mathcal{P}_{a} of all its points) is completely defined by two points on it.

Theorem 1.3.13. Congruence of conventional angles 292 satisfies the properties P 1.3.1-P 1.3.3, P 1.3.6. Here the sets \mathfrak{J} with generalized betweenness relation are the pencils of rays lying on the same side of a given line a and having the same initial point $O \in a$ (Of course, every pair consisting of a line a and a point O on it gives rise to exactly two such pencils.); each of these pencils is supplemented with the (two) rays into which the appropriate point O (the pencil's origin, i.e. the common initial point of the rays that constitute the pencil) divides the appropriate line a. ${ }^{293}$

Proof. The properties P 1.3.1-P 1.3.3 follow in this case from A 1.3.4, L 1.3.11.1, T 1.3.9, P 1.3.9.5. To demonstrate P 1.3.6, suppose a ray n lies in a pencil \mathfrak{J} between rays l, m. ${ }^{294}$ Suppose now that the rays l, m also belong to another pencil \mathfrak{J}^{\prime}. The result then follows from L 1.2.31.3 applied to \mathfrak{J}^{\prime} viewed as a straight angle. ${ }^{295}$

[^92]Let us now study the properties of generalized congruence. ${ }^{296}$
Lemma 1.3.14.1. Generalized congruence is an equivalence relation on the class \mathfrak{I} of appropriately chosen generalized abstract intervals, i.e., it is reflexive, symmetric, and transitive.

Proof. Given a generalized interval $\mathcal{A B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J} \in \mathcal{C}^{g b r}$, by Pr 1.3 .1 we have $\exists \mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{A}^{\prime}, \mathcal{B}^{\prime} \in \mathfrak{J}^{\prime} \in$ $\mathcal{C}^{g b r}$.

Reflexivity: $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \xrightarrow{\text { Pr1.3.2 }} \mathcal{A B} \equiv \mathcal{A B} .{ }^{297}$
Symmetry: $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \stackrel{\text { Pr1.3.2 }}{\Longrightarrow} A^{\prime} B^{\prime} \equiv A B$.
Transitivity: $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \Rightarrow \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \xrightarrow{\text { Pr1.3.2 }} \mathcal{A B} \equiv \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$.
Now we can immediately reformulate the property $\operatorname{Pr} 1.3 .6$ in the following enhanced form:
Lemma 1.3.14.2. Suppose a geometric object \mathcal{B} lies in a set $\mathfrak{J} \in \mathcal{C}^{\text {gbr }}$ (with generalized betweenness relation) between geometric objects $\mathcal{A} \in \mathfrak{J}, \mathcal{C} \in \mathfrak{J}$. Then any set $\mathfrak{I}^{\prime} \in \mathcal{C}^{g b r}$ containing the geometric objects \mathcal{A}, \mathcal{C}, will also contain the geometric object \mathcal{B}, and \mathcal{B} will lie in \mathfrak{J}^{\prime} between \mathcal{A} and \mathcal{C}.

Proof. Suppose \mathcal{B} lies in $\mathfrak{J} \in \mathcal{C}^{g b r}$ between geometric objects \mathcal{A}, \mathcal{C}, and a set $\mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$ also contains \mathcal{A}, \mathcal{C}. Then by $\operatorname{Pr} 1.3 .6 \mathcal{B} \in \mathfrak{J}^{\prime}$. Hence on \mathfrak{J}^{\prime} we have $\mathcal{A} \in \mathfrak{J}^{\prime} \& \mathcal{B} \in \mathfrak{J}^{\prime} \& \mathcal{C} \in \mathfrak{J}^{\prime} \& \mathcal{A} \neq \mathcal{B} \neq \mathcal{C} \stackrel{\operatorname{Pr1.2.5}}{\Longrightarrow} \mathcal{B} \mathcal{A C} \vee \mathcal{A B C} \vee \mathcal{A C B}$. Now from L 1.2.25.13 it follows that in \mathfrak{J}^{\prime} either \mathcal{B}, \mathcal{C} lie on one side of \mathcal{A}, or \mathcal{A}, \mathcal{B} lie on one side of \mathcal{C}. The preceding lemma gives $\mathcal{A B} \equiv \mathcal{A B}, \mathcal{A C} \equiv \mathcal{A C}, \mathcal{B C} \equiv \mathcal{B C}$. The facts listed in the preceding two sentences plus $\mathcal{A B C}$ on \mathfrak{J} allow us to conclude, using P 1.3.3, that for all considered cases the geometric object \mathcal{B} will lie between \mathcal{A} and \mathcal{C} in \mathfrak{J}^{\prime} as well, q.e.d.

Corollary 1.3.14.3. Given congruent generalized intervals $\mathcal{A C}, \mathcal{A}^{\prime} \mathcal{C}^{\prime}$, where $\mathcal{A}, \mathcal{C} \in \mathfrak{J}$ and $\mathcal{A}^{\prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime},\left(\mathfrak{J}, \mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}\right)$ then for any geometric object $\mathcal{B} \in(\mathcal{A C}) \subset \mathfrak{J}$ there is exactly one geometric object $\mathcal{B}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{C}^{\prime}\right) \subset \mathfrak{J}^{\prime}$ such that $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$.

Proof. By $\operatorname{Pr} 1.3 .1$ there is a geometric object \mathcal{B}^{\prime} such that $\mathcal{B}^{\prime}, \mathcal{C}^{\prime}$ lie in some set $\mathfrak{J}^{\prime \prime} \in \mathcal{C}^{g b r}$ on the same side of the geometric object \mathcal{A}^{\prime}, and $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$. Since also, by hypothesis, we have $[\mathcal{A B C}]$ on \mathfrak{J} and $\mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$, using $\operatorname{Pr} 1.3 .3$ we find that \mathcal{B}^{\prime} lies (in $\mathfrak{J}^{\prime \prime}$) between $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$, and, furthermore, the generalized intervals $\mathcal{B C}, \mathcal{B}^{\prime} \mathcal{C}^{\prime}$ are congruent. As the set \mathfrak{J}^{\prime} by hypothesis also contains $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$, from the preceding lemma (L 1.3.14.2) we conclude that \mathcal{B}^{\prime} lies between $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$ in \mathfrak{J}^{\prime} as well. Uniqueness the geometric object \mathcal{B}^{\prime} with the required properties now follows immediately by the second part of Pr 1.3.1.

Lemma 1.3.14.4. If generalized intervals $\mathcal{A B}, \mathcal{B C}$ are congruent to generalized intervals $\mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{B}^{\prime} \mathcal{C}^{\prime}$, respectively, where the geometric object $\mathcal{B} \in \mathfrak{J} \in \mathcal{C}^{\text {gbr }}$ lies between the geometric objects $\mathcal{A} \in \mathfrak{J}$ and $\mathcal{C} \in \mathfrak{J}$ and the geometric object $\mathcal{B}^{\prime} \in \mathfrak{J}^{\prime} \in \mathcal{C}^{\text {gbr }}$ lies between $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime}$ and $\mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$, then the generalized interval $\mathcal{A C}$ is congruent to the generalized interval $\mathcal{A}^{\prime} \mathcal{C}^{\prime}$.

Proof. By Pr 1.3 .1 there exists a geometric object $\mathcal{C}^{\prime \prime}$ such that $\mathcal{C}^{\prime}, \mathcal{C}^{\prime \prime}$ lie in some set $\mathfrak{J}^{\prime \prime} \in \mathcal{C}^{g b r}$ with generalized betweenness relation on one side of \mathcal{A}^{\prime} and the generalized interval $\mathcal{A C}$ is congruent to the generalized interval $\mathcal{A}^{\prime} \mathcal{C}^{\prime \prime}$. Since $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime \prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime \prime}$, and (by hypothesis) \mathcal{B}^{\prime} lies in \mathfrak{J}^{\prime} between $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$, by L 1.3.14.2 the geometric object \mathcal{B}^{\prime} lies between $\mathcal{A}^{\prime}, \mathcal{C}^{\prime}$ in $\mathfrak{J}^{\prime \prime}$ as well. In view of L 1.2.25.13 the last fact implies that the geometric objects $\mathcal{B}^{\prime}, \mathcal{C}^{\prime}$ lie in the set $\mathfrak{J}^{\prime \prime}$ on the same side of \mathcal{A}^{\prime}. We can write $\mathcal{C}^{\prime} \in \mathcal{A}_{\mathcal{B}^{\prime}}^{\prime\left(\mathfrak{J}^{\prime \prime}\right)} \& \mathcal{C}^{\prime \prime} \in \mathcal{A}_{\mathcal{C}^{\prime}}^{\prime\left(\mathfrak{J}^{\prime \prime}\right)} \stackrel{\text { L1.2.25.5 }}{\Longrightarrow} \mathcal{C}^{\prime \prime} \in \mathcal{A}_{\mathcal{B}^{\prime}}^{\prime\left(\mathfrak{J}^{\prime \prime}\right)} . \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A C} \equiv$ $\left.\mathcal{A}^{\prime} \mathcal{C}^{\prime} \&[\mathcal{A B C}]^{\left(\mathfrak{J}^{\prime \prime}\right)} \& \mathcal{C}^{\prime \prime} \in \mathcal{A}_{\mathcal{B}^{\prime}\left(\mathfrak{J}^{\prime \prime}\right)} \stackrel{\operatorname{Pr} 1.3 .3}{\Longrightarrow}\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right]^{\left(\mathfrak{J}^{\prime \prime}\right)} \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} .\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right]^{\left(\mathfrak{J}^{\prime \prime}\right)} \&\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right]{ }^{\left(\mathfrak{J}^{\prime \prime}\right)} \xrightarrow{\text { L1.2.25.10 }} \& \mathcal{C}^{\prime \prime} \in \mathcal{B}_{\mathcal{C}^{\prime}}^{\prime} \mathfrak{\mathfrak { J }}^{\prime \prime}\right)$. $\mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime} \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \& \mathcal{C}^{\prime \prime} \in \mathcal{B}^{\prime}\left(\mathcal{J}^{\prime \prime}\right) \xrightarrow{\text { Pr1.3.3 }} \mathcal{C}^{\prime \prime}=\mathcal{C}^{\prime}$, whence the result.

Proposition 1.3.14.5. Let pairs B, C and B^{\prime}, C^{\prime} of geometric objects $\mathcal{B}, \mathcal{C} \in \mathfrak{J}$ and $\mathcal{B}^{\prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$ (where $\mathfrak{J}, \mathcal{J}^{\prime} \in \mathcal{C}^{g b r}$) lie either both on one side or both on opposite sides of the geometric objects $\mathcal{A} \in \mathfrak{J}$ and $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime}$, respectively. Then congruences $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$ imply $\mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$.

Proof. First, suppose $\mathcal{B} \in \mathcal{A}_{\mathcal{C}}, \mathcal{B}^{\prime} \in \mathcal{A}^{\prime} \mathcal{C}^{\prime} . \mathcal{B} \in \mathcal{A}_{\mathcal{C}} \& \mathcal{B} \neq \mathcal{C} \stackrel{\text { L1.2.25.8 }}{\Longrightarrow}[\mathcal{A B C}] \vee[\mathcal{A C B}]$. Let $[\mathcal{A B C}]$. ${ }^{298}$ Then $[\mathcal{A B C}] \& \mathcal{B}^{\prime} \in \mathcal{A}^{\prime} \mathcal{C}^{\prime} \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \stackrel{\operatorname{Pr1.3.3}}{\Longrightarrow} \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$.

If \mathcal{B}, \mathcal{C} and $\mathcal{B}^{\prime}, \mathcal{C}^{\prime}$ lie on opposite sides of \mathcal{A} and \mathcal{A}^{\prime}, respectively, we have $[\mathcal{B} \mathcal{A C}] \&\left[\mathcal{B}^{\prime} \mathcal{A}^{\prime} \mathcal{C}^{\prime}\right] \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A C} \equiv$ $\mathcal{A}^{\prime} \mathcal{C}^{\prime} \stackrel{\text { L1.3.14.4 }}{\Longrightarrow} \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$.

[^93]Corollary 1.3.14.6. Let generalized intervals $\mathcal{A B}, \mathcal{A}^{\prime} \mathcal{B}^{\prime}$, as well as $\mathcal{A C}, \mathcal{A}^{\prime} \mathcal{C}^{\prime}$, formed by the geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}$ and $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$, (where $\mathfrak{J}, \mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$), be congruent. Then if the geometric object \mathcal{B} lies between the geometric \mathcal{A}, \mathcal{C}, the geometric object \mathcal{C}^{\prime} lies outside the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ (i.e. \mathcal{C}^{\prime} lies in the set Ext $\mathcal{A}^{\prime} \mathcal{B}^{\prime}=$ $\left.\mathfrak{J}^{\prime} \backslash\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right]\right)$.

Proof. $[\mathcal{A B C}] \xrightarrow{\text { L1.2.25.13 }} \mathcal{C} \in \mathcal{A}_{\mathcal{B}} . \mathcal{B}^{\prime} \neq \mathcal{C}^{\prime}$, because otherwise $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C} \& \mathcal{B}^{\prime}=\mathcal{C}^{\prime} \& \mathcal{C} \in \mathcal{A}_{\mathcal{B}} \xrightarrow{\operatorname{Pr1.3.1}} \mathcal{B}=\mathcal{C}$ - a contradiction. Also, $\mathcal{C}^{\prime} \notin\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right)$, because otherwise $\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime} \mathcal{B}^{\prime}\right] \& \mathcal{C} \in \mathcal{A}_{\mathcal{B}} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C} \xrightarrow{\text { L1.3.14.4 }}$ $[\mathcal{A C B}] \Rightarrow \neg[\mathcal{A B C}]$ - a contradiction.

Theorem 1.3.14. Suppose finite sequences of n geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ and $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n}$, where $A_{i} \in \mathfrak{J}$, $B_{i} \in \mathfrak{J}^{\prime}, i=1,2, \ldots, n, \mathfrak{J} \in \mathcal{C}^{g b r}, \mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}, n \geq 3$, have the property that every geometric object of the sequence, except the first $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ and the last $\left(\mathcal{A}_{n}, \mathcal{B}_{n}\right.$, respectively), lies between the two geometric objects of the sequence with the numbers adjacent (in \mathbb{N}) to the number of the given geometric object. Then if all generalized intervals formed by pairs of geometric objects of the sequence $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ with adjacent (in \mathbb{N}) numbers are congruent to the corresponding generalized intervals ${ }^{299}$ of the sequence $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n}$, the generalized intervals formed by the first and the last geometric objects of the sequences are also congruent, $\mathcal{A}_{1} \mathcal{A}_{n} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$. To recapitulate in more formal terms, let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ and $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n}, n \geq 3$, be finite sequences of geometric objects $\mathcal{A}_{i} \in \mathfrak{J}, \mathcal{B}_{i} \in \mathfrak{J}^{\prime}$, $i=1,2, \ldots, n, \mathfrak{J} \in \mathcal{C}^{g b r}, \mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$, such that $\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{i+2}\right]$, $\left[\mathcal{B}_{i} \mathcal{B}_{i+1} \mathcal{B}_{i+2}\right]$ for all $i \in \mathbb{N}_{n-2}$ (i.e. $\forall i=1,2, \ldots n-2$). Then congruences $\mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{B}_{i} \mathcal{B}_{i+1}$ for all $i \in \mathbb{N}_{n-1}$ imply $\mathcal{A}_{1} \mathcal{A}_{n} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$.

Proof. By induction on n. For $n=3$ see $\operatorname{Pr} 1.3 .3$. Now suppose $\mathcal{A}_{1} \mathcal{A}_{n-1} \equiv \mathcal{B}_{1} \mathcal{B}_{n-1}$ (induction!). ${ }^{300}$ We have $\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right],\left[\mathcal{B}_{1} \mathcal{B}_{n-1} \mathcal{B}_{n}\right]$ by L 1.2.22.14. Therefore, $\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \&\left[\mathcal{B}_{1} \mathcal{B}_{n-1} \mathcal{B}_{n}\right] \& \mathcal{A}_{1} \mathcal{A}_{n-1} \equiv \mathcal{B}_{1} \mathcal{B}_{n-1} \& \mathcal{A}_{n-1} \mathcal{A}_{n} \equiv$ $\mathcal{B}_{n-1} \mathcal{B}_{n} \stackrel{\text { L1.3.14.4 }}{\Longrightarrow} \mathcal{A}_{1} \mathcal{A}_{n} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$.

Comparison of Generalized Intervals

Lemma 1.3.15.1. For any geometric object \mathcal{C} lying on a generalized open interval $(A B)$, where $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{J}, \mathfrak{J} \in \mathcal{C}^{\text {gbr }}$, there are geometric objects $\mathcal{E} \in(\mathcal{A B}), \mathcal{F} \in(\mathcal{A B})$ such that $\mathcal{A C} \equiv \mathcal{E} \mathcal{F}$.

Proof. Suppose $[\mathcal{A C B}]$. By $\operatorname{Pr} 1.2 .4 \exists \mathcal{F} \in \mathfrak{J}$ such that $[\mathcal{C F B}]$. Then $[\mathcal{A C B}] \&[\mathcal{C F} \mathcal{B}] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}[\mathcal{A C} \mathcal{F}] \&[\mathcal{A F B}] .[\mathcal{A C F}] \& \mathcal{A} \mathcal{F} \equiv$ $\mathcal{F A} \stackrel{\text { C1.3.14.3 }}{\Longrightarrow} \exists \mathcal{E} \mathcal{E} \in \mathfrak{J} \&[\mathcal{F E A}] \& \mathcal{A C} \equiv \mathcal{F E}$. Finally, $[\mathcal{A E F}] \&[\mathcal{A F B}] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow}[\mathcal{A E B}]$.

The following lemma is opposite, in a sense, to L 1.3.15.1
Lemma 1.3.15.2. For any two (distinct) geometric objects \mathcal{E}, \mathcal{F} lying on a generalized open interval $(\mathcal{A B})$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J}, \mathfrak{J} \in \mathcal{C}^{g b r}$, there is exactly one geometric object $C \in(\mathcal{A B})$ such that $\mathcal{E} \mathcal{F} \equiv \mathcal{A C}$.

Proof. By P 1.2.22.6 $[\mathcal{A E \mathcal { F }}] \vee[\mathcal{A F E}]$. Since \mathcal{E}, \mathcal{F} enter the conditions of the lemma symmetrically, we can assume without any loss of generality that $[\mathcal{A E F}]$. Then $\mathcal{A F} \equiv \mathcal{F} \mathcal{A} \&[\mathcal{F E \mathcal { A }}] \stackrel{\mathrm{C} 1.3 .14 .3}{\Longrightarrow} \exists!\mathcal{C} \mathcal{F E} \equiv \mathcal{A C} \&[\mathcal{A C} \mathcal{F}]$. Finally, $[\mathcal{A C \mathcal { F }}] \&[\mathcal{A F B}] \xrightarrow{\text { Pr1.2. } 7}[\mathcal{A C B}]$.

A generalized (abstract) interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, where $\mathcal{A}^{\prime}, \mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}, \mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$, is said to be shorter, or less, than or congruent to a generalized (abstract) interval $\mathcal{A B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J}, \mathfrak{J} \in \mathcal{C}^{g b r}$, if there is a generalized interval $\mathcal{C D}{ }^{301}$ such that the generalized abstract interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{C D}$, and the generalized open interval $(\mathcal{C D})$ is included in the generalized open interval $(\mathcal{A B}){ }^{302}$ If $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is shorter than or congruent to $\mathcal{A B}$, we write this fact as $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \leqq \mathcal{A B}$. Also, if a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is shorter than or congruent to a generalized interval $\mathcal{A B}$, we shall say that the generalized (abstract) interval $\mathcal{A B}$ is longer, or greater than or congruent to the generalized (abstract) interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, and write this as $\mathcal{A B} \geqq \mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

If a generalized (abstract) interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is shorter than or congruent to a generalized (abstract) interval $\mathcal{A B}$, and, on the other hand, the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is known to be incongruent (not congruent) to the generalized interval $\mathcal{A B}$, we say that the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is strictly shorter, or strictly less ${ }^{303}$ than the generalized interval $\mathcal{A B}$, and write $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is (strictly) shorter than a generalized interval $\mathcal{A B}$, we shall say also that the generalized (abstract) interval $\mathcal{A B}$ is strictly longer, or strictly greater ${ }^{304}$ than (abstract) interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, and write this as $\mathcal{A B}>\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

[^94]Lemma 1.3.15.3. A generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is (strictly) shorter than a generalized interval $\mathcal{A B}$ iff:

- 1. There exists a geometric object \mathcal{C} on the generalized open interval $(\mathcal{A B})$ such that the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{A C} ;{ }^{305}$ or
- 2. There are geometric objects \mathcal{E}, \mathcal{F} on the generalized open interval $\mathcal{A B}$ such that $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{E F}$.

In other words, a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is strictly shorter than a generalized interval $\mathcal{A B}$ iff there is a generalized interval $\mathcal{C D}$, whose ends both lie on a generalized half-open $[\mathcal{A B})$ (generalized half-closed interval $(\mathcal{A B}])$, such that the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{C D}$.

Proof. Suppose $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C}$ and $\mathcal{C} \in(\mathcal{A B})$. Then by Pr 1.2.7, L 1.2.25.13 $\mathcal{C} \in(\mathcal{A B}) \Rightarrow(\mathcal{A C}) \subset \mathcal{A B} \& \mathcal{C} \in \mathcal{A}_{\mathcal{B}}$. Therefore, $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \leqq \mathcal{A B}$. Also, $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \not \equiv \mathcal{A B}$, because otherwise $\mathcal{C} \in \mathcal{A B}_{\mathcal{B}} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \stackrel{\text { Pr1.3.1 }}{\Longrightarrow} \mathcal{A C}=\mathcal{A B} \Rightarrow$ $\mathcal{C}=\mathcal{B}$, whence $\mathcal{C} \notin(\mathcal{A B})$ - a contradiction. Thus, we have $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \leqq \mathcal{A B} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \not \equiv \mathcal{A B}$, i.e. $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$.

Suppose $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{E} \mathcal{F}$, where $\mathcal{E} \in(\mathcal{A B}), \mathcal{F} \in(\mathcal{A B})$. By L 1.3.15.2 $\exists \mathcal{C} \mathcal{C} \in(\mathcal{A B}) \& \mathcal{E} \mathcal{F} \equiv \mathcal{A C}$. Then $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv$ $\mathcal{E F} \& \mathcal{E} \mathcal{F} \equiv \mathcal{A C} \stackrel{\mathrm{~L} 1.3 .14 .1}{\Longrightarrow} \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \& \mathcal{C} \in(\mathcal{A B}) \stackrel{\text { above }}{\Longrightarrow} \mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$.

Now suppose $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$. By definition, this means that there exists a generalized (abstract) interval $\mathcal{C D}$ such that $(\mathcal{C D}) \subset(A B), \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{C D}$, and also $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \not \equiv \mathcal{A B}$. Then we have $(\mathcal{C D}) \subset(\mathcal{A B}) \stackrel{\text { L1.2.30. }}{\Longrightarrow}{ }^{\mathcal{C}} \mathcal{C} \in[\mathcal{A B}] \& \mathcal{D} \in[\mathcal{A B}]$, $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \not \equiv \mathcal{A B} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{C D} \Rightarrow \mathcal{C D} \neq \mathcal{A B}$. Therefore, either one of the ends or both ends of the generalized interval $\mathcal{C D}$ lie on the generalized open interval $(\mathcal{A B})$. The statement in 1. then follows from L 1.3.15.1, in 2.- from L 1.3.15.2.

Observe that the lemma L 1.3.15.3 (in conjunction with $\operatorname{Pr} 1.3 .1$) indicates that we can lay off from any geometric object an interval shorter than a given generalized interval. Thus, there is actually no such thing as the shortest possible generalized interval.

Corollary 1.3.15.4. If a geometric object \mathcal{C} lies on a generalized open interval $(\mathcal{A B})$ (i.e. \mathcal{C} lies between \mathcal{A} and \mathcal{B}), the generalized interval $\mathcal{A C}$ is (strictly) shorter than the generalized abstract interval $\mathcal{A B}$.

If two (distinct) geometric objects \mathcal{E}, \mathcal{F} lie on a generalized open interval $(\mathcal{A B})$, the generalized interval $\mathcal{E} \mathcal{F}$ is (strictly) less than the generalized interval $\mathcal{A B}$.

Proof. Follows immediately from the preceding lemma (L 1.3.15.3).
Lemma 1.3.15.5. A generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is shorter than or congruent to a generalized interval $\mathcal{A B}$ iff there is a generalized interval $\mathcal{C D}$ whose ends both lie on the generalized closed interval $[\mathcal{A B}]$, such that the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{C D}$.

Proof. Follows immediately from L 1.2.30.12 and the definition of "shorter than or congruent to".
Lemma 1.3.15.6. If a generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$, where $\mathcal{A}^{\prime \prime}, \mathcal{B}^{\prime \prime} \in \mathfrak{J}^{\prime \prime}, \mathfrak{J}^{\prime \prime} \in \mathcal{C}^{g b r}$, is congruent to a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, where $\mathcal{A}^{\prime}, \mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}$, $\mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$, and the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than a generalized interval $\mathcal{A B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J}, \mathfrak{J} \in \mathcal{C}^{g b r}$, the generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than the generalized interval $\mathcal{A B}$.

Proof. By definition and L 1.3.15.3, $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B} \Rightarrow \exists \mathcal{C} \mathcal{C} \in(\mathcal{A B}) \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \stackrel{\text { L1.3.14.1 }}{ }$ $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C} . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C} \& \mathcal{C} \in(\mathcal{A B}) \Rightarrow \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A B}$. \square

Lemma 1.3.15.7. If a generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$, where $\mathcal{A}^{\prime \prime}, \mathcal{B}^{\prime \prime} \in \mathfrak{J}^{\prime \prime}$, $\mathfrak{J}^{\prime \prime} \in \mathcal{C}^{g b r}$, is less than a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, where $\mathcal{A}^{\prime}, \mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}$, $\mathfrak{J}^{\prime} \in \mathcal{C}^{g b r}$, and the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to a generalized interval $\mathcal{A B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{J}, \mathfrak{J} \in \mathcal{C}^{g b r}$, the generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than the generalized interval $\mathcal{A B}$.

Proof. $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \Rightarrow \exists \mathcal{C}^{\prime} \mathcal{C}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \& \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} . \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{C}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \stackrel{\mathrm{C} 1.3 .14 .3}{\Longrightarrow} \exists \mathcal{C} \in(\mathcal{A B}) \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv$ $\mathcal{A C} . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C} \stackrel{L 1.3 .14 .1}{\Longrightarrow} \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C} . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C} \& \mathcal{C} \in(\mathcal{A B}) \Rightarrow \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A B}$.

Lemma 1.3.15.8. If a generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than a generalized interval $\mathcal{A B}$, the generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than the generalized interval $\mathcal{A B}$.

Proof. $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \Rightarrow \exists \mathcal{C}^{\prime} \mathcal{C}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \& \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$. $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B} \Rightarrow \exists \mathcal{D} \mathcal{D} \in(\mathcal{A B}) \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A D} . \mathcal{C}^{\prime} \in$ $\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A D} \stackrel{\text { C1.3.14.3 }}{\Longrightarrow} \not \mathcal{C} \mathcal{C} \in(\mathcal{A D}) \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C} . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \& \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C} \stackrel{\text { Pr1.3.1 }}{\Longrightarrow} \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C}$. $[\mathcal{A C D}] \&[\mathcal{A D B}] \stackrel{\text { Pr1.2. }}{\Longrightarrow}[\mathcal{A C B}] . \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A C} \&[\mathcal{A C B}] \Rightarrow \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A B}$.

Lemma 1.3.15.9. If a generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than or congruent to a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than or congruent to a generalized interval $\mathcal{A B}$, the generalized interval $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}$ is less than or congruent to the generalized interval $\mathcal{A B}$.

[^95]Proof. We have, using L 1.3.14.1, L 1.3.15.6, L 1.3.15.7, L 1.3.15.8 on the way: $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \leqq \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \leqq \mathcal{A B} \Rightarrow$ $\left(\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \vee \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \&\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B} \vee \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}\right) \Rightarrow\left(\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}\right) \vee\left(\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime}<\right.$ $\left.\mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}\right) \vee\left(\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}\right) \vee\left(\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}\right) \Rightarrow \mathcal{A}^{\prime \prime}<\mathcal{B}^{\prime \prime} \vee \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \equiv$ $\mathcal{A B} \Rightarrow \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} \leqq \mathcal{A B}$.

Lemma 1.3.15.10. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than a generalized interval $\mathcal{A B}$, the generalized interval $\mathcal{A B}$ cannot be less than the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

Proof. Suppose the contrary, i.e., that both $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$ and $\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, that is, $\exists \mathcal{C} \mathcal{C} \in(\mathcal{A B}) \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C}$ and $\exists \mathcal{C}^{\prime} \mathcal{C}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$. Then $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \stackrel{\text { L1.3.14.1 }}{\Longrightarrow} \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and $\mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \&[\mathcal{A C B}] \stackrel{\mathrm{C} 1.3 .14 .6}{ }$ $\mathcal{C}^{\prime} \in E x t \mathcal{A}^{\prime} \mathcal{B}^{\prime}-$ a contradiction with $\mathcal{C}^{\prime} \in\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right)$.

Lemma 1.3.15.11. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than a generalized interval $\mathcal{A B}$, it cannot be congruent to that generalized interval.

Proof. Suppose the contrary, i.e. that both $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}$. We have then $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B} \Rightarrow \exists \mathcal{C} \mathcal{C} \in$ $(\mathcal{A B}) \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} .[\mathcal{A C B}] \xrightarrow{\mathrm{L} 1.2 .25 .13} \mathcal{C} \in \mathcal{A}_{\mathcal{B}}$. But $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{C} \in \mathcal{A}_{\mathcal{B}} \xrightarrow{\text { Pr1.3.1 }} C=B$ - a contradiction.

Corollary 1.3.15.12. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to a generalized interval $\mathcal{A B}$, neither $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is shorter than $\mathcal{A B}$, nor $\mathcal{A B}$ is shorter than $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

Proof. Follows immediately from L 1.3.15.11.
Lemma 1.3.15.13. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than or congruent to a generalized interval $\mathcal{A B}$ and the generalized interval $\mathcal{A B}$ is less than or congruent to the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$, the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is congruent to the generalized interval $\mathcal{A B}$.

Proof. $\left(\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B} \vee \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}\right) \&\left(\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \vee \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}\right) \Rightarrow \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}$, because $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$ contradicts both $\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}$ in view of L 1.3.15.10, L 1.3.15.11.

Lemma 1.3.15.14. If a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is not congruent to a generalized interval $\mathcal{A B}$, then either the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is less than the generalized interval $\mathcal{A B}$, or the generalized interval $\mathcal{A B}$ is less than the generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

Proof. Using Pr 1.3.1, choose geometric objects $\mathcal{C} \in \mathcal{A}_{\mathcal{B}}, \mathcal{C}^{\prime} \in \mathcal{A}_{\mathcal{B}^{\prime}}^{\prime}$ so that $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C}, \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$. Then $\mathcal{C} \neq \mathcal{B}$, because $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \not \equiv \mathcal{A B}$ by hypothesis, and $\mathcal{C} \in \mathcal{A}_{\mathcal{B}} \& \mathcal{C} \neq \mathcal{B} \stackrel{\text { L1.2.25.8 }}{\Longrightarrow}[\mathcal{A C B}] \vee[\mathcal{A B C}]$. We have in the first case (i.e., when $[\mathcal{A C B}])[\mathcal{A C B}] \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A C} \Rightarrow \mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$, and in the second case $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \& \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \&[\mathcal{A B C}] \& \mathcal{C}^{\prime} \in$ $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \stackrel{\text { L1.3.14.4 }}{\Longrightarrow}\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime} \mathcal{B}^{\prime}\right],\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime} \mathcal{B}^{\prime}\right] \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime} \Rightarrow \mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

Theorem 1.3.15. Suppose finite pencils of n rays $h_{1}, h_{2}, \ldots, h_{n}$ and $k_{1}, k_{2}, \ldots, k_{n}$, where $n \geq 3$, have the property that every ray of the pencil, except the first $\left(h_{1}, k_{1}\right)$ and the last (h_{n}, k_{n}, respectively), lies inside the angle formed by the rays of the pencil with the numbers adjacent (in \mathbb{N}) to the number of the given ray. Then if all angles formed by pairs of rays of the pencil $h_{1}, h_{2}, \ldots, h_{n}$ with adjacent (in \mathbb{N}) numbers are congruent to the corresponding angles ${ }^{306}$ of the pencil $k_{1}, k_{2}, \ldots, k_{n}$, the angles formed by the first and the last rays of the pencils are also congruent, $\angle\left(h_{1}, h_{n}\right) \equiv \angle\left(k_{1}, k_{n}\right)$. To recapitulate in more formal terms, let $h_{1}, h_{2}, \ldots, h_{n}$ and $k_{1}, k_{2}, \ldots, k_{n}, n \geq 3$, be finite pencils of rays such that $h_{i+1} \subset \operatorname{Int} \angle\left(h_{i}, h_{i+2}\right)$, $k_{i+1} \subset \operatorname{Int} \angle\left(k_{i}, k_{i+2}\right)$ for all $i \in \mathbb{N}_{n-2}$ (i.e. $\left.\forall i=1,2, \ldots n-2\right)$. Then congruences $\angle\left(h_{i}, h_{i+1}\right) \equiv \angle\left(k_{i}, k_{i+1}\right)$ for all $i \in \mathbb{N}_{n-1}$ imply $\angle\left(h_{1}, h_{n}\right) \equiv \angle\left(k_{1}, k_{n}\right)$.

Proof.

Comparison of Angles

Lemma 1.3.16.1. For any ray l having the same origin as rays h, k and lying inside the angle $\angle(h, k)$ formed by them, there are rays m, n with the same origin as h, k, l and lying inside $\angle(h, k)$, such that $\angle(h, k) \equiv \angle(m, n)$.

Proof. See T 1.3.13, L 1.3.15.1.
The following lemma is opposite, in a sense, to L 1.3.16.1
Lemma 1.3.16.2. For any two (distinct) rays m, n sharing the origin with (equioriginal to) rays h, k and lying inside the angle $\angle(h, k)$ formed by them, there is exactly one ray l with the same origin as h, k, l, m and lying inside $\angle(h, k)$ such that $\angle(m, n) \equiv \angle(h, l)$.

Proof. See T 1.3.13, L 1.3.15.2.
${ }^{306}$ i.e., angles formed by pairs of rays with equal numbers

Lemma 1.3.16.3. An angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is (strictly) less than an angle $\angle(h, k)$ iff:

- 1. There exists a ray l equioriginal to rays h, k and lying inside the angle $\angle(h, k)$ formed by them, such that the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to the angle $\angle(h, l) ;{ }^{307}$ or
- 2. There are rays m, n equioriginal to rays h, k and lying inside the $\angle(h, k)$ such that $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(m, n)$.

In other words, an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is strictly less than an angle $\angle(h, k)$ iff there is an angle $\angle(l, m)$, whose sides are equioriginal to h, k and both lie on a half-open angular interval $[h k$) (half-closed angular interval ($h k]$), such that the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.3.
Observe that the lemma L 1.3.16.3 (in conjunction with A 1.3.4) indicates that we can lay off from any ray an angle less than a given angle. Thus, there is actually no such thing as the least possible angle.

Corollary 1.3.16.4. If a ray l is equioriginal with rays h, k and lies inside the angle $\angle(h, k)$ formed by them, the angle $\angle(h, l)$ is (strictly) less than the angle $\angle(h, k)$.

If two (distinct) rays m, n are equioriginal to rays h, k and both lie inside the angle $\angle(h, k)$ formed by them, the angle $\angle(m, n)$ is (strictly) less than the angle $\angle(h, k)$.

Suppose rays k, l are equioriginal with the ray h and lie on the same side of the line \bar{h}. Then the inequality $\angle(h, k)<\angle(h, l)$ implies $k \subset \operatorname{Int} \angle(h, l)$.

Proof. See T 1.3.13, C 1.3.15.4, L 1.2.21.21.
Lemma 1.3.16.5. An angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to an angle $\angle(h, k)$ iff there are rays l, m equioriginal to the rays h, k and lying on the closed angular interval $[h k]$, such that the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.5.
Lemma 1.3.16.6. If an angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is congruent to an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ and the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an angle $\angle(h, k)$, the angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than the angle $\angle(h, k)$.

Proof. See T 1.3.14, L 1.3.15.6.
Lemma 1.3.16.7. If an angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ and the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to an angle $\angle(h, k)$, the angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.7.
Lemma 1.3.16.8. If an angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ and the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an angle $\angle(h, k)$, the angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.8.
Lemma 1.3.16.9. If an angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than or congruent to an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ and the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to an angle $\angle(h, k)$, the angle $\angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ is less than or congruent to the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.9.
Lemma 1.3.16.10. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an angle $\angle(h, k)$, the angle $\angle(h, k)$ cannot be less than the angle $\angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. See T 1.3.13, L 1.3.15.10.
Lemma 1.3.16.11. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an angle $\angle(h, k)$, it cannot be congruent to that angle.
Proof. See T 1.3.13, L 1.3.15.11.
Corollary 1.3.16.12. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to an angle $\angle(h, k)$, neither $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than $\angle(h, k)$, nor $\angle(h, k)$ is less than $\angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. See T 1.3.13, C 1.3.15.12.
Lemma 1.3.16.13. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than or congruent to an angle $\angle(h, k)$ and the angle $\angle(h, k)$ is less than or congruent to the angle $\angle\left(h^{\prime}, k^{\prime}\right)$, the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is congruent to the angle $\angle(h, k)$.

Proof. See T 1.3.13, L 1.3.15.13.

[^96]Lemma 1.3.16.14. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is not congruent to an angle $\angle(h, k)$, then either the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than the angle $\angle(h, k)$, or the angle $\angle(h, k)$ is less than the angle $\angle\left(h^{\prime}, k^{\prime}\right)$.

Proof. See T 1.3.13, L 1.3.15.14. \square
Lemma 1.3.16.15. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an angle $\angle(h, k)$, the angle $\angle\left(h^{\prime c}, k^{\prime}\right)$ adjacent supplementary to the former is greater than the angle $\angle\left(h^{c}, k\right)$ adjacent supplementary to the latter.

Proof. $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k) \stackrel{\text { L1.3.16.3 }}{\Longrightarrow} \exists l l \subset \operatorname{Int} \angle(h, k) \& \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, l) \stackrel{\text { P1.3.9.7 }}{\Longrightarrow} \exists k^{\prime} k^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, l^{\prime}\right) \& \angle(h, k) \equiv$ $\angle\left(h^{\prime}, l^{\prime}\right) . k^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, l^{\prime}\right) \xrightarrow{\text { L1.2.21.22 }} l^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime c}, k^{\prime}\right)$. Also, $\angle(h, k) \equiv \angle\left(h^{\prime}, l^{\prime}\right) \xrightarrow{\mathrm{T} 1.3 .6} \angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, l^{\prime}\right)$. Finally, $l^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime c}, k^{\prime}\right) \& \angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, l^{\prime}\right) \xrightarrow{\mathrm{L} 1.3 .16 .3} \angle\left(h^{c}, k\right)<\angle\left(h^{\prime c}, k^{\prime}\right)$.

Acute, Obtuse and Right Angles

An angle which is less than (respectively, greater than) its adjacent supplementary angle is called an acute (obtuse) angle.

Obviously, any angle is either an acute, right, or obtuse angle, and each of these attributes excludes the others. Also, the angle, adjacent supplementary to an acute (obtuse) angle, is obtuse (acute).

Lemma 1.3.16.16. An angle $\angle\left(h^{\prime}, k^{\prime}\right)$ congruent to an acute angle $\angle(h, k)$ is also an acute angle. Similarly, an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ congruent to an obtuse angle $\angle(h, k)$ is also an obtuse angle.

Proof. Indeed, $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k) \stackrel{\text { T1.3.6 }}{\Longrightarrow} \angle\left(h^{\prime c}, k^{\prime}\right) \equiv \angle\left(h^{c}, k\right)$. Therefore, by L 1.3.16.6, L 1.3.56.18 we have $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)<\angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, k^{\prime}\right) \Rightarrow \angle\left(h^{\prime}, k^{\prime}\right)<\angle\left(h^{\prime c}, k^{\prime}\right)$ and $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)>\angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, k^{\prime}\right) \Rightarrow$ $\angle\left(h^{\prime}, k^{\prime}\right)>\angle\left(h^{\prime c}, k^{\prime}\right)$, q.e.d.

Lemma 1.3.16.17. Any acute angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than any right angle $\angle(h, k)$.
Proof. By T 1.3.8 there exists a right angle, i.e. an angle $\angle(h, k)$ such that $\angle(h, k) \equiv \angle\left(h^{c}, k\right)$. By A 1.3.4 $\exists l l k \bar{h} \& \angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, l) . \quad l \neq k$, because otherwise by L 1.3.8.2 $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)$ implies that $\angle\left(h^{\prime}, k^{\prime}\right)$ is a right angle. By L 1.3.16.16, $\angle\left(h^{\prime}, l^{\prime}\right)$ is also acute, i.e. $\angle(h, l)<\angle\left(h^{c}, l\right)$. We have by L 1.2.21.15, L 1.2.21.21 $l \neq k \& l k \bar{h} l \subset \operatorname{Int} \angle(h, k) \vee\left(l \subset \operatorname{Int} \angle\left(h^{c}, k\right) \& k \subset \operatorname{Int} \angle(h, l)\right)$. Then $l \subset \operatorname{Int} \angle\left(h^{c}, k\right) \& k \subset \operatorname{Int} \angle(h, l) \xrightarrow{\text { C1.3.16.4 }}$ $\angle\left(h^{c}, l\right)<\angle\left(h^{c}, k\right) \& \angle(h, k)<\angle(h, l)$. Together with $\angle(h, k) \equiv \angle\left(h^{c}, k\right)$, (recall that $\angle(h, k)$ is a right angle!) by L 1.3.16.6, L 1.3.56.18 $\angle\left(h^{c}, l\right)<\angle(h, l)$ - a contradiction. Thus, $l \subset \operatorname{Int} \angle(h, k)$, which means, in view of L 1.3.16.5, that $\angle(h, l)<\angle(h, k)$ l. Finally, $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, l) \& \angle(h, l)<\angle(h, k) \xrightarrow{\text { L1.3.16.6 }} \angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, l)$.

Lemma 1.3.16.18. Any obtuse angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is greater than any right angle $\angle(h, k)$. ${ }^{308}$
Proof. $\angle\left(h^{\prime}, k^{\prime}\right)$ is obtuse $\Rightarrow \angle\left(h^{\prime c}, k^{\prime}\right)$ is acute $\stackrel{\text { L1.3.16.17 }}{\Longrightarrow} \angle\left(h^{\prime c}, k^{\prime}\right)<\angle(h, k) \stackrel{\text { L1.3.16.15 }}{\Longrightarrow} \angle\left(h^{\prime}, k^{\prime}\right)=\angle\left(\left(h^{\prime c}\right)^{c}, k^{\prime}\right)>$ $\angle\left(h^{c}, k\right)$. Finally, $\angle(h, k) \equiv \angle\left(h^{c}, k\right) \& \angle\left(h^{c}, k\right)<\left(h^{\prime}, k^{\prime}\right) \stackrel{\text { L1.3.16.6 }}{\Longrightarrow} \angle(h, k)<\angle\left(h^{\prime}, k^{\prime}\right)$, q.e.d.

Lemma 1.3.16.19. Any acute angle is less than any obtuse angle.
Proof. Follows from T 1.3.8, L 1.3.16.17, L 1.3.16.18.
Corollary 1.3.16.20. An angle less than a right angle is acute. An angle greater than a right angle is obtuse. An angle less than an acute angle is acute. An angle greater than an obtuse angle is obtuse.

Theorem 1.3.16. All right angles are congruent.
Proof. Let $\angle\left(h^{\prime}, k^{\prime}\right), \angle(h, k)$ be right angles. If, say, $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k)$ then by L 1.3.16.15 $\angle\left(h^{c}, k\right)<\angle\left(h^{\prime c}, k^{\prime}\right)$, and by L 1.3.16.6, L 1.3.56.18 $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k) \& \angle(h, k) \equiv\left(h^{c}, k\right) \& \angle\left(h^{c}, k\right)<\angle\left(h^{\prime c}, k^{\prime}\right) \Rightarrow \angle\left(h^{\prime}, k^{\prime}\right)<\angle\left(h^{\prime c}, k^{\prime}\right)$, which contradicts the assumption that $\angle\left(h^{\prime}, k^{\prime}\right)$ is a right angle.

Lemma 1.3.16.21. Suppose that rays h, k, l have the same initial point, as do rays h^{\prime}, k^{\prime}, l^{\prime}. Suppose, further, that $h \bar{k} l$ and $h^{\prime} \bar{k}^{\prime} l$ (i.e. the rays h, l and h^{\prime}, l^{\prime} lie on opposite sides of the lines $\bar{k}, \bar{k}^{\prime}$, respectively, that is, the angles $\angle(h, k), \angle(k, l)$ are adjacent, as are angles $\left.\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(k^{\prime}, l^{\prime}\right)\right)$ and $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$. Then the rays k, l lie on the same side of the line \bar{h} iff the rays k^{\prime}, l^{\prime} lie on the same side of the line \bar{h}^{\prime}, and the rays k, l lie on opposite sides of the line \bar{h} iff the rays k^{\prime}, l^{\prime} lie on opposite sides of the line \bar{h}.

[^97]
a)

Figure 1.123: Suppose that rays h, k, l have the same initial point, as do rays $h^{\prime}, k^{\prime}, l^{\prime}$. Suppose, further, that $h \bar{k} l$ and $h^{\prime} \bar{k}^{\prime} l$ and $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right), \angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)$. Then k, l lie on the same side of \bar{h} iff k^{\prime}, l^{\prime} lie on the same side of \bar{h}^{\prime}, and k, l lie on opposite sides of \bar{h} iff k^{\prime}, l^{\prime} lie on opposite sides of \bar{h}.

Proof. Suppose that $k l \bar{h}$. Then certainly $l^{\prime} \neq h^{\prime c}$, for otherwise in view of C 1.3.6.1 we would have $l=h^{c}$. Suppose now $k^{\prime} \bar{h}^{\prime} l^{\prime}$ (see Fig. 1.123.). Using L 1.2.21.33 we can write $l \subset \operatorname{Int} \angle\left(h^{c}, k\right), h^{\prime c} \subset \operatorname{Int} \angle\left(k^{\prime}, l^{\prime}\right)$. In addition, $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right) \stackrel{\text { T1.3.6 }}{\Longrightarrow} \angle\left(h^{c}, k\right)=\operatorname{adjsp} \angle(h, k) \equiv a d s p \angle\left(h^{\prime}, k^{\prime}\right)=\angle\left(h^{\prime c}, k^{\prime}\right)$. Hence, using C 1.3.16.4, L 1.3.16.6 - L 1.3.16.8, we can write $\angle(k, l)<\angle\left(h^{c}, k\right) \equiv \angle\left(h^{\prime c}, k^{\prime}\right)<\angle\left(k^{\prime}, l^{\prime}\right) \Rightarrow \angle(k, l)<\angle\left(k^{\prime}, l^{\prime}\right)$. Since, however, we have $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right)$ by T 1.3.9, we arrive at a contradiction in view of L 1.3.16.11. Thus, we have $k^{\prime} l^{\prime} \bar{h}^{\prime}$ as the only remaining option.

Lemma 1.3.16.22. Suppose that a point D lies inside an angle $\angle B A C$ and the points A, D lie on the same side of the line $a_{B C}$. Then the angle $\angle B A C$ is less than the angle $\angle D C$.

Proof. First, observe that the ray B_{D} lies inside the angle $\angle A B C$. In fact, the points C, D lie on the same side of the line $a_{A B}=a_{B A}$ by definition of interior of $\angle B A C$, and $A D a_{B C}$ by hypothesis. From L 1.2.21.10 we see that the ray B_{D} meets the open interval $(A C)$ in some point E. Since the points B, D lie on the same side of the line $a_{A C}$ (again by definition of interior of $\angle B A C$), the points D lies between B, E (see also L 1.2.11.8). Finally, using T 1.3.17 (see also L 1.2.11.15), we can write $\angle B A C=\angle B A E<\angle B E C=\angle D E C<$ angle $B D C$, whence $\angle B A C<\angle B D C$, as required.

Suppose two lines a, b concur in a point O. Suppose further that the lines a, b are separated by the point O into the rays h, h^{c} and k, k^{c}, respectively. Obviously, we have either $\angle(h, k) \leqq \angle\left(h^{c}, k\right)$ or $\angle\left(h^{c}, k\right) \leqq \angle(h, k)$. If the angle $\angle(h, k)$ is not greater than the angle $\angle\left(h^{c}, k\right)$ adjacent supplementary to it, the angle $\angle(h, k)$, as well as the angle $\angle\left(h^{c}, k\right)$ will sometimes be (loosely $\left.{ }^{309}\right)$ referred to as the angle between the lines a, b. ${ }^{310}$

Interior and Exterior Angles

Lemma 1.3.17.2. If a point A lies between points B, D and a point C does not lie on the line $a_{A B}$, the angles $\angle C A D, \angle A C B$ cannot be congruent.

Proof. (See Fig. 1.124.) Suppose the contrary, i.e. that $\angle C A D \equiv \angle A C B$. According to A 1.3.1, L 1.2.11.3, we can assume with no loss of generality that $C B \equiv A D .{ }^{311} A D \equiv C B \& A C \equiv C A \& \angle C A D \equiv \angle A C B \xrightarrow{\text { A1.3.5 }} \angle A C D \equiv$ $C A B$. Using A 1.2.2, choose a point E so that $[B C E]$ and therefore (see L 1.2.15.2) $C_{E}=\left(C_{B}\right)^{c}$. Then $\angle C A D \equiv$ $\angle A C B \xrightarrow{\mathrm{~T} 1.3 .6} \angle C A B=\operatorname{adjsp} \angle C A D \equiv \operatorname{adjsp} \angle A C B=\angle A C E . \quad[B A D] \&[B C E] \Rightarrow B a_{A C} D \& B a_{A C} E \xrightarrow{\mathrm{~L} 1.2 .17 .9}$ $D E a_{A C} . \angle C A B \equiv \angle A C D \& \angle C A B \equiv \angle A C E \& D E a_{A C} \stackrel{\text { L1.3.2.1 }}{\Longrightarrow} C_{D}=C_{E}-$ a contradiction, for $C \notin a_{A B}=a_{B D} \Rightarrow$ $D \notin a_{B C}=a_{C E}$.

Lemma 1.3.17.3. If an angle $\angle A^{\prime} B^{\prime} C^{\prime}$ is less than an angle $\angle A B C$, there is a point D lying between A and C and such that the angle $\angle A^{\prime} B^{\prime} C^{\prime}$ is congruent to the angle $A B D$.

Proof. (See Fig. 1.125.) $\angle A^{\prime} B^{\prime} C^{\prime}<\angle A B C \stackrel{\text { L1.3.16.3 }}{\Longrightarrow} \exists B_{D^{\prime}} B_{D^{\prime}} \subset$ Int $\angle A B C \& \angle A^{\prime} B^{\prime} C^{\prime} \equiv \angle A B D^{\prime} . \quad B_{D^{\prime}} \subset$ Int $\angle A B C \& A \in B_{A} \& C \in B_{C} \stackrel{L 1.2 .21 .10}{\Longrightarrow} \exists D D \in B_{D^{\prime}} \&[A D C] . D \in B_{D^{\prime}} \xrightarrow{\mathrm{L} 1.2 .11 .3} B_{D}=B_{D^{\prime}}$.

Figure 1.124: If a point A lies between points B, D and a point C does not lie on $a_{A B}$, the angles $\angle C A D, \angle A C B$ cannot be congruent.

Figure 1.125: If an angle $\angle A^{\prime} B^{\prime} C^{\prime}$ is less than an angle $\angle A B C$, there is a point D lying between A and C and such that $\angle A^{\prime} B^{\prime} C^{\prime} \equiv A B D$.

Figure 1.126: If a point A lies between points B, D and a point C does not lie on $a_{A B}$, the angle $\angle A C B$ is less than the angle $\angle C A D$.

Lemma 1.3.17.4. If a point A lies between points B, D and a point C does not lie on the line $a_{A B}$, the angle $\angle A C B$ is less than the angle $\angle C A D$.

Proof. (See Fig. 1.126.) By L 1.3.17.2 $\angle A C B \not \equiv \angle C A D$. Therefore, by L 1.3.16.14 $\angle C A D<\angle A C B \vee \angle A C B<$ $\angle C A D$. Suppose $\angle C A D<\angle A C B$. We have $\angle C A D<\angle A C B \stackrel{\text { L1.3.17.3 }}{\Longrightarrow} \exists B^{\prime}\left[A B^{\prime} B\right] \& \angle C A D \equiv \angle A C B^{\prime}$. $\left[B B^{\prime} A\right] \&[B A D] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[B^{\prime} A D\right]$. But $\left[B^{\prime} A D\right] \& C \notin a_{A B^{\prime}}=a_{A B} \stackrel{\mathrm{~L} 1.3 .17 .2}{\Longrightarrow} \angle C A B \not \equiv \angle C A D$.

Theorem 1.3.17. An exterior angle, say, $\angle C A D$, of a triangle $\triangle A C B$, is greater than either of the angles $\angle A C B$, $\angle A B C$ of $\triangle A C B$, not adjacent supplementary to it.

Proof. $[B A D] \& C \notin a_{A B} \stackrel{\text { L1.3.17.4 }}{\Longrightarrow} \angle A C B<\angle C A D \& \angle A B C<\operatorname{vert} \angle C A D \angle\left(\left(A_{C}\right)^{c},\left(A_{D}\right)^{c}\right) \equiv \angle C A D$.

Relations Between Intervals and Angles

Corollary 1.3.17.4. In any triangle $\triangle A B C$ at least two angles are acute.
Proof. If the angle $\angle C$ is right or obtuse, its adjacent supplementary angle is either right or acute. Since adjsp $\angle C$ is an exterior angle of $\triangle A B C$, by T 1.3 .17 we have $\angle A<\operatorname{adjsp} \angle C, \angle B<\operatorname{adjsp} \angle C$. Hence $\angle A, \angle B$ are both acute angles.

Corollary 1.3.17.5. All angles in an equilateral triangle are acute.
Proof. See L 1.3.8.2, L 1.3.16.16, and the preceding corollary (C 1.3.17.4).
Corollary 1.3.17.6. The right angle in a right triangle is greater than any of the two remaining angles.
Proof. Follows immediately from C 1.3.17.4, L 1.3.16.17.
Theorem 1.3.18. If a side, say, $A B$, of a triangle $\triangle A B C$, is greater than another side, say, $B C$ of $\triangle A B C$, the same relation holds for the angles opposite to these sides, i.e. the angle $\angle C$ is then greater than the angle $\angle A$, $\angle A C B>\angle B A C$.

Conversely, if an angle, say, $\angle C=\angle A C B$, of a triangle $\triangle A B C$, is greater than another angle, say, $\angle A=\angle B A C$ of $\triangle A B C$, the same relation holds for the opposite sides, i.e. the side $A B$ is then greater than the side $B C, A B>B C$.

Proof. (See Fig. 1.127.) Suppose $B C<B A$. Then by L 1.3.13.3 $\exists D[B D A] \& B C \equiv B D .{ }^{312} B C \equiv B D \xrightarrow{\text { T1.3.3 }}$ $\angle B C D \equiv \angle B D C . \quad B \in C_{B} \& A \in C_{A} \&[B D A] \stackrel{\text { L1.2.21.6.L1.2.21.4 }}{\Longrightarrow} C_{D} \subset$ Int $\angle A C B \stackrel{\text { L1.3.16.3 }}{\Longrightarrow} \angle B C D<\angle A C B=$ $\angle C . \quad[B D A] \& C \notin a_{B D} \stackrel{\text { L1.3.17.4 }}{\Longrightarrow} \angle B D C>\angle B A C=\angle A$. Finally, by L 1.3.16.6, L 1.3.56.18, T 1.3.11 $\angle A<$ $\angle B D C \& \angle B C D \equiv \angle B D C \& \angle B D C<\angle C \Rightarrow \angle A<\angle C$.

Suppose now $\angle A<\angle C$. Then $B C<A B$, because otherwise by L 1.3.16.14, T 1.3.3, and the preceding part of the present proof, $B C \equiv A B \vee A B<B C \Rightarrow \angle A \equiv \angle C \vee \angle C<\angle A$. Either result contradicts our assumption $\angle A<\angle C$ in view of L 1.3.13.10, L 1.3.13.11.

[^98]

Figure 1.127: If a side $A B$, of $\triangle A B C$, is greater than another side $B C$, the same relation holds for the opposite angles, $\angle C<\angle A$. Conversely, if $\angle C>\angle A$, the same relation holds for the opposite sides, i.e. $A B>B C$.

Figure 1.128: For a bisector $B D$ of $\triangle A B C$ if $\angle C>\angle A$ then $C D<A D$.

Corollary 1.3.18.1. If $a_{A C} \perp a, A \in a$, then for any point $B \in a, B \neq A$, we have $A C<B C$. ${ }^{313}$
Proof. Since $\angle B A C$ is right, the other two angles $\angle A C B, \angle A B C$ of the triangle $\triangle A C B$ are bound to be acute by C 1.3.17.4. This means, in particular, that $\angle A B C<\angle B A C$ (see L 1.3.16.17). Hence by the preceding theorem (T 1.3.18) we have $A C<B C$.

Corollary 1.3.18.2. Any interval is longer than its orthogonal projection on an arbitrary line.
Proof. Follows from the preceding corollary (C 1.3.18.1). ${ }^{314} \square$
A triangle with at least one right angle is called a right triangle. By L 1.3.8 right triangles exist, and by C 1.3.17.4 all of them have exactly one right angle. The side of a right triangle opposite to the right angle is called the hypotenuse of the right triangle, and the other two sides are called the legs. In terms of right triangles the corollary C 1.3.18.2 means that in any right triangle the hypothenuse is longer than either of the legs.

Corollary 1.3.18.3. Suppose $B D$ is a bisector of a triangle $\triangle A B C$. (That is, we have $[A D C]$ and $\angle A B D \equiv \angle C B D$, see p. 151.) If the angle $\angle C$ is greater than the angle $\angle A$ then the interval $C D$ is shorter than the interval $A D .{ }^{315}$

Proof. (See Fig. 1.128.) We have $\angle A<\angle C \xrightarrow{\text { T1.3.18 }} B C<A B \stackrel{\text { L1.3.17.4 }}{\Longrightarrow} \exists E[B E A] \& B C \equiv B E$. $[A D C] \xrightarrow{\text { L1.2.11.3 }}$ $A_{D}=A_{C} \& C_{D}=C_{A} \Rightarrow \angle B A D=\angle A \& \angle B C D=\angle C .[A E B] \stackrel{L 1.2 .11 .3}{\Longrightarrow} A_{E}=A_{B} \& B_{E}=B_{A} \Rightarrow \angle E A D=$ $\angle A \& \angle E B D=\angle A B D . \quad B C \equiv B E \& B D \equiv B D \& \angle E B D \equiv \angle C B D \xrightarrow{\mathrm{~T} 1.3 .4} \triangle E B D \equiv \triangle C B D \Rightarrow E D \equiv$ $C D \& \angle B E D \equiv \angle B C D$. Observe that adjsp $\angle C$, being an external angle of the triangle $\triangle A B C$, by T 1.3 .17 is greater than the angle $\angle A$. Hence $\angle B E D \equiv \angle B C D=\angle C \stackrel{\text { T1.3.6 }}{\Longrightarrow} \angle A E D=\operatorname{adjsp} \angle B E D \equiv \operatorname{adjsp} \angle C . \angle E A D=$ $\angle A<\operatorname{adjsp} \angle C \equiv \angle A E D \xrightarrow{\text { L1.3.56.18 }} \angle E A D<\angle A E D \xrightarrow{\mathrm{~T} 1.3 .18} E D<A D$. Finally, $E D<A D \& E D \equiv C D \xrightarrow{\text { L1.3.13.6 }}$ $C D<A D$.

[^99]

Figure 1.129: Illustration for proofs of C 1.3.18.4, C 1.3.18.5.

Corollary 1.3.18.4. Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ by the points $A_{1}, A_{2}, \ldots A_{n-1} .^{316}$ Suppose further that B is such a point that the angle $\angle B A_{0} A_{1}$ is greater than the angle $\angle B A_{1} A_{0}$. 317 Then the following inequalities hold: $\angle B A_{n} A_{n-1}<\angle B A_{n-1} A_{n-2}<\ldots<\angle B A_{3} A_{2}<\angle B A_{2} A_{1}<\angle B A_{1} A_{0}<$ $\angle B A_{0} A_{1}<\angle B A_{1} A_{2}<\angle B A_{2} A_{3}<\ldots<\angle B A_{n-2} A_{n-1}<\angle B A_{n-1} A_{n}, \forall i \in \mathbb{N}_{n-1} \angle B A_{i+1} A_{i-1}<\angle B A_{i-1} A_{i+1}$, and $B A_{0}<B A_{1}<\cdots<B A_{n-1}<B A_{n}$.

Proof. (See Fig. 1.129.) We have (using L 1.2 .11 .3 to show the equality of rays) $\forall i \in \mathbb{N}_{n-1}\left(\left[A_{i-1} A_{i} A_{i+1}\right] \Rightarrow\right.$ $\left.\angle A_{i-1} B A_{i}=\operatorname{adjsp} \angle A_{i} B A_{i+1} \& A_{i-1 A_{i}}=A_{i-1 A_{i+1}} \& A_{i+1_{A_{i}}}=A_{i-1_{A_{i+1}}}\right)$. Hence by T refT 1.3 .17 we can write $\angle B A_{n} A_{n-1}<\angle B A_{n-1} A_{n-2}<\ldots<\angle B A_{3} A_{2}<\angle B A_{2} A_{1}<\angle B A_{1} A_{0}<\angle B A_{0} A_{1}<\angle B A_{1} A_{2}<\angle B A_{2} A_{3}<\ldots<$ $\angle B A_{n-2} A_{n-1}<\angle B A_{n-1} A_{n}$. Applying repeatedly L 1.3.16.8 to these inequalities, we obtain $\forall i \in \mathbb{N}_{n-1} \angle B A_{i+1} A_{i}<$ $\angle B A_{i-1} A_{i}$. Taking into account $A_{i-1_{A_{i}}}=A_{i-1_{A_{i+1}}}, A_{i+1_{A_{i}}}=A_{i-1 A_{i+1}}$, valid for all $i \in \mathbb{N}_{n-1}$, we have $\forall i \in$ $\mathbb{N}_{n-1} \angle B A_{i+1} A_{i-1}<\angle B A_{i-1} A_{i+1}$. Also, using T 1.3 .18 we conclude that $B A_{0}<B A_{1}<\cdots<B A_{n-1}<B A_{n}$.

Corollary 1.3.18.5. Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ by the points $A_{1}, A_{2}, \ldots A_{n-1} .{ }^{318}$ Suppose further that B is such a point that that all angles $\angle A_{i-1} B A_{i}, i \in \mathbb{N}_{n}$ are congruent and the angle $\angle B A_{0} A_{1}$ is greater than the angle $\angle B A_{1} A_{0}$. Then $A_{0} A_{1}<A_{1} A_{2}<A_{2} A_{3}<\ldots A_{n-2} A_{n-1}<A_{n-1} A_{n}$.

Proof. (See Fig. 1.129.) From the preceding corollary (C 1.3 .18 .4) we have $\forall i \in \mathbb{N}_{n-1} \angle B A_{i+1} A_{i-1}<\angle B A_{i-1} A_{i+1}$. Together with $\angle A_{i-1} B A_{i} \equiv \angle A_{i} B A_{i+1}$ (true by hypothesis), the corollary C 1.3.18.3 applied to every triangle $\triangle A_{i-1} B A_{i+1}, \forall i \in \mathbb{N}_{n-1}$, gives $\forall i \in \mathbb{N}_{n-1} A_{i-1} A_{i}<A_{i} A_{i+1}$, q.e.d.

Corollary 1.3.18.6. Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ by the points $A_{1}, A_{2}, \ldots A_{n-1}$. Suppose further that B is such a point that that all angles $\angle A_{i-1} B A_{i}, i \in \mathbb{N}_{n}$ are congruent and $\angle B A_{0} A_{1}$ is a right angle. Then $A_{0} A_{1}<A_{1} A_{2}<A_{2} A_{3}<\ldots<A_{n-2} A_{n-1}<A_{n-1} A_{n}$.

Proof. Being a right angle, by C 1.3 .17 .6 the angle $\angle B A_{0} A_{1}$ is greater than the angle $\angle B A_{1} A_{0}$. The result then follows from the preceding corollary (C 1.3.18.5).

Corollary 1.3.18.7. Suppose $B E$ is a median of a triangle $\triangle A B C$. (That is, we have $[A E C]$ and $A E \equiv E C$, see p. 151.) If the angle $\angle C$ is greater than the angle $\angle A$ then the angle $\angle C B E$ is greater than the angle $\angle A B E$. ${ }^{319}$

Proof. (See Fig. 1.130.) Let $B D$ be the bisector of the triangle $\triangle A B C$ drawn from the vertex B to the side $A C$. By C 1.3.18.3 we have $C D<A D$. This implies that $[A E D]$ and $[E D C]$. ${ }^{320}$ Using L 1.2.21.6, L 1.2.21.4, C 1.3.16.4, we can write $[A E D] \&[C D E] \Rightarrow \angle A B E<\angle A B D \& \angle C B D<\angle C B E$. Finally, by L 1.3.16.6-L 1.3.16.8 we have $\angle A B E<\angle A B D \& \angle A B D \equiv \angle C B D \& \angle C B D<\angle C B E \Rightarrow \angle A B E<\angle C B E$, q.e.d.

[^100]

Figure 1.130: Given a median $B E$ of a triangle $\triangle A B C$, iff the $\angle C>\angle A$ then the angle $\angle C B E>\angle A B E$.

Figure 1.131: Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n congruent intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$. Suppose further that B is such a point that $\angle B A_{0} A_{1}$ is greater than $\angle B A_{1} A_{0}$. Then we have: $\angle A_{n} B A_{n-1}<\angle A_{n-1} B A_{n-2}<$ $\ldots<\angle A_{3} B A_{2}<\angle A_{2} B A_{1}<\angle A_{1} B A_{0}$.

Corollary 1.3.18.8. Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n congruent intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ by the points $A_{1}, A_{2}, \ldots A_{n-1}$. ${ }^{321}$ Suppose further that B is such a point that the angle $\angle B A_{0} A_{1}$ is greater than the angle $\angle B A_{1} A_{0}$. Then the following inequalities hold: $\angle A_{n} B A_{n-1}<\angle A_{n-1} B A_{n-2}<\ldots<\angle A_{3} B A_{2}<\angle A_{2} B A_{1}<$ $\angle A_{1} B A_{0}$.

Proof. (See Fig. 1.131.) From C 1.3.18.4 we have $\forall i \in \mathbb{N}_{n-1} \angle B A_{i+1} A_{i-1}<\angle B A_{i-1} A_{i+1}$. Together with $A_{i-1} A_{i} \equiv$ $A_{i} A_{i+1}$ (true by hypothesis), the preceding corollary (C 1.3.18.7) applied to every triangle $\triangle A_{i-1} B A_{i+1}$ for all $i \in \mathbb{N}_{n-1}$, gives $\forall i \in \mathbb{N}_{n-1} \angle A_{i} B A_{i+1}<\angle A_{i-1} B A_{i}$, q.e.d.

Corollary 1.3.18.9. Let an interval $A_{0} A_{n}, n \geq 2$, be divided into n congruent intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ by the points $A_{1}, A_{2}, \ldots A_{n-1}$. Suppose further that B is such a point that the angle $\angle B A_{0} A_{1}$ is a right angle. Then the following inequalities hold: $\angle A_{n} B A_{n-1}<\angle A_{n-1} B A_{n-2}<\ldots<\angle A_{3} B A_{2}<\angle A_{2} B A_{1}<\angle A_{1} B A_{0}$.

Proof. Being a right angle, by C 1.3.17.6 the angle $\angle B A_{0} A_{1}$ is greater than the angle $\angle B A_{1} A_{0}$. The result then follows from the preceding corollary (C 1.3.18.8).

Corollary 1.3.18.10. Let F be the foot of the perpendicular drawn through a point A on the side k of an angle $\angle(h, k)$ to the line \bar{h} containing the other side h. If $F \in h$ then $\angle(h, k)$ is an acute angle. If $F \in h^{c}$ then $\angle(h, k)$ is an obtuse angle. ${ }^{322}$

Proof. Denote the vertex of $\angle(h, k)$ by O. Suppose first $F \in h$ (see Fig. 1.132, a)). Then $A \in k \& F \in h \xrightarrow{\text { L1.2.3.2 }}$ $\angle A O F=\angle(h, k)$. From the condition of orthogonality $\angle A F O$ is a right angle. Since the triangle $\triangle A O F$ is required by C 1.3.17.4 to have at least two acute angles (and $\angle A F O$ is a right angle), the angle $\angle(h, k)$ is acute. Now suppose $F \in h^{c}$ (see Fig. 1.132, a)). Using the preceding arguments, we see immediately that $\angle\left(h^{c}, k\right)$ is acute. Hence $\angle(h, k)=\operatorname{adjsp} \angle\left(h^{c}, k\right)$ is obtuse, q.e.d.

The converse is also true.

[^101]

Figure 1.132: Let F be the foot of the perpendicular drawn through a point A on the side k of an angle $\angle(h, k)$ to the line \bar{h} containing the other side h. If $F \in h$ then $\angle(h, k)$ is an acute angle. If $F \in h^{c}$ then $\angle(h, k)$ is an obtuse angle.

Figure 1.133: Suppose rays h_{2}, h_{3}, h_{4} have a common origin O and the rays h_{2}, h_{4} lie on opposite sides of the line $\overline{h_{3}}$. Then the ray h_{3} lies inside the angle $\angle\left(h_{2}, h_{4}\right)$, and the open interval $(A C)$, where $A \in h_{2}, C \in h_{4}$, meets the ray h_{3} in some point B.

Corollary 1.3.18.11. Let F be the foot of the perpendicular drawn through a point A on the side k of an angle $\angle(h, k)$ to the line \bar{h} containing the other side h. If $\angle(h, k)$ is an acute angle, then $F \in h$. If $\angle(h, k)$ is an obtuse angle then $F \in h^{c}$.

Proof. Suppose $\angle(h, k)$ is an acute angle. Then $F \in h$. Indeed, if we had $F \in h^{c}$, the angle $\angle(h, k)$ would be obtuse by the preceding corollary (C 1.3.18.10) - a contradiction; and if $F=O$, where O is the vertex of $\angle(h, k)$, the angle $\angle(h, k)$ would be right. Similarly, the fact that $\angle(h, k)$ is an obtuse angle implies $F \in h^{c}$.

Corollary 1.3.18.12. Suppose rays h_{2}, h_{3}, h_{4} have a common origin O, the angles $\angle\left(h_{2}, h_{3}\right), \angle\left(h_{3}, h_{4}\right)$ are both acute, and the rays h_{2}, h_{4} lie on opposite sides of the line $\bar{h}_{3} .{ }^{323}$ Then the ray h_{3} lies inside the angle $\angle\left(h_{2}, h_{4}\right)$, and the open interval $(A C)$, where $A \in h_{2}, C \in h_{4}$, meets the ray h_{3} in some point B.

Proof. Using L 1.3.8.3, draw a ray h_{1} so that $\angle\left(h_{1}, h_{3}\right)$ is a right angle. Then the angle $\angle\left(h_{3}, h_{5}\right)$, where $h_{5} \rightleftharpoons h_{1}^{c}$ is, obviously, also a right angle. Since the rays h_{1}, h_{5} lie on opposite sides of the line \bar{h}_{3}, we can assume without loss of generality that the rays h_{1}, h_{2} lie on one side of the line \bar{h}_{3} (renaming $h_{1} \rightarrow h_{5}, h_{5} \rightarrow h_{1}$ if necessary). Taking into account that, by hypothesis, the rays h_{2}, h_{4} lie on opposite sides of the line \bar{h}_{3}, from L 1.2.18.4, L 1.2.18.5 we conclude that the rays h_{4}, h_{5} lie on one side of the line \bar{h}_{3}. Since the angles $\angle\left(h_{2}, h_{3}\right), \angle\left(h_{3}, h_{4}\right)$ are acute and $\angle\left(h_{1}, h_{3}\right), \angle\left(h_{3}, h_{5}\right)$ are right angles, using L 1.3.16.17 we can write $\angle\left(h_{2}, h_{3}\right)<\angle\left(h_{2}, h_{3}\right), \angle\left(h_{3}, h_{4}\right)<\angle\left(h_{3}, h_{5}\right)$. Together with the facts that h_{1}, h_{2} lie on one side of the line \bar{h}_{3} and that h_{4}, h_{5} lie on one side of the line \bar{h}_{3}, these inequalities give, respectively, the following inclusions: $h_{2} \subset \operatorname{Int} \angle\left(h_{1}, h_{3}\right), h_{4} \subset \operatorname{Int} \angle\left(h_{3}, h_{5}\right)$. ${ }^{324}$ Hence using L 1.2.21.27 we can write ${ }^{325}\left[h_{1} h_{2} h_{3}\right] \&\left[h_{1} h_{3} h_{5}\right] \Rightarrow\left[h_{2} h_{3} h_{5}\right] .\left[h_{2} h_{3} h_{5}\right] \&\left[h_{3} h_{4} h_{5}\right] \Rightarrow\left[h_{2} h_{3} h_{4}\right]$.

Corollary 1.3.18.13. Suppose adjacent angles $\angle(h, k), \angle(k, l)$ are both acute. Then the rays k, l lie on the same side of the line $\bar{h} .{ }^{326}$

[^102]

Figure 1.134: If a side $A B$ and angles $\angle A, \angle C$ of a triangle $\triangle A B C$ are congruent, respectively, to a side $A^{\prime} B^{\prime}$ and angles $\angle A^{\prime}, \angle C^{\prime}$ of a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$, the triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent. (SAA, or The Fourth Triangle Congruence Theorem)

Proof. Take points $H \in h, L \in l$. By the preceding corollary (C 1.3.18.12) the ray k meets the open interval ($H L$) in some point K. Since the points K, L lie on the same ray H_{L} whose initial point H lies on \bar{h}, they lie on one side of \bar{h} (see L 1.2.11.13, L 1.2.19.8). Then by T 1.2 .19 the rays k, l, containing these points, also lie on the same side of \bar{h}, q.e.d.

SAA

Theorem 1.3.19 (Fourth Triangle Congruence Theorem (SAA)). If a side $A B$ and angles $\angle A, \angle C$ of a triangle $\triangle A B C$ are congruent, respectively, to a side $A^{\prime} B^{\prime}$ and angles $\angle A^{\prime}, \angle C^{\prime}$ of a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$, the triangles $\triangle A B C$, $\triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent.

Proof. (See Fig. 1.134.) Suppose the contrary, i.e. $\triangle A B C \not \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$. Then by T 1.3.5 $\angle B \not \equiv \angle B^{\prime}$. ${ }^{327}$ Let $\angle B<\angle B^{\prime} .{ }^{328} \angle B<\angle B^{\prime} \stackrel{\mathrm{L} 1.3 .16 .3}{\Longrightarrow} \angle A B C \equiv A^{\prime} B^{\prime} D^{\prime} \&\left[A^{\prime} D^{\prime} C^{\prime}\right] .\left[A^{\prime} D^{\prime} C^{\prime}\right] \stackrel{\mathrm{L} 1.2 .11 .15}{\Longrightarrow} A^{\prime} D^{\prime}=A^{\prime} C^{\prime} \Rightarrow \angle B^{\prime} A^{\prime} D^{\prime}=$ $\angle B^{\prime} A^{\prime} C^{\prime}=\angle A^{\prime} . A B \equiv A^{\prime} B^{\prime} \& \angle A \equiv \angle B^{\prime} A^{\prime} D^{\prime}=\angle A^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} D^{\prime} \xrightarrow{\mathrm{T1.3.5}} \triangle A B C \equiv \triangle A^{\prime} B^{\prime} D^{\prime}$. But $\angle A^{\prime} C^{\prime} B^{\prime} \equiv \angle A C B \& \angle A C B \equiv \angle A^{\prime} D^{\prime} B^{\prime} \stackrel{\mathrm{T} 1.3 .11}{\Longrightarrow} \angle A^{\prime} C^{\prime} B^{\prime} \equiv \angle A^{\prime} D^{\prime} B^{\prime}$, which contradicts T 1.3.17.

Proposition 1.3.19.1. Consider two simple quadrilaterals, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}$, $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$. Suppose further that if A, D lie on the same side of the line $a_{B C}$ then A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$, and if A, D lie on the opposite sides of the line $a_{B C}$ then A^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Then the quadrilaterals are congruent, $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. 329

Proof. Denote $E \rightleftharpoons a_{B C} \cap a_{A D}$. Evidently, $E \neq A, E \neq D$. ${ }^{330}$ Observe that $D \in A_{E}$. In fact, otherwise in view of C 1.2.1.7 we would have $\exists F([A F B] \&[D F C])$ contrary to simplicity of $A B C D$. Note also that $D \in A_{E} \& D \neq$ $E \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[A D E] \vee[A E D]$. Similarly, $D^{\prime} \in A^{\prime}{ }_{E^{\prime}}$ and, consequently, we have either $\left[A^{\prime} D^{\prime} E^{\prime}\right]$ or $\left[A^{\prime} E^{\prime} D^{\prime}\right]$. Furthermore, $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \stackrel{\mathrm{T} 1.3 .4}{\Longrightarrow} \triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle A C B \equiv$ $\angle A^{\prime} C^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime}$.

According to T 1.2 .2 we have either $[E B C]$, or $[B E C]$, or $[B C E]$. Suppose that $[E B C]$. Then $\neg[A D E]$, for otherwise $\exists F([C F D] \&[A F B])$ by C 1.2.1.7. Turning to the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ we find that here, too, we always have $D^{\prime} \in A_{E^{\prime}}^{\prime}$ and either $\left[E^{\prime} B^{\prime} C^{\prime}\right]$, or $\left[B^{\prime} E^{\prime} C^{\prime}\right]$, or $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. We are going to show that under our current assumption that $[E B C]$ we have $\left[E^{\prime} B^{\prime} C^{\prime}\right]$. In fact, $\left[B^{\prime} E^{\prime} C^{\prime}\right]$ is inconsistent with $\left[A^{\prime} E^{\prime} D^{\prime}\right]$, for $E^{\prime} \in\left(B^{\prime} C^{\prime}\right) \cap\left(A^{\prime} D^{\prime}\right)$ contradicts simplicity. ${ }^{331}$ Suppose that $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. Then using T 1.3.17 we can write $\angle B C D=\angle E C D<\angle C E A=$ $\angle B E A<\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}<$ angle $A^{\prime} C^{\prime} E^{\prime}<\angle C^{\prime} E^{\prime} D^{\prime}<\angle B^{\prime} C^{\prime} D^{\prime}$, whence $\angle B C D<\angle B^{\prime} C^{\prime} D^{\prime}$ (see L 1.3.16.6L 1.3.16.8), which contradicts $\angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$ (see L 1.3.16.11). Thus, we see that $\left[E^{\prime} B^{\prime} C^{\prime}\right]$. We can now write $\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& A_{B} \subset \operatorname{Int} \angle C A D \& A^{\prime} B^{\prime} \subset \operatorname{Int} \angle C^{\prime} A^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .9} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime},{ }^{332}$

[^103]$\angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} \& C_{B} \subset \operatorname{Int} \angle A C D \& C_{B^{\prime}}^{\prime} \subset \operatorname{Int} \angle A^{\prime} C^{\prime} D^{\prime} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime},{ }^{333}$ $A C \equiv A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \angle A^{\prime} C^{\prime} D^{\prime} \stackrel{\mathrm{T1.3.5}}{ } \triangle A D C \equiv \triangle A^{\prime} D^{\prime} C^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& C D \equiv$ $C^{\prime} D^{\prime} \& \angle A D C \equiv \angle A^{\prime} D^{\prime} C^{\prime}$.

Suppose now that $[B E C]$. Then, as we have seen, $[A D E]$. We are going to show that in this case we have $\left[B^{\prime} E^{\prime} C^{\prime}\right]$. In order to do this, suppose that $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. (We have seen above that $\left[E^{\prime} B^{\prime} C^{\prime}\right]$ is incompatible with $\left[A^{\prime} E^{\prime} D^{\prime}\right]$). Then $A_{D} \subset \operatorname{Int} \angle B A C \stackrel{\mathrm{C} 1.3 .13 .4}{\Longrightarrow} \angle B A D<\angle B A C, A_{C^{\prime}} \subset$ Int $\angle B^{\prime} A^{\prime} D^{\prime} \stackrel{\mathrm{C} 1.3 .13 .4}{\Longrightarrow} \angle B^{\prime} A^{\prime} C^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime}$. Hence $\angle B A D<$ $\angle B A C \& \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle B^{\prime} A^{\prime} C^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime} \Rightarrow \angle B A D<\angle B^{\prime} A^{\prime} D^{\prime}$ (see L 1.3.16.6-L 1.3.16.8), which contradicts the assumption $\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}$ (see L 1.3.16.11). Thus, we see that $\left[B^{\prime} E^{\prime} C^{\prime}\right]$. Using L 1.2.11.15, L 1.2.21.6, L 1.2.21.4, together with $[A D E],[B E C]$ it is easy to see that $A_{D} \subset \operatorname{Int} \angle B A C, C_{D} \subset \operatorname{Int} \angle A C B$. Similarly, $A^{\prime}{ }_{D^{\prime}} \subset \operatorname{Int} \angle B^{\prime} A^{\prime} C^{\prime}, C^{\prime}{ }_{D^{\prime}} \subset \operatorname{Int} \angle A^{\prime} C^{\prime} B^{\prime}$. We can now write $\angle B A D \equiv$ angle $B^{\prime} A^{\prime} D^{\prime} \& \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& A_{D} \subset$ Int $\angle B A C \& A^{\prime}{ }_{D^{\prime}} \subset$ Int $\angle B^{\prime} A^{\prime} C^{\prime} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} \& \angle B C A \equiv \angle B^{\prime} C^{\prime} A^{\prime} \& C_{D} \subset$ Int $\angle B C A \& C^{\prime} D^{\prime} \subset \operatorname{Int} \angle B^{\prime} C^{\prime} A^{\prime} \xrightarrow{\mathrm{T} 1.3 .9} \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}, A C \equiv A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .5}$ $\triangle A D C \equiv \triangle A^{\prime} D^{\prime} C^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A D C \equiv \angle A^{\prime} D^{\prime} C^{\prime}$.

Finally, suppose that $[B C E]$. The arguments given above show that $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. Then we have $\angle B A C \equiv$ $\angle B^{\prime} A^{\prime} C^{\prime} \& \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& A_{C} \subset \operatorname{Int} \angle B A D \& A_{C^{\prime}} \subset \operatorname{Int} \angle B^{\prime} A^{\prime} D^{\prime} \stackrel{\text { T1.3.9 }}{\Longrightarrow} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime}$. First, suppose that $[A D E]$, i.e. that the points A, D lie on the same side of $a_{B C}$. Then, according to our assumption, A^{\prime}, D^{\prime} lie on the same side of $a_{B^{\prime} C^{\prime}}$, which means in this case that $\left[A^{\prime} D^{\prime} E^{\prime}\right]$. We can write $[B C E] \Rightarrow \angle B C D=\operatorname{adj} \operatorname{sp} \angle E C D$, whence $C_{D} \subset \operatorname{Int} \angle A C E \stackrel{\text { L1.2.21.22 }}{\Longrightarrow} C_{A} \subset \operatorname{Int} \angle B C D$. Similarly, we have $\left[B^{\prime} C^{\prime} E^{\prime}\right] \Rightarrow \angle B^{\prime} C^{\prime} D^{\prime}=\operatorname{adjsp} \angle E^{\prime} C^{\prime} D^{\prime}$, whence $C^{\prime}{ }_{D^{\prime}} \subset$ Int $\angle A^{\prime} C^{\prime} E^{\prime} \stackrel{\text { L1.2.21.22 }}{\Longrightarrow} C^{\prime}{ }_{A^{\prime}} \subset$ Int $\angle B^{\prime} C^{\prime} D^{\prime}$. Hence $\angle B C A \equiv \angle B^{\prime} C^{\prime} A^{\prime} \& \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} \& C_{A} \subset$ Int $\angle B C D \& C^{\prime} A^{\prime} \subset$ Int $\angle B^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T1.3.9}} \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}, A C \equiv \angle A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle A C D \equiv$ $\angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .19} \triangle A C D \equiv \triangle A^{\prime} C^{\prime} D^{\prime} \Rightarrow C D \equiv C^{\prime} D^{\prime} \& A D \equiv A^{\prime} D^{\prime}$ \& angle $C D \equiv \angle C^{\prime} D^{\prime} A^{\prime}$.

At last, suppose that $[A E D]$, i.e. that the points A, D lie on opposite sides of the line $a_{B C}$. We have $[B C E] \Rightarrow$ $\angle A C E=\operatorname{adjsp} \angle A C B \& \angle D C E=\operatorname{adjsp} D C B,\left[B^{\prime} C^{\prime} E^{\prime}\right] \Rightarrow \angle A^{\prime} C^{\prime} E^{\prime}=\operatorname{adjsp} \angle A^{\prime} C^{\prime} B^{\prime} \& \angle D^{\prime} C^{\prime} E^{\prime}=\operatorname{adjsp} D^{\prime} C^{\prime} B^{\prime}$. Hence in view of T 1.3 .6 we can write $\angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \Rightarrow \angle A C E \equiv \angle A^{\prime} C^{\prime} E^{\prime}, \angle D C B \equiv \angle D^{\prime} C^{\prime} B^{\prime} \Rightarrow \angle D C E \equiv$ $\angle D^{\prime} C^{\prime} E^{\prime}$. But from L 1.2.21.6, L 1.2 .21 .4 we have $[A E D] \Rightarrow C_{E} \subset \operatorname{Int} \angle A C D,\left[A^{\prime} E^{\prime} D^{\prime}\right] \Rightarrow C_{E^{\prime}}^{\prime} \subset \operatorname{Int} \angle A^{\prime} C^{\prime} D^{\prime}$. Finally, we can write $\angle A C E \equiv \angle A^{\prime} C^{\prime} E^{\prime} \& \angle D C E \equiv \angle D^{\prime} C^{\prime} E^{\prime} \& C_{E} \subset \operatorname{Int} \angle A C D \& C_{E^{\prime}}^{\prime} \subset \operatorname{Int} \angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .9}$ $\angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}$ and $A C \equiv A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime} \stackrel{\mathrm{T} 1.3 .5}{\Rightarrow} \triangle C A D \equiv \triangle C^{\prime} A^{\prime} D^{\prime}$, whence the result.

Proposition 1.3.19.2. Consider two simple quadrilaterals, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}$, $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}, \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}$. Suppose further that if C, D lie on the same side of the line $a_{A B}$ then C^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} B^{\prime}}$, and if C, D lie on the opposite sides of the line $a_{A B}$ then C^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{A^{\prime} B^{\prime}}$. Then the quadrilaterals are congruent, $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Proof. As in the preceding proposition, we can immediately write $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \xlongequal{\mathrm{T} 1.3 .4}$ $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime}$. We start with the case where the points C, D lie on the same side of the line $a_{A B}$. Then, by hypothesis, C^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} B^{\prime}}$. First, suppose that also the points B, D lie on the same side of the line $a_{A C}$. This implies $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$. In fact, since, as shown above, the points C^{\prime}, D^{\prime} lie on the same side of $a_{A^{\prime} B^{\prime}}$, from L 1.2 .21 .21 we have either $A^{\prime}{ }_{C^{\prime}} \subset \operatorname{Int} \angle B^{\prime} A^{\prime} D^{\prime}$ or $A^{\prime}{ }_{D^{\prime}} \subset \operatorname{Int} \angle B^{\prime} A^{\prime} D^{\prime}$ 。 ${ }^{334}$ But the first of these options in view of C ?? would imply $\angle B A C<\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}<\angle B^{\prime} A^{\prime} C^{\prime}$, whence by L 1.3.16.6-L 1.3.16.8 we have $\angle B A C<\angle B^{\prime} A^{\prime} C^{\prime}$, which contradicts $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ in view of L 1.3.16.8. Thus, we conclude that in this case $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$.

We can write $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& C D a_{A B} \& C^{\prime} D^{\prime} a_{A^{\prime} B^{\prime}} \stackrel{\mathrm{T1.3.9}}{\Longrightarrow} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} . A C \equiv$ $A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle A D C \equiv \angle A^{\prime} D^{\prime} C^{\prime} \stackrel{\mathrm{T} 1.3 .19}{\Longrightarrow} \triangle A D C \equiv \triangle A^{\prime} D^{\prime} C^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A C D \equiv$ $\angle A^{\prime} C^{\prime} D^{\prime} . \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \& B D a_{A C} \& B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$.

Now suppose that the points B, D lie on the opposite sides of the line $a_{A C}$. ${ }^{335}$ The points B^{\prime}, D^{\prime} then evidently lie on the opposite sides of the line $a_{A^{\prime} C^{\prime}} .{ }^{336}$ Using the same arguments as above, ${ }^{337}$ we see that $A D \equiv A^{\prime} D^{\prime}$, $C D \equiv C^{\prime} D^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$, as required.

We now turn to the situations where the points C, D lie on the opposite sides of the line $a_{A B}$. Then, by hypothesis, the points C, D lie on the opposite sides of the line $a_{A B}$, and we can write $\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& \angle B A C \equiv$

[^104]$\angle B^{\prime} A^{\prime} C^{\prime} \& C a_{A B} D \& C^{\prime} a_{A^{\prime} B^{\prime}} D^{\prime} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime}, A C \equiv A^{\prime} C^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle A D C \equiv \angle A^{\prime} D^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .9}$ $\triangle A C D \equiv \triangle A^{\prime} C^{\prime} D^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}$.

Again, we start proving the rest of the congruences by assuming that the points B, D lie on the same side of the line $a_{A C}$. We are going to show that in this case the points B^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} C^{\prime}}$. Suppose the contrary, i.e. that $B^{\prime} a_{A^{\prime} C^{\prime}} D^{\prime}$. Choosing a point E^{\prime} such that $\left[C^{\prime} A^{\prime} E^{\prime}\right]$ (see A 1.2 .2), it is easy to see that the ray $A_{E^{\prime}}^{\prime}$ lies inside the angle $\angle B^{\prime} A^{\prime} D^{\prime},{ }^{338}$ which, in turn, implies that $\angle B^{\prime} A^{\prime} E^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime}$ (see C 1.3.16.4). Note that $B D a_{A C} \xrightarrow{\text { L1.2.21.21 }} A_{D} \subset \operatorname{Int} \angle C A B \vee A_{B} \subset \operatorname{Int} \angle C A D$. But $A_{D} \subset \operatorname{Int} \angle C A B$ in view of definition of interior would imply that the points C, D lie on the same side of the line $a_{A B}$ contrary to our assumption. Thus, we see that $A_{B} \subset \operatorname{Int} \angle C A D$. By L 1.2.21.10 $\exists E\left(E \in A_{B} \cap(C D)\right.$. We have $E \in A_{B} \xrightarrow{\text { L1.2.21.21 }}[A E B] \vee E=$ $B \vee[A B E]$. But $[A B E]$ and $E=B$ contradict simplicity of the quadrilateral $A B C D$. Thus, we conclude that $[A B E]$. Hence using T 1.3.17 (see also L 1.2.11.15) we can write $\angle B A D=\angle D A E<\angle A E C=\angle B E C<\angle A B C$, whence $\angle B A D<\angle A B C$ (see L 1.3.16.6-L 1.3.16.8). On the other hand, we have $\angle A^{\prime} B^{\prime} C^{\prime}<\angle B^{\prime} A^{\prime} E^{\prime}$. Taking into account $\angle B^{\prime} A^{\prime} E^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime}$ and using L 1.3.16.8, we find that $\angle A^{\prime} B^{\prime} C^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime}$. Now we can write $\angle B A D<\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}<\angle B^{\prime} A^{\prime} D^{\prime} \Rightarrow \angle B A D<\angle B^{\prime} A^{\prime} D^{\prime}$ (see L 1.3.16.6-L 1.3.16.8), which (in view of L 1.3.16.11) contradicts $\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}$ (the latter is true by hypothesis). This contradiction refutes our assumption that the points B^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{A^{\prime} C^{\prime}}$ given that the points B, D lie on the same side of $a_{A C}$. Thus, since we assume $B D a_{A C}$, we also have $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$. Now we can write $\angle A C B \equiv$ $\angle A^{\prime} C^{\prime} B^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \& B D a_{A C} \& B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}} \stackrel{\mathrm{T} 1.3 .9}{ } \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$.

Finally, observing that $B a_{A C} D$ implies that $B^{\prime} a_{A^{\prime} C^{\prime}} D^{\prime},{ }^{339}$ we can write $\angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& \angle A C D \equiv$ $\angle A^{\prime} C^{\prime} D^{\prime} \& a_{A C} D \& B^{\prime} a_{A^{\prime} C^{\prime}} D^{\prime} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} . \square$

Proposition 1.3.19.3. Consider two simple quadrilaterals, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}$, $C D \equiv C^{\prime} D^{\prime}, \angle A B C \equiv A^{\prime} B^{\prime} C^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} .{ }^{340}$ Suppose further that if A, D lie on the same side of the line $a_{B C}$ then A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$, and if A, D lie on the opposite sides of the line $a_{B C}$

[^105]then A^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Then the quadrilaterals are congruent, $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
Proof. As in the preceding two propositions, we can immediately write $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \equiv$ $\angle A^{\prime} B^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime}$. We start with the case where the points A, D lie on the same side of the line $a_{B C}$. Then, by hypothesis, A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$. Using T 1.3 .9 we find that $\angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}$, whence $A C \equiv A^{\prime} C^{\prime} \& C D \equiv$ $C^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} A D \equiv A^{\prime} D^{\prime} \& \angle C D A \equiv C^{\prime} D^{\prime} A^{\prime}$. From L 1.2.21.21 we have either $C_{A} \subset$ Int $\angle B C D$ or $C_{D} \subset \operatorname{Int} \angle B C A$. If $C_{A} \subset \operatorname{Int} \angle B C D$ then by P 1.3.9.5 also $C^{\prime}{ }_{A^{\prime}} \subset \operatorname{Int} \angle B^{\prime} C^{\prime} D^{\prime}$, and we can write $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle D A C \equiv \angle D^{\prime} A^{\prime} C^{\prime} \& B D a_{A C} \& B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}} \stackrel{\text { T1.3.9 }}{\Longrightarrow} \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}$. Suppose $C_{D} \subset$ Int $\angle B C A$. Then $\exists E\left(E \in C_{D} \cap(B A)\right.$). Hence (see also L 1.2.19.8) we can write $\angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle C A E \equiv$ $\angle A E \& E D a_{A C} \& E^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}} \stackrel{\text { T1.3.9 }}{\Longrightarrow} \angle D A E \equiv \angle D^{\prime} A^{\prime} E^{\prime}$, whence $\angle D A B \equiv \angle D^{\prime} A^{\prime} B^{\prime}$ (we also take into account that $\angle C A E=\angle C A B, \angle D A B=\angle D A E, \angle C^{\prime} A^{\prime} E^{\prime}=\angle C^{\prime} A^{\prime} B^{\prime}, \angle D^{\prime} A^{\prime} B^{\prime}=\angle D^{\prime} A^{\prime} E^{\prime}$ in view of L 1.2.11.15).

Consider now the case where $A a_{B C} D$. Then, by hypothesis, also $A^{\prime} a_{B^{\prime} C^{\prime}} D^{\prime}$. We can write $\angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& \angle D C B \equiv$ $\angle D^{\prime} C^{\prime} B^{\prime} \& A a_{B C} D \& A^{\prime} a_{B C} D^{\prime} \xrightarrow{\mathrm{T1.3.9}} \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}, A C \equiv A^{\prime} C^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .4}$ $\triangle C D A \equiv \triangle C^{\prime} D^{\prime} A^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime}$.

Denote $E \rightleftharpoons(A D) \cap a_{B C},{ }^{341} E^{\prime} \rightleftharpoons\left(A^{\prime} D^{\prime}\right) \cap a_{B^{\prime} C^{\prime}}$. In view of T 1.2 .2 we have either $[E B C]$ or $[B C E]$ and, similarly, either $\left[E^{\prime} B^{\prime} C^{\prime}\right]$ or $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. (Evidently, due to simplicity of $A B C D$, we can immediately discard from our consideration the cases $E=B,[B E C], E=C, E^{\prime}=B^{\prime},\left[B^{\prime} E^{\prime} C^{\prime}\right], E^{\prime}=C^{\prime} . \square$ We are going to show that if $[E B C]$ then also $\left[E^{\prime} B^{\prime} C^{\prime}\right]$. To establish this suppose the contrary, i.e. that both $[E B C]$ and $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. Then, using $T 1.3 .17$ we would have $\angle B C D=\angle E C D<\angle A E C=\angle A E B<\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} E^{\prime}<\angle B^{\prime} E^{\prime} D^{\prime}=\angle C^{\prime} E^{\prime} D^{\prime}<$ $\angle B^{\prime} C^{\prime} D^{\prime}$ (see also L 1.2.11.15), whence $\angle B C D<\angle B^{\prime} C^{\prime} D^{\prime}$ (see L 1.3.16.6-L 1.3.16.8), which contradicts $\angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$ in view of L 1.3 .16 .11 . Thus, we see that $[B E C]$ implies $\left[B^{\prime} E^{\prime} C^{\prime}\right]$. Similar arguments show that $[B C E]$ implies $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. ${ }^{342}$ Consider first the case where $[E B C],\left[E^{\prime} B^{\prime} C^{\prime}\right]$. Then we can write $[E B C] \Rightarrow A_{B} A_{D} a_{A C}$, $\left[E^{\prime} B^{\prime} C^{\prime}\right] \Rightarrow A^{\prime}{ }_{B^{\prime}} A^{\prime}{ }_{D^{\prime}} a_{A^{\prime} C^{\prime}}, \angle C A B \equiv \angle C^{\prime} A^{\prime} B^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& A_{B} A_{D} a_{A C} \& A^{\prime}{ }_{B^{\prime}} A^{\prime}{ }_{D^{\prime}} a_{A^{\prime} C^{\prime}} \xrightarrow{\mathrm{T1} .3 .9} \angle B A D \equiv$ $\angle B^{\prime} A^{\prime} D^{\prime}$. Finally, suppose $[B C E],\left[B^{\prime} C^{\prime} E^{\prime}\right]$. Then $\angle C A B \equiv \angle C^{\prime} A^{\prime} B^{\prime} \& \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& A_{B} a_{A C} A_{D} \& A_{B^{\prime}}^{\prime} a_{A^{\prime} C^{\prime}} A_{D^{\prime}}^{\prime} \stackrel{\mathrm{T} 1}{=}$ $\angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}$.

Theorem 1.3.20. Suppose a point B does not lie on a line $a_{A C}$ and D is the foot of the perpendicular drawn to $a_{A C}$ through B. Then:

- The angle $\angle B A C$ is obtuse if and only if the point A lies between D, C.
- The angle $\angle B A C$ is acute if and only if the point D lies on the ray $A_{C} .{ }^{343}$
- The point D lies between the points A, C iff the angles $\angle B C A, \angle B A C$ are both acute.

Proof. Suppose $[A D C]$ (see Fig. 1.135, a)). Then $[A D C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{D}=A_{C} \Rightarrow \angle B A D=\angle B A C$. On the other hand, $\angle B D C$ is a right angle, and by T 1.3.17 $\angle B A D<\angle B D C$, which, in its turn, means that $\angle B A C$ is an acute angle. Since $[A D C] \Rightarrow[C D A]$, we immediately conclude that the angle $\angle B C A$ is also acute.

Suppose $[D A C]$ (see Fig. 1.135, b)). Then, again by $\mathrm{T} 1.3 .17, \angle B D A<\angle B A C$. Since $\angle B D A$ is a right angle, ${ }^{344}$ the angle $B A C$ is bound to be obtuse in this case.

Suppose $\angle B A C$ is acute. ${ }^{345}$ Then $D \neq A$ and $\neg[D A C]$ - otherwise the angle $\angle B A C$ would be, respectively, either right or obtuse. But $D \in a_{A C} \& D \neq A \& \neg[D A C] \Rightarrow D \in A_{C}$.

Substituting A for C and C for A in the newly obtained result, we can conclude at once that if the angle $\angle B C A$ is acute, this implies that $D \in C_{A}$.

Therefore, when $\angle B A C$ and $\angle B C A$ are both acute, we can write $D \in A_{C} \cap C_{A}=(A C)$ (see L 1.2.15.1).
Finally, if $\angle B A C$ is obtuse, then $D \notin A_{C}$ (otherwise $\angle B A C$ would be acute), $D \in a_{A C}$, and $D \neq A$. Therefore, [DAC].

Relations Between Intervals Divided into Congruent Parts

Lemma 1.3.21.1. Suppose points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then $A B \equiv A^{\prime} B^{\prime}$ and $B C<B^{\prime} C^{\prime}$ imply $A C<A^{\prime} C^{\prime}$.

Proof. (See Fig. 1.136.) $B C<B^{\prime} C^{\prime} \stackrel{\text { L1.3.13.3 }}{\Longrightarrow} \exists C^{\prime \prime}\left[B^{\prime} C^{\prime \prime} C^{\prime}\right] \& B C \equiv B^{\prime} C^{\prime \prime} .\left[A^{\prime} B^{\prime} C^{\prime}\right] \&\left[B^{\prime} C^{\prime \prime} C^{\prime}\right] \xrightarrow{\text { L1.2.3.2 }}\left[A^{\prime} B^{\prime} C^{\prime \prime}\right]$ $\&\left[A^{\prime} C^{\prime \prime} C^{\prime}\right] .[A B C] \&\left[A^{\prime} B^{\prime} C^{\prime \prime}\right] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime \prime} \stackrel{\text { A1.3.3 }}{\Longrightarrow} A C \equiv A^{\prime} C^{\prime}$. Since also $\left[A^{\prime} C^{\prime \prime} C^{\prime}\right]$, by L 1.3.13.3 we conclude that $A C<A^{\prime} C^{\prime}$.

Lemma 1.3.21.2. Suppose points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then $A B \equiv A^{\prime} B^{\prime}$ and $A C<A^{\prime} C^{\prime}$ imply $B C<B^{\prime} C^{\prime}$.

[^106]

Figure 1.135: Illustration for proof of L 1.3.20.

Figure 1.136: Suppose points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then $A B \equiv A^{\prime} B^{\prime}$ and $B C<B^{\prime} C^{\prime}$ imply $A C<A^{\prime} C^{\prime}$.

Figure 1.137: Suppose points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then $A B<A^{\prime} B^{\prime}$ and $B C<B^{\prime} C^{\prime}$ imply $A C<A^{\prime} C^{\prime}$.

Proof. By L 1.3.13.14 we have either $B C \equiv B^{\prime} C^{\prime}$, or $B^{\prime} C^{\prime}<B C$, or $B C<B^{\prime} C^{\prime}$. Suppose $B C \equiv B^{\prime} C^{\prime}$. Then $[A B C] \&\left[A^{\prime} B^{\prime} C^{\prime}\right] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \stackrel{\text { A1.3.3 }}{\Longrightarrow} A C \equiv A^{\prime} C^{\prime}$, which contradicts $A C<A^{\prime} C^{\prime}$ in view of L 1.3.13.11. Suppose $B^{\prime} C^{\prime}<B C$. In this case $[A B C] \&\left[A^{\prime} B^{\prime} C^{\prime}\right] \& A^{\prime} B^{\prime} \equiv A B \& B^{\prime} C^{\prime}<B C \stackrel{\text { L1.3.21.1 }}{\Longrightarrow} A^{\prime} C^{\prime} \equiv A C$, which contradicts $A C<A^{\prime} C^{\prime}$ in view of L 1.3.13.10. Thus, we have $B C<B^{\prime} C^{\prime}$ as the only remaining possibility.

Lemma 1.3.21.3. Suppose points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then $A B<A^{\prime} B^{\prime}$ and $B C<B^{\prime} C^{\prime}$ imply $A C<A^{\prime} C^{\prime}$.

Proof. (See Fig. 1.137.) $A B<A^{\prime} B^{\prime} \& B C<B^{\prime} C^{\prime} \stackrel{\text { L1.3.13.3 }}{\Longrightarrow} \exists A^{\prime \prime}\left[B^{\prime} A^{\prime \prime} A^{\prime}\right] \& B A \equiv B^{\prime} A^{\prime \prime} \& \exists C^{\prime \prime}\left[B^{\prime} C^{\prime \prime} C^{\prime}\right] \& B C \equiv$ $B^{\prime} C^{\prime \prime} .\left[A^{\prime} B^{\prime} C^{\prime}\right] \&\left[A^{\prime} A^{\prime \prime} B^{\prime}\right] \&\left[B^{\prime} C^{\prime \prime} C^{\prime}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A^{\prime} B^{\prime} C^{\prime \prime}\right] \&\left[A^{\prime} C^{\prime \prime} C^{\prime}\right] \&\left[A^{\prime} A^{\prime \prime} C^{\prime}\right] \&\left[A^{\prime \prime} B^{\prime} C^{\prime}\right] .\left[A^{\prime \prime} B^{\prime} C^{\prime}\right] \&\left[B^{\prime} C^{\prime \prime} C^{\prime}\right] \xrightarrow{\text { L1.2.3.2 }}$ $\left[A^{\prime \prime} B^{\prime} C^{\prime \prime}\right] .[A B C] \&\left[A^{\prime \prime} B^{\prime} C^{\prime \prime}\right] \& A B \equiv A^{\prime \prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime \prime} \stackrel{\text { A1.3.3 }}{\Longrightarrow} A C \equiv A^{\prime \prime} C^{\prime \prime}$. Finally, $\left[A^{\prime} A^{\prime \prime} C^{\prime}\right] \&\left[A^{\prime} C^{\prime \prime} C^{\prime}\right] \& A C \equiv$ $A^{\prime \prime} C^{\prime \prime} \stackrel{\mathrm{L} 1.3 .13 .3}{\Longrightarrow} A C<A^{\prime} C^{\prime}$.

In the following L 1.3.21.4-L 1.3.21.7 we assume that finite sequences of n points $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$, where $n \geq 3$, have the property that every point of the sequence, except the first $\left(A_{1}, B_{1}\right)$ and the last $\left(A_{n}, B_{n}\right.$, respectively), lies between the two points of the sequence with the numbers adjacent (in \mathbb{N}) to the number of the given point. Suppose, further, that $\forall i \in \mathbb{N}_{n-2} \quad A_{i} A_{i+1} \equiv A_{i+1} A_{i+2}, B_{i} B_{i+1} \equiv B_{i+1} B_{i+2}$. ${ }^{346}$
Lemma 1.3.21.4. If $\forall i \in \mathbb{N}_{n-1} \quad A_{i} A_{i+1} \leqq B_{i} B_{i+1}$ and $\exists i_{0} \in \mathbb{N}_{n-1} \quad A_{i_{0}} A_{i_{0}+1}<B_{i_{0}} B_{i_{0}+1}$, then $A_{1} A_{n}<B_{1} B_{n}$.
Proof. Choose $i_{0} \rightleftharpoons \min \left\{i \mid A_{i} A_{i+1}<B_{i} B_{i+1}\right\}$. For $i_{0} \in \mathbb{N}_{n-2}$ we have by induction assumption $A_{1} A_{n-1}<$ $B_{1} B_{n-1}$. Then we can write either $A_{1} A_{n-1}<B_{1} B_{n-1} \& A_{n-1} A_{n} \equiv B_{n-1} B_{n} \stackrel{\text { L1.3.21.1 }}{\Longrightarrow} A_{1} A_{n}<B_{1} B_{n}$ or $A_{1} A_{n-1}<$ $B_{1} B_{n-1} \& A_{n-1} A_{n}<B_{n-1} B_{n} \stackrel{\text { L1.3.21.3 }}{\Longrightarrow} A_{1} A_{n}<B_{1} B_{n}$. For $i_{0}=n-1$ we have by P 1.3.1.5 $A_{1} A_{n-1} \equiv B_{1} B_{n-1}$. Then $A_{1} A_{n-1} \equiv B_{1} B_{n-1} \& A_{n-1} A_{n}<B_{n-1} B_{n} \stackrel{\text { L1.3.21.1 }}{\Longrightarrow} A_{1} A_{n}<B_{1} B_{n}$.

Corollary 1.3.21.5. If $\forall i \in \mathbb{N}_{n-1} \quad A_{i} A_{i+1} \leqq B_{i} B_{i+1}$, then $A_{1} A_{n} \leqq B_{1} B_{n}$.
Proof. Immediately follows from P 1.3.1.5, L 1.3.21.4.
Lemma 1.3.21.6. The inequality $A_{1} A_{n}<B_{1} B_{n}$ implies that $\forall i, j \in \mathbb{N}_{n-1} \quad A_{i} A_{i+1}<B_{j} B_{j+1}$.
Proof. It suffices to show that $A_{1} A_{2}<B_{1} B_{2}$, because then by L 1.3.13.6, L 1.3.13.7 we have $A_{1} A_{2}<B_{1} B_{2} \& A_{1} A_{2} \equiv$ $A_{i} A_{i+1} \& B_{1} B_{2} \equiv B_{j} B_{j+1} \Rightarrow A_{i} A_{i+1}<B_{j} B_{j+1}$ for all $i, j \in \mathbb{N}_{n-1}$. Suppose the contrary, i.e. that $B_{1} B_{2} \leqq A_{1} A_{2}$. Then by T 1.3.1, L 1.3.13.6, L 1.3 .13 .7 we have $B_{1} B_{2} \leqq A_{1} A_{2} \& B_{1} B_{2} \equiv B_{i} B_{i+1} \& A_{1} A_{2} \equiv A_{i} A_{i+1} \Rightarrow B_{i} B_{i+1} \leqq$ $A_{i} A_{i+1}$ for all $i \in \mathbb{N}_{n-1}$, whence by C 1.3.21.5 $B_{1} B_{n} \leqq A_{1} A_{n}$, which contradicts the hypothesis in view of L 1.3.13.10, C 1.3.13.12.

Lemma 1.3.21.7. The congruence $A_{1} A_{n} \equiv B_{1} B_{n}$ implies that $\forall i, j \in \mathbb{N}_{n-k} \quad A_{i} A_{i+k} \equiv B_{j} B_{j+k}$, where $k \in \mathbb{N}_{n-1}$. 347

Proof. Again, it suffices to show that $A_{1} A_{2} \equiv B_{1} B_{2}$, for then we have $A_{1} A_{2} \equiv B_{1} B_{2} \& A_{1} A_{2} \equiv A_{i} A_{i+1} \& B_{1} B_{2} \equiv$ $B_{j} B_{j+1} \stackrel{\text { T1.3.1 }}{\Longrightarrow} A_{i} A_{i+1} \equiv B_{j} B_{j+1}$ for all $i, j \in \mathbb{N}_{n-1}$, whence the result follows in an obvious way from P 1.3.1.5 and T 1.3.1. Suppose $A_{1} A_{2}<B_{1} B_{2}$. ${ }^{348}$ Then by L 1.3.13.6, L 1.3.13.7 we have $A_{1} A_{2}<B_{1} B_{2} \& A_{1} A_{2} \equiv$ $A_{i} A_{i+1} \& B_{1} B_{2} \equiv B_{i} B_{i+1} \Rightarrow A_{i} A_{i+1}<B_{i} B_{i+1}$ for all $i \in \mathbb{N}_{n-1}$, whence $A_{1} A_{n}<B_{1} B_{n}$ by L 1.3.21.4, which contradicts $A_{1} A_{n} \equiv B_{1} B_{n}$ in view of L 1.3.13.11.

[^107]If a finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers, and, furthermore, $A_{1} A_{2} \equiv A_{2} A_{3} \equiv \ldots \equiv A_{n-1} A_{n},{ }^{349}$ we say that the interval $A_{1} A_{n}$ is divided into $n-1$ congruent intervals $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ (by the points $A_{2}, A_{3}, \ldots A_{n-1}$).

If an interval $A_{1} A_{n}$ is divided into intervals $A_{i} A_{i+1}, i \in \mathbb{N}_{n-1}$, all congruent to an interval $A B$ (and, consequently, to each other), we can also say, with some abuse of language, that the interval $A_{1} A_{n}$ consists of $n-1$ intervals $A B$ (or, to be more precise, of $n-1$ instances of the interval $A B$).

If an interval $A_{0} A_{n}$ is divided into n intervals $A_{i-1} A_{i}, i \in \mathbb{N}_{n}$, all congruent to an interval $C D$ (and, consequently, to each other), we shall say, using a different kind of folklore, that the interval $C D$ is laid off n times from the point A_{0} on the ray $A_{0 P}$, reaching the point A_{n}, where P is some point such that the ray $A_{0 P}$ contains the points A_{1}, \ldots, A_{n}. 350

Lemma 1.3.21.8. If intervals $A_{1} A_{k}$ and $B_{1} B_{n}$ consist, respectively, of $k-1$ and $n-1$ intervals $A B$, where $k<n$, then the interval $A_{1} A_{k}$ is shorter than the interval $B_{1} B_{n}$.

Proof. We have, by hypothesis (and T 1.3.1) $A B \equiv A_{1} A_{2} \equiv A_{2} A_{3} \equiv \ldots \equiv A_{k-1} A_{k} \equiv B_{1} B_{2} \equiv B_{2} B_{3} \equiv \ldots \equiv$ $B_{n-1} B_{n}$, where $\left[A_{i} A_{i+1} A_{i+2}\right]$ for all $i \in \mathbb{N}_{k-2}$ and $\left[B_{i} B_{i+1} B_{i+2}\right]$ for all $i \in \mathbb{N}_{n-2}$. Hence by P 1.3.1.5 $A_{1} A_{k} \equiv B_{1} B_{k}$, and by L 1.2.7.3 $\left[B_{1} B_{k} B_{n}\right]$. By L 1.3.13.3 this means $A_{1} A_{k}<B_{1} B_{n}$.

Lemma 1.3.21.9. If an interval $E F$ consists of $k-1$ intervals $A B$, and, at the same time, of $n-1$ intervals $C D$, where $k>n$, the interval $A B$ is shorter than the interval $C D$.

Proof. We have, by hypothesis, $E F \equiv A_{1} A_{k} \equiv B_{1} B_{n}$, where $A B \equiv A_{1} A_{2} \equiv A_{2} A_{3} \equiv \ldots \equiv A_{k-1} A_{k}, C D \equiv B_{1} B_{2} \equiv$ $B_{2} B_{3} \equiv \ldots \equiv B_{n-1} B_{n}$, and, of course, $\forall i \in \mathbb{N}_{k-2}\left[A_{i} A_{i+1} A_{i+2}\right]$ and $\forall i \in \mathbb{N}_{n-2}\left[B_{i} B_{i+1} B_{i+2}\right]$. Suppose $A B \equiv C D$. Then the preceding lemma (L 1.3.21.8) would give $A_{1} A_{k}>B_{1} B_{n}$, which contradicts $A_{1} A_{k} \equiv B_{1} B_{n}$ in view of L 1.3 .13 .11 . On the other hand, the assumption $A B>C D$ would again give $A_{1} A_{k}>B_{1} B_{n}$ by $\mathrm{C} 1.3 .21 .5, \mathrm{~L} 1.3 .21 .8$. Thus, we conclude that $A B<C D$.

Corollary 1.3.21.10. If an interval $A B$ is shorter than the interval $C D$ and is divided into a larger number of congruent intervals than is $A B$, then (any of) the intervals resulting from this division of $A B$ are shorter than (any of) those resulting from the division of $C D$.

Proof.
Lemma 1.3.21.11. Any interval $C D$ can be laid off from an arbitrary point A_{0} on any ray $A_{0 P}$ any number $n>1$ of times.

Proof. By induction on n. Start with $n=2$. By A 1.3.1 $\exists A_{1} A_{1} \in A_{0 P} \& C D \equiv A_{0} A_{1}$. Using A 1.3.1 again, choose A_{2} such that $A_{2} \in\left(A_{1 A_{0}}\right)^{c} \& C D \equiv A_{1} A_{2}$. Since $A_{2} \in\left(A_{1 A_{0}}\right)^{c} \stackrel{\text { L1.2.15.2 }}{\Longrightarrow}\left[A_{0} A_{1} A_{2}\right]$, we obtain the required result. Observe now that if the conditions of the theorem are true for $n>2$, they are also true for $n-1$. Assuming the result for $n-1$ so that $C D \equiv A_{0} A_{1} \equiv \cdots \equiv A_{n-1} A_{n}$ and $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$, choose A_{n} such that $A_{n} \in\left(A_{n-1}^{A_{n-2}}\right)^{c} \& C D \equiv A_{n-1} A_{n}$. Then $A_{n} \in\left(A_{n-1} A_{n-2}\right)^{c} \stackrel{\text { L1.2.15.2 }}{\Longrightarrow}\left[A_{n-2} A_{n-1} A_{n}\right]$, so we have everything that is required.

Let an interval $A_{0} A_{n}$ be divided into n intervals $A_{0} A_{1}, A_{1} A_{2} \ldots, A_{n-1} A_{n}$ (by the points $A_{1}, A_{2}, \ldots A_{n-1}$) and an interval $A_{0}^{\prime} A_{n}^{\prime}$ be divided into n intervals $A_{0}^{\prime} A_{1}^{\prime}, A_{1}^{\prime} A_{2}^{\prime} \ldots, A_{n-1}^{\prime} A_{n}^{\prime}$ in such a way that $\forall i \in \mathbb{N}_{n} A_{i-1} A_{i} \equiv A_{i-1}^{\prime} A_{i}^{\prime}$. Also, let a point B^{\prime} lie on the ray $A_{0 A_{i_{0}}^{\prime}}^{\prime}$, where $A_{i_{0}}^{\prime}$ is one of the points $A_{i}^{\prime}, i \in \mathbb{N}_{n}$; and, finally, let $A B \equiv A^{\prime} B^{\prime}$. Then:

Lemma 1.3.21.12. - If B lies on the open interval $\left(A_{k-1} A_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the point B^{\prime} lies on the open interval $\left(A_{k-1}^{\prime} A_{k}^{\prime}\right)$.

Proof. For $k=1$ we obtain the result immediately from L 1.3.9.1, so we can assume without loss of generality that $k>1$. Since $A_{i_{0}}^{\prime}, B^{\prime}$ (by hypothesis) and $A_{i_{0}}^{\prime}, A_{k-1}^{\prime}, A_{k}^{\prime}$ (see L 1.2.11.18) lie on one side of A_{0}^{\prime}, so do $A_{k-1}^{\prime}, A_{k}^{\prime}, B^{\prime}$. Since also (by L 1.2.7.3 $\left[A_{0} A_{k-1} A_{k}\right],\left[A_{0}^{\prime} A_{k-1}^{\prime} A_{k}^{\prime}\right]$, we have $\left[A_{0} A_{k-1} A_{k}\right] \&\left[A_{k-1} B A_{k}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[A_{0} A_{k-1} B\right] \&\left[A_{0} B A_{k}\right]$. Taking into account that (by hypothesis) $A_{0} B \equiv A_{0}^{\prime} B^{\prime}$ and (by L 1.3.21.7) $A_{0} A_{k-1} \equiv A_{0}^{\prime} \equiv A_{k-1}^{\prime}, A_{0} A_{k} \equiv A_{0}^{\prime} \equiv A_{k}^{\prime}$, we obtain by L 1.3.9.1 $\left[A_{0}^{\prime} A_{k-1}^{\prime} B^{\prime}\right],\left[A_{0}^{\prime} B^{\prime} A_{k}^{\prime}\right]$, whence by $\mathrm{L} 1.2 .3 .1\left[A_{k-1}^{\prime} B^{\prime} A_{k}^{\prime}\right]$, as required.

Lemma 1.3.21.13. - If B coincides with the point $A_{k_{0}}$, where $k_{0} \in \mathbb{N}_{n}$, then B^{\prime} coincides with $A_{k_{0}}^{\prime}$.
Proof. Follows immediately from L 1.3.21.7, A 1.3.1.
Corollary 1.3.21.14. - If B lies on the half-open interval $\left[A_{k-1} A_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the point B^{\prime} lies on the half-open interval $\left[A_{k-1}^{\prime} A_{k}^{\prime}\right)$.

[^108]Proof. Follows immediately from the two preceding lemmas, L 1.3.21.12 and L 1.3.21.13. \square
Theorem 1.3.21. Given an interval $A_{1} A_{n+1}$, divided into n congruent intervals $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n} A_{n+1}$, if the first of these intervals $A_{1} A_{2}$ is further subdivided into m_{1} congruent intervals $A_{1,1} A_{1,2}, A_{1,2} A_{1,3}, \ldots, A_{1, m_{1}} A_{1, m_{1}+1}$, where $\forall i \in \mathbb{N}_{m_{1}-1}\left[A_{1, i} A_{1, i+1} A_{1, i+2}\right]$, and we denote $A_{1,1} \rightleftharpoons A_{1}$ and $A_{1, m_{1}+1} \rightleftharpoons A_{2}$; the second interval $A_{2} A_{3}$ is subdivided into m_{2} congruent intervals $A_{2,1} A_{2,2}, A_{2,2} A_{2,3}, \ldots, A_{2, m_{2}} A_{2, m_{2}+1}$, where $\forall i \in \mathbb{N}_{m_{2}-1}\left[A_{2, i} A_{2, i+1} A_{2, i+2}\right]$, and we denote $A_{2,1} \rightleftharpoons A_{2}$ and $A_{2, m_{1}+1} \rightleftharpoons A_{3}$; dots; the $n^{\text {th }}$ interval $A_{n} A_{n+1}$ - into m_{n} congruent intervals $A_{n, 1} A_{n, 2}, A_{n, 2} A_{n, 3}, \ldots, A_{n, m_{n}} A_{n, m_{n}+1}$, where $\forall i \in \mathbb{N}_{m_{n}-1}\left[A_{n, i} A_{n, i+1} A_{n, i+2}\right]$, and we denote $A_{1,1} \rightleftharpoons A_{1}$ and $A_{1, m_{1}+1} \rightleftharpoons A_{n+1}$. Then the interval $A_{1} A_{n+1}$ is divided into the $m_{1}+m_{2}+\cdots+m_{n}$ congruent intervals $A_{1,1} A_{1,2}, A_{1,2} A_{1,3}, \ldots, A_{1, m_{1}} A_{1, m_{1}+1}, A_{2,1} A_{2,2}, A_{2,2} A_{2,3}, \ldots, A_{2, m_{2}} A_{2, m_{2}+1}, \ldots, A_{n, 1} A_{n, 2}, A_{n, 2} A_{n, 3}, \ldots, A_{n, m_{n}} A_{n, m_{n}+1}$.

In particular, if an interval is divided into n congruent intervals, each of which is further subdivided into m congruent intervals, the starting interval turns out to be divided into mn congruent intervals.

Proof. Using L 1.2.7.3, we have for any $j \in \mathbb{N}_{n-1}:\left[A_{j, 1} A_{j, m_{j}} A_{j, m_{j}+1}\right]$, $\left[A_{j+1,1} A_{j+1,2} A_{j+1, m_{j+1}+1}\right]$. Since, by definition, $A_{j, 1}=A_{j}, A_{j, m_{j}+1}=A_{j+1,1}=A_{j+1}$ and $A_{j+1, m_{j+1}+1}=A_{j+2}$, we can write $\left[A_{j} A_{j, m_{j}} A_{j+1}\right] \&\left[A_{j} A_{j+1} A_{j+2}\right] \xrightarrow{\text { L1.2.3.2 }}$ $\left[A_{j, m_{j}} A_{j+1} A_{j+2}\right]$ and $\left[A_{j, m_{j}} A_{j+1} A_{j+2}\right] \&\left[A_{j+1} A_{j+1,2} A_{j+2}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{j, m_{j}} A_{j+1} A_{j+1,2}\right]$. Since this is proven for all $j \in \mathbb{N}_{n-1}$, we have all the required betweenness relations. The rest is obvious. ${ }^{351} \square$

Midpoints

A point M which divides an interval $A B$ into congruent intervals $A M, M B$ is called a midpoint of $A B$. If M is a midpoint of $A B,{ }^{352}$ we write this as $M=\operatorname{mid} A B$.

We are going to show that every interval has a unique midpoint.
Lemma 1.3.22.1. If $\angle C A B \equiv \angle A B D$, and the points C, D lie on opposite sides of the line $a_{A B}$, then the open intervals $(C D),(A B)$ concur in some point E.

Proof. ${ }^{353} C a_{A B} D \Rightarrow \exists E\left(E \in a_{A B}\right) \&[C E D]$ (see Fig. 1.138, a)). We have $E \neq A$, because otherwise $[C A D] \& B \notin$ $a_{A D} \stackrel{\text { L1.3.17.4 }}{\Longrightarrow} \angle C A B>\angle A B D,{ }^{354}$ which contradicts $\angle C A B \equiv \angle A B D$ in view of C 1.3.16.12. Similarly, $E \neq B$, for otherwise (see Fig. 1.138, b)) $[C B D] \& A \notin a_{B C} \stackrel{\text { L1.3.17.4 }}{\Longrightarrow} \angle B A C<\angle A B D$ - a contradiction. ${ }^{355}$ Therefore, $E \in$ $a_{A B} \& E \neq A \& E \neq B \stackrel{\mathrm{~T} 1.2 .2}{\Longrightarrow}[A E B] \vee[E A B] \vee[A B E]$. But $\neg[E A B]$, because otherwise, using T 1.3.18, L 1.2.11.15, we would have $[E A B] \& C \notin a_{A E} \&[C E D] \& B \notin a_{E D} \Rightarrow \angle B A C>\angle A E C=\angle B E C>\angle E B D=\angle A B D-\mathrm{a}$ contradiction. Similarly, $\neg[A B E]$, for otherwise (see Fig. 1.138, c)) $[A B E] \& D \notin a_{E B} \&[C E D] \& A \notin a_{E C} \Rightarrow$ $\angle A B D>\angle B E D=\angle A E D>\angle E A C=\angle B A C .{ }^{356}$ Thus, we see that $[A E B]$, which completes the proof. ${ }^{357} \square$

Making use of A 1.3.4, A 1.3.1, choose points C, D so that $\angle C A B \equiv \angle A B D$ and Then A point E which divides an interval $A B$ into congruent intervals $A E, E B$ is called a midpoint of $A B$. If E is a midpoint of $A B,{ }^{358}$ we write this as $E=\operatorname{mid} A B$.

Theorem 1.3.22. Every interval $A B$ has a unique midpoint E.
Proof. Making use of A 1.3.4, A 1.3.1, choose points C, D so that $\angle C A B \equiv \angle A B D, A C \equiv B D$, and the points C, D lie on the opposite sides of the line $a_{A B}$. From the preceding lemma the open intervals $(C D),(A B)$ meet in some point E. Hence the angles $\angle A E C, \angle B E D$, being vertical, are congruent (T 1.3.7). Furthermore, using L 1.2.11.15 we see that $\angle C A E=\angle C A B, \angle E B D=\angle A B D$. Now we can write $A C \equiv B D \& \angle C A E \equiv \angle E B D \& \angle A E C \equiv$ $\angle B E D \stackrel{\mathrm{~T} 1.3 .19}{\Longrightarrow} \triangle A E C \equiv \triangle B E D \Rightarrow A E \equiv E B \& C E \equiv E D$. Thus, we see that B is a midpoint.

To show that the midpoint E is unique, suppose there is another midpoint F. Then $[A E B] \&[A F B] \& E \neq$ $F \stackrel{\text { P1.2.3.4 }}{\Longrightarrow}[A E F] \vee[A F E]$. Assuming $[A F E],{ }^{359}$ we have by C 1.3.13.4 $A F<A E$ and $[A F E] \&[A E B] \xrightarrow{\text { L1.2.3.2 }}$ $[F E B] \stackrel{\mathrm{C} 1.3 .13 .4}{\Longrightarrow} E B<F B$, so that $A F<A E \equiv E B<F B \Rightarrow A F<F B \Rightarrow A F \not \equiv F B$ - a contradiction. Thus, E is the only possible midpoint.

[^109]

Figure 1.139: If $\angle B A C \equiv \angle A C D, A B \equiv C D$, and B, D lie on opposite sides of $a_{A C}$, then $(B D),(A C)$ concur in M which is the midpoint for both $A C$ and $B D$.

Figure 1.140: Given a line a, through any point C not on it at most one perpendicular to a can be drawn.

Corollary 1.3.23.1. Every interval $A B$ can be uniquely divided into 2^{n} congruent intervals, where n is any positive integer.

Proof. By induction on n. The case of $n=1$ is exactly T 1.3.22. If $A B$ is divided into 2^{n-1} congruent intervals, dividing (by T 1.3 .22) each of these intervals into two congruent intervals, we obtain by T 1.3 .21 that $A B$ is now divided into 2^{n} congruent intervals, q.e.d.

Corollary 1.3.23.2. If a point E lies on a line $a_{A B}$ and $A E \equiv E B$, then E is a midpoint of $A B$, i.e. also $[A E B]$.
Proof. $E \in a_{A B} \& A \neq E \neq B \xrightarrow{\mathrm{T1.2.2}}[A B E] \vee[E A B] \vee[A E B]$. But by C 1.3.13.4 [ABE] would imply $B E<A E$, which by L 1.3.13.11 contradicts $A E \equiv E B$. Similarly, $[E A B] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A E<E B$ - again a contradiction. This leaves $[A E B]$ as the only option. ${ }^{360}$

Corollary 1.3.23.3. Congruence of (conventional) intervals has the property P 1.3.5. ${ }^{361}$
Corollary 1.3.23.4. If $\angle B A C \equiv \angle A C D, A B \equiv C D$, and the points B, D lie on opposite sides of the line $a_{A C}$, then the open interval $(B D),(A C)$ concur in the point M which is the midpoint for both $A C$ and $B D$.

Proof.

Lemma 1.3.24.1. Given a line a, through any point C not on it at most one perpendicular to a can be drawn. ${ }^{362}$
Proof. Suppose the contrary, i.e. that there are two perpendiculars to a drawn through C with feet A, B. (See Fig. 1.140.) Then we have $a_{C A} \perp a_{A B}=a, a_{C B} \perp a_{A B}=a$. This means that $\angle C A B$, adjsp $\angle C B A$, both being right angles, are congruent by T 1.3 .16 . On the other hand, since adjsp $\angle C B A$ is an exterior angle of $\triangle A C B$, by T 1.3.17 we have $\angle C A B<\operatorname{adjsp} \angle C B A$. Thus, we arrive at a contradiction with L 1.3.16.11.

[^110]

Figure 1.141: Illustration for proof of P 1.3.24.2.

Triangle Medians, Bisectors, and Altitudes

A vertex of a triangle is called opposite to its side (in which case the side, in turn, is called opposite to a vertex) if this side (viewed as an interval) does not have that vertex as one of its ends.

An interval joining a vertex of a triangle with a point on the line containing the opposite side is called a cevian. A cevian $B D$ in a triangle $\triangle A B C,(A C) \ni D$, is called

- a median if $A D \equiv D C$;
- a bisector if $\angle A B D \equiv C A D$;
- an altitude if $a_{B D} \perp a_{A C}$.

Proposition 1.3.24.2. Consider an altitude $B D$ of a triangle $\triangle A B C$. The foot D of the altitude $B D$ lies between the points A, C iff both the angles $\angle B A C, \angle B C A$ are acute. In this situation we shall refer to $B D$ as an interior, or proper, altitude of $\triangle A B C$. The foot D of the altitude $B D$ coincides with the point A iff the angle $\angle B A C$ is right and the angle $B C A$ is acute. In this situation we shall refer to $B D$ as the side altitude of $\triangle A B C$. The points A, C, D are in the order $[D A C]$ iff both the angle $\angle B A C$ is obtuse and the angle $\angle B C A$ is acute. In this situation we shall refer to $B D$ as the exterior altitude of $\triangle A B C .{ }^{363}$

Proof. Suppose $[A D C]$ (see Fig. 1.141, a)). Then $\angle B A C=\angle B A D<\angle B D C$ (see L 1.2.11.15, T 1.3.17). $\angle B D C$ being a right angle, $\angle B A C$ is bound to be acute (C ??). Similarly, $\angle B C A$ is acute.

Suppose $A=D$. Then, obviously, $\angle B A C=\angle B D C$ is a right angle.
Suppose $[D A C]$ (see Fig. 1.141, b)). Then $\angle B D C=\angle B D A<\angle B A C$ (see L 1.2.11.15, T 1.3.17). Since $\angle B D C$ is a right angle, $\angle B A C$ has to be obtuse (C ??).

Observe now that, in view of T 1.2.2, for points A, C, D on one line, of which A, C are known to be distinct, we have either $[D A C]$, or $D=A$, or $[A D C]$, or $D=C$, or $[A C D]$. Suppose first that the angles $\angle B A C, \angle B C A$ are both acute. The first part of this proof then shows that this can happen only if the point D lies between A, C, for in the other four cases one of the angles $\angle B A C, \angle B C A$ would be either right or obtuse. Similarly, we see that $D=A$ only if $\angle B A C$ is right, and [$D A C$] only if $\angle B A C$ is obtuse, which completes the proof.

Proposition 1.3.24.3. If a median $B D$ in a triangle $\triangle A B C$ is also an altitude, then $B D$ is also a bisector, and $\triangle A B C$ is an isosceles triangle. ${ }^{364}$

Proof. Since $B D$ is a median, we have $A D \equiv C D$. Since it is also an altitude, the angles $\angle A B D, \angle C B D$, both being right angles, are also congruent. Hence $A D \equiv C D \& \angle A B D \equiv \angle C B D \& B D \equiv B D \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A B D \equiv \triangle C B D \Rightarrow$ $A B \equiv C B \& \angle A B D \equiv \angle C B D$.

Proposition 1.3.24.4. If a bisector $B D$ in a triangle $\triangle A B C$ is also an altitude, then $B D$ is also a median, and $\triangle A B C$ is an isosceles triangle.

Proof. The interval $B D$ being a bisector implies $\angle A B D \equiv \angle C B D$. Since it is also an altitude, we have $\angle A B D \equiv$ $\angle C B D$. Hence $\angle A B D \equiv \angle C B D \& B D \equiv B D \& 1 \angle A B D \equiv \angle C B D \stackrel{\mathrm{~T} 1.3 .5}{\Longrightarrow} \triangle A B D \equiv \triangle C B D \Rightarrow A B \equiv C B \& A D \equiv$ $C D$.

Proposition 1.3.24.5. If a median $B D$ in a triangle $\triangle A B C$ is also a bisector, then $B D$ is also an altitude, and $\triangle A B C$ is an isosceles triangle.

[^111]

Figure 1.142: Given a cevian $B D$ in $\triangle A B C$ with $A B \equiv C B$, if $B D$ is a median, it is also a bisector and an altitude; if $B D$ is a bisector, it is also a median and an altitude; if $B D$ is an altitude, it is also a median and a bisector.

Proof. We have $\angle A \equiv \angle C$. In fact, the inequality $\angle A<\angle C$ would by C 1.3 .18 .3 imply $C D<A D$, which, in view of L 1.3.13.11, contradicts $A D \equiv D C$ (required by the fact that $B D$ is a median). Similarly, $\angle C<\angle A$ would by C 1.3.18.3 imply $C D<A D$, which again contradicts $A D \equiv D C$. ${ }^{365}$ Thus, we have $\angle A \equiv \angle C$ as the remaining option. Hence the result by T 1.3.12, T 1.3.24.

Theorem 1.3.24. Given a cevian $B D$, where $(A C) \ni D$, in an isosceles triangle $\triangle A B C$ with $A B \equiv C B$, we have:

1. If $B D$ is a median, it is also a bisector and an altitude;
2. If $B D$ is a bisector, it is also a median and an altitude;
3. If $B D$ is an altitude, it is also a median and a bisector.

Proof. (See Fig. 1.142.) 1. $A B \equiv C B \& D B \equiv D B \& A D \equiv D C \stackrel{T 1.3 .10}{\Longrightarrow} \triangle A B D \equiv \triangle C B D \Rightarrow \angle A B D \equiv$ $\angle C B D \& \angle A D B \equiv \angle C D B$. Thus, $B D$ is a bisector and an altitude (the latter because the relation $[A D C]$ implies that $\angle A D B, \angle A D B$ are adjacent complementary angles, and we have shown that $\angle A D B \equiv \angle C D B)$.
2. $A B \equiv C B \& D B \equiv D B \& \angle A B D \equiv \angle C B D \stackrel{\mathrm{~T} 1.3 .4}{\Longrightarrow} \triangle A B D \equiv \triangle C B D \Rightarrow A D \equiv D C$, so $B D$ is a median.
3. By T 1.3.3 $\angle B A C \equiv \angle B C A$. Also, $[A D C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle B A C=\angle B A D \& \angle B C A \equiv \angle B C D$. Finally, $A B \equiv$ $C B \& \angle B A D \equiv \angle B C D \& \angle A D B \equiv \angle C D B \stackrel{T 1.3 .19}{\Longrightarrow} \triangle A B D \equiv \triangle C B D$, whence the result. ${ }^{366}$

Given a ray l lying (completely) inside an extended angle $\angle(h, k)^{367}$ and having its initial point in the vertex of $\angle(h, k)$, if the angles $\angle(h, l), \angle(l, k)$ are congruent, the ray l is called a bisector of the extended angle $\angle(h, k)$. If a ray l is the bisector of an extended angle $\angle(h, k)$, we shall sometimes say that either of the angles $\angle(h, l), \angle(l, k)$ is half the extended angle $\angle(h, k)$. ${ }^{368}$
Theorem 1.3.25. Every extended angle $\angle(h, k)$ has a unique bisector l.
Proof. Obviously, for $h=h^{c}$ we have $l \perp \bar{h}$ (see L 1.3.8.3). ${ }^{369}$ (See Fig. 1.143.) Suppose now $h \neq h^{c}$. Using A 1.3.1, choose points $A \in k, C \in h$ such that $A B \equiv B C$. If D is the midpoint of $A C$ (see T 1.3.22), by the previous theorem (T 1.3.24) and L 1.2.21.1 we have $\angle(k, l)=\angle A B D \equiv \angle C B D=\angle(l, h)$. To show uniqueness, suppose $\angle(h, k)$ has a bisector l^{\prime}. By this bisector meets $(A C)$ in a point D^{\prime}, and thus $B D^{\prime}$ is a bisector in $\triangle A B C$. Hence by the previous theorem (T 1.3 .24) D^{\prime} is a midpoint of $A C$ and is unique by T 1.3 .22 , which implies $D^{\prime}=D$ and $l^{\prime}=B_{D^{\prime}}=B_{D}=l$.

Corollary 1.3.25.1. For a given vertex, say, B, of a triangle $\triangle A B C$, there is only one median, joining this vertex with a point D on the opposite side $A C$. Similarly, there is only one bisector per every vertex of a given triangle.

Proof. In fact, by T 1.3 .22 , the interval $A C$ has a unique midpoint D, so there can be only one median for the given vertex D. The bisector l of the angle $\angle A B C$ exists and is unique by T 1.3 .25 . By L 1.2.21.4, L 1.2.21.6 $A \in B_{A} \& C \in B_{C} \& l \subset \operatorname{Int} \angle A B C \Rightarrow \exists E E \in l \&[A E C]$, i.e. the ray l is bound to meet the open interval $(A C)$ at some point E. Then $B E$ is the required bisector. It is unique because the ray $l=B_{E}$ is unique, and the line $a_{B E}$

[^112]

Figure 1.143: Every angle $\angle(h, k)$ has a unique bisector l.

Figure 1.144: Illustration for proof of T 1.3.26.
containing it, by L 1.2.1.5 (we take into account that $A \notin a_{B E}$) cannot meet the line $a_{A C}$, and, consequently, the open interval $(A C)$ (see L 1.2.1.3), in more than one point.

Corollary 1.3.25.2. Congruence of (conventional) angles has the property P 1.3.5. ${ }^{370}$

Congruence and Parallelism

Theorem 1.3.26. If points B, D lie on the same side of a line $a_{A C}$, the point C lies between A and a point E, and the angle $\angle B A C$ is congruent to the angle $\angle D C E$, then the lines $a_{A B}, a_{C D}$ are parallel.

Proof. Suppose the contrary, i.e. $\exists F F \in a_{A B} \cap a_{C D}$. We have, by hypothesis, $B D a_{A C} \stackrel{\text { T1.2.19 }}{\Longrightarrow} A_{B} C_{D} a_{A C}$. Therefore, $F \in a_{A B} \cap a_{C D} \& A_{B} C_{D} a_{A C} \Rightarrow F \in A_{B} \cap C_{D} \vee F \in\left(A_{B}\right)^{c} \cap\left(C_{D}\right)^{c}$. In the first of these cases (see Fig. 1.144, a)) we would have by L 1.2.11.3, T 1.3.17 $F \in A_{B} \cap C_{D} \Rightarrow \angle B A C=\angle E A C \& \angle F C E=\angle D C E \& \angle F A C<\angle F C E \Rightarrow$ $\angle B A C<F C E$ which contradicts $\angle B A C \equiv \angle D C E$ in view of L 1.3.16.11. Similarly, for the second case (see Fig. 1.144, b)), using also L 1.3.16.15), we would have $F \in\left(A_{B}\right)^{c} \cap\left(C_{D}\right)^{c} \Rightarrow \angle F A C=\operatorname{adjsp} \angle B A E \& \angle F C E=$ $\operatorname{adjsp} \angle D C E \& \angle F A C<\angle F C E \Rightarrow \operatorname{adjsp} \angle B A E<\operatorname{adjsp} \angle D C E \Rightarrow \angle D C E<\angle B A E$ - again a contradiction.

[^113]

Figure 1.145: If A, B, C, D coplane and $a_{A B}, a_{C D}$ are both perpendicular to $a_{A C}$, the lines $a_{A B}, a_{C D}$ are parallel.

Figure 1.146: If B, F lie on opposite sides of $a_{A C}$ and $\angle B A C, \angle A C F$ are congruent, then $a_{A B}, a_{C F}$ are parallel.

Corollary 1.3.26.1. If points B, D lie on the same side of a line $a_{A C}$ and the angles $\angle B A C, \angle D C A$ are supplementary then $a_{A B} \| a_{C D}$.

Proof. Since $\angle B A C=$ suppl $\angle D C A$, we have $\angle B A C \equiv \operatorname{adjsp} \angle D C E$, where $C_{E}=\left(C_{A}\right)^{c}$. ${ }^{371}$ Hence the result of the present corollary by the preceding theorem (T 1.3 .26).

Corollary 1.3.26.2. If points A, B, C, D coplane and the lines $a_{A B}, a_{C D}$ are both perpendicular to the line $a_{A C}$, the lines $a_{A B}, a_{C D}$ are parallel. In other words, if two (distinct) lines b, c coplane and are both perpendicular to a line a, they are parallel to each other.

Proof. (See Fig. 1.145.) By hypothesis, the lines $a_{A B}, a_{C D}$ both form right angles with the line $a_{A C}$. But by T 1.3.16 all right angles are congruent. Therefore, we can consider the angles formed by $a_{A B}, a_{C D}$ with $a_{A C}$ as supplementary, ${ }^{372}$ whence by the preceding corollary (C 1.3.26.1) we get the required result.

Corollary 1.3.26.3. If points B, F lie on opposite sides of a line $a_{A C}$ and the angles $\angle B A C, \angle A C F$ are congruent, then the lines $a_{A B}, a_{C F}$ are parallel.

Proof. (See Fig. 1.146.) Since, by hypothesis, B, F lie on opposite sides of a line $a_{A C}$, we have $B\left(C_{F}\right)^{c} a_{A C}$ (see L 1.2 .19 .8 , L 1.2 .18 .4). Also, the angle formed by the rays $A_{C},\left(C_{F}\right)^{c}$, is supplementary to $\angle B A C$. Hence the result by C 1.3.26.1.

Corollary 1.3.26.4. Given a point A not on a line a in a plane α, at least one parallel to a goes through A.
Corollary 1.3.26.5. Suppose that $A, B, C \in a, A^{\prime}, B^{\prime}, C^{\prime} \in b$, and $\angle A^{\prime} A B \equiv \angle B^{\prime} B C \equiv \operatorname{adjsp} \angle C^{\prime} C B$. ${ }^{373}$ If B lies between A, C then B^{\prime} lies between A^{\prime}, C^{\prime}.

[^114]Proof. According to T 1.3 .26 , C 1.3 .26 .3 we have $a_{A A^{\prime}}\left\|a_{B B^{\prime}}, a_{B B^{\prime}}\right\| a_{C C^{\prime}}$.
${ }^{374}$ Seeing that $a_{B B^{\prime}}$ lies inside the strip $a_{A A^{\prime}} a_{C C^{\prime}}$, we conclude (using T 1.2.2) that $\left[A^{\prime} B^{\prime} C^{\prime}\right],{ }^{375}$ as required.

Corollary 1.3.26.6. Suppose that $A, B, C \in a,[A B C], A^{\prime}, B^{\prime}, C^{\prime} \in b$, where A, B, C, are respectively the feet of the perpendiculars to a drawn through $A^{\prime}, B^{\prime}, C^{\prime} .{ }^{376}$ Then $\left[A^{\prime} B^{\prime} C^{\prime}\right]$.

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16).
Corollary 1.3.26.7. Suppose that $A, B, C \in a, A^{\prime}, B^{\prime}, C^{\prime} \in b$, and $\left[A^{\prime} B^{\prime} C^{\prime}\right]$, where A, B, C, are respectively the feet of the perpendiculars to a drawn through $A^{\prime}, B^{\prime}, C^{\prime}$. Suppose further that the lines a, b are not perpendicular. 377 Then $[A B C]$.

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16).
Corollary 1.3.26.8. Suppose that $A_{1}, A_{2}, A_{3}, \ldots, A_{n}(, \ldots) \in a, B_{1}, B_{2}, B_{3}, \ldots, B_{n}(, \ldots) \in b$, and $\angle B_{1} A_{1} A_{2} \equiv$ $\angle B_{2} A_{2} A_{3} \equiv \cdots \equiv \angle B_{n-1} A_{n-1} A_{n} \equiv \angle B_{n} A_{n} A_{n+1}$. Suppose further that the points $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$ have the following property: Every point A_{i}, where $i=2,3, \ldots, n(, \ldots)$ lies between the two points (namely, A_{i-1}, A_{i+1}) with adjacent (in \mathbb{N}) numbers. Then the points $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$ are in order $\left[B_{1} B_{2} \ldots B_{n}(\ldots)\right.$.

Proof.

Corollary 1.3.26.9. Suppose that $A_{1}, A_{2}, A_{3}, \ldots, A_{n}(, \ldots) \in a, B_{1}, B_{2}, B_{3}, \ldots, B_{n}(, \ldots) \in b$, where $A_{i}, i=1,2, \ldots, n(, \ldots)$ are the feet of the perpendiculars to a drawn through the corresponding points B_{i}. Suppose further that the points $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$ have the following property: Every point A_{i}, where $i=2,3, \ldots, n(, \ldots)$ lies between the two points (namely, A_{i-1}, A_{i+1}) with adjacent (in \mathbb{N}) numbers. Then the points $B_{1}, B_{2}, \ldots, B_{n}(, \ldots)$ are in order $\left[B_{1} B_{2} \ldots B_{n}(\ldots)\right.$.

Proof. \square
Corollary 1.3.26.10. Suppose that $A_{1}, A_{2}, A_{3}, \ldots, A_{n}(, \ldots) \in a, B_{1}, B_{2}, B_{3}, \ldots, B_{n}(, \ldots) \in b$, where A_{i}, $i=$ $1,2, \ldots, n(, \ldots)$ are the feet of the perpendiculars to a drawn through the corresponding points B_{i}. We assume that the lines a, b are not perpendicular (to each other). Suppose further that the points $B_{1}, B_{2}, \ldots, B_{n}(, \ldots)$ have the following property: Every point B_{i}, where $i=2,3, \ldots, n(, \ldots)$ lies between the two points (namely, B_{i-1}, B_{i+1}) with adjacent (in \mathbb{N}) numbers. Then the points $A_{1}, A_{2}, \ldots, A_{n}(, \ldots)$ are in order $\left[A_{1} A_{2} \ldots A_{n}(\ldots)\right.$.

Proof.
Proposition 1.3.26.11. Suppose we are given lines a, a^{\prime}, points $B \notin a, B^{\prime} \notin a^{\prime}$, an angle $\angle(h, k)$, and points C, C^{\prime} such that $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}$, where $A \rightleftharpoons \operatorname{proj}(B, a, \angle(h, k))$, $A^{\prime} \rightleftharpoons \operatorname{proj}\left(B^{\prime}, a^{\prime}, \angle(h, k)\right)$. In addition, in the case $a^{\prime} \neq a$ then we impose the following requirement on the orders used to define the projection on a, a^{\prime} under $\angle(h, k)$ (see p. 117): if $A \prec D$ on a then $A^{\prime} \prec D^{\prime}$ on a^{\prime}, and if $D \prec A$ on a then $A^{\prime} \prec D^{\prime}$ on a^{\prime}. Then $A D \equiv A^{\prime} D^{\prime}$, where $D \rightleftharpoons \operatorname{proj}(C, a, \angle(h, k))$ if $B C a_{A D}, D^{\prime} \rightleftharpoons \operatorname{proj}\left(C^{\prime}, a^{\prime}, \angle(h, k)\right)$ if $B^{\prime} C^{\prime} a^{\prime}, D \rightleftharpoons$ $\operatorname{proj}(C, a$, suppl $\angle(h, k))$ if $B a_{A D} C, D^{\prime} \rightleftharpoons \operatorname{proj}\left(C^{\prime}, a^{\prime}, \operatorname{suppl} \angle(h, k)\right)$ if $B^{\prime} a^{\prime} C^{\prime}$. Furthermore, if $C \notin a^{378}$ then $C D \equiv C^{\prime} D^{\prime}$ and $\angle B C D \equiv B^{\prime} C^{\prime} D^{\prime} .{ }^{379}$

Proof. First, observe that the points C, D always lie on the same side of the line $a_{A B}$ and C^{\prime}, D^{\prime} lie on the same side of $a_{A^{\prime} B^{\prime}}$. In fact, this is vacuously true if $D=C\left(D^{\prime}=C^{\prime}\right)$, and in the case $D \neq C\left(D^{\prime} \neq C^{\prime}\right)$ this follows from T 1.3.26, C 1.3.26.3. ${ }^{380}$ Furthermore, we have $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \& \angle A^{\prime} B^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B C \equiv$ $\triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow A C \equiv A^{\prime} C^{\prime} \& \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$. Note also that we can assume without loss of generality that $A \prec D$. Then, by hypothesis, $A^{\prime} \prec D^{\prime}$. This, in turn, means that the angles $\angle B A D, \angle B^{\prime} A^{\prime} D^{\prime}$, both being congruent to the angle $\angle(h, k)$, are congruent to each other. Suppose that $C \in a .{ }^{381}$ We are going to show that in this case also

[^115]$C^{\prime} \in a^{\prime}$ and thus $D^{\prime}=C^{\prime}$. In fact, since the angle $\angle A B C=\angle A C D$ is congruent both to $\angle A^{\prime} B^{\prime} C^{\prime}$ and $\angle A^{\prime} B^{\prime} D^{\prime}$, and, as shown above, the points C^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} B^{\prime}}$, using A 1.3.4 we see that the points C^{\prime}, D^{\prime} lie on the line a^{\prime} on the same side of the point A^{\prime}. But from the definition of projection it is evident that C^{\prime} can lie on a^{\prime} only if $D^{\prime}=C^{\prime}$.

Turning to the case $C \neq D$, we observe that either both B, C lie on the same side of $a_{A D}$ and B^{\prime}, C^{\prime} lie on the same side of $a_{A^{\prime} D^{\prime}}$, or B, C lie on the opposite sides of $a_{A D}$ and B^{\prime}, C^{\prime} lie on the opposite sides of $a_{A^{\prime} D^{\prime}}$. To show this in a clumsy yet logically sound manner suppose the contrary, i.e. that, say, ${ }^{382} B, C$ lie on the same side of $a_{A D}$ and B^{\prime}, C^{\prime} lie on the opposite sides of $a_{A^{\prime} D^{\prime}}$. Then $B^{\prime} a^{\prime} C^{\prime} \& \angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle A^{\prime} D^{\prime} C^{\prime} \stackrel{\text { L1.3.22.1 }}{\Longrightarrow} \exists E^{\prime}\left(E^{\prime} \in\right.$ $\left(A^{\prime} D^{\prime}\right) \cap\left(B^{\prime} C^{\prime}\right)$). Taking $E \in A_{D}$ such that $A^{\prime} E^{\prime} \equiv A E$ (see A 1.3.1), we find that $E \in A_{D} \& E^{\prime} \in\left(A^{\prime} D^{\prime}\right) \Rightarrow$ $\angle B A D=\angle B A E \& \angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle B^{\prime} A^{\prime} E^{\prime}$ (see L 1.2.11.3, L 1.2.11.15), whence $\angle B A E \equiv \angle B^{\prime} A^{\prime} E^{\prime}$. Now we can write $A^{\prime} B^{\prime} \equiv A B \& A^{\prime} E^{\prime} \equiv A E \& \angle B^{\prime} A^{\prime} E^{\prime} \equiv \angle B A E \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A^{\prime} B^{\prime} E^{\prime} \equiv \triangle A B E \Rightarrow \angle A^{\prime} B^{\prime} E^{\prime} \equiv \angle A B E$. Since also $E^{\prime} \in\left(B^{\prime} C^{\prime}\right) \Rightarrow B^{\prime} C^{\prime}=B^{\prime}{ }_{E^{\prime}} \Rightarrow \angle A^{\prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} E^{\prime}$ (see L 1.2.11.15), $\angle A^{\prime} B^{\prime} C^{\prime} \equiv \angle A B C$ (by hypothesis), and $E C a_{A B},{ }^{383}$ using A 1.3.4 we find that $E \in B_{C} . B^{\prime} C^{\prime} \equiv B C \& B E \equiv B E \&\left[B^{\prime} E^{\prime} C^{\prime}\right] \& E \in B_{C} \xrightarrow{\text { L1.3.22.1 }}[B E C]$, which implies that the points B, C lie on the opposite sides of the line a contrary to assumption.

Consider the case $B C a$. Then, as shown above, we have $B^{\prime} C^{\prime} a^{\prime}$. Since the quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are simple in this case (see L 1.2.62.5), in view of P 1.3.19.2 we have $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ whence, in particular, $A D \equiv A^{\prime} D^{\prime}, C D \equiv C^{\prime} D^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$.

Suppose now that $B a C$. Then, as we have seen, also $B^{\prime} a^{\prime} C^{\prime}$. Furthermore, as shown above, $\exists E(E \in(A D) \cap$ $(B C))$ and $\exists E^{\prime}\left(E^{\prime} \in\left(A^{\prime} D^{\prime}\right) \cap\left(B^{\prime} C^{\prime}\right)\right)$. In view of L 1.2 .11 .15 we have $\angle B A E=\angle B A D, \angle A B E=\angle A B C$, $\angle C D A=\angle C D E, \angle B C D=\angle E C D, \angle B^{\prime} A^{\prime} E^{\prime}=\angle B^{\prime} A^{\prime} D^{\prime}, \angle A^{\prime} B^{\prime} E^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}, \angle B C D \equiv \angle E C D$. Since, by hypothesis, $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}, \angle C^{\prime} D^{\prime} A^{\prime}=\angle C^{\prime} D^{\prime} E^{\prime}$ and $A B \equiv A^{\prime} B^{\prime}$, in view of T 1.3 .5 we have $\triangle A B E \equiv \triangle A^{\prime} B^{\prime} E^{\prime}$, whence $A E \equiv A^{\prime} E^{\prime}, B E \equiv B^{\prime} E^{\prime}$, and $\angle A E B \equiv \angle A^{\prime} E^{\prime} B^{\prime}$. From L 1.3.9.1 we have $C E \equiv C^{\prime} E^{\prime}$, and using T 1.3 .7 we find that $\angle C E D \equiv \angle C^{\prime} E^{\prime} D^{\prime}$. Hence $C E \equiv C^{\prime} E^{\prime} \& \angle C E D \equiv \angle C^{\prime} E^{\prime} D^{\prime} \& \angle C D E \equiv$ $C^{\prime} D^{\prime} E^{\prime} \stackrel{\mathrm{T1.3.19}}{\Longrightarrow} \triangle C E D \equiv \triangle C^{\prime} E^{\prime} D^{\prime}$, whence $C D \equiv C^{\prime} D^{\prime}, D E \equiv D^{\prime} E^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$. ${ }^{384}$ Finally, we can write $A E \equiv A^{\prime} E^{\prime} \& D E \equiv D^{\prime} E^{\prime} \&[A E D] \&\left[A^{\prime} E^{\prime} D^{\prime}\right] \stackrel{\text { A1.3.3 }}{\Longrightarrow} A D \equiv A^{\prime} D^{\prime}$.

Corollary 1.3.26.12. Consider an acute angle $\angle(h, k)$. Let $A_{1}, A_{2} \in k$ and let B_{1}, B_{2} be the feet of the perpendiculars to \bar{h} drawn through A_{1}, A_{2}, respectively. Then $\left[O A_{1} A_{2}\right]$ if and only if $\left[O B_{1} B_{2}\right]$, where O is the vertex of the angle $\angle(h, k)$.

Proof. Since (by hypothesis) both $a_{A_{1} B_{1}} \perp \bar{h}, a_{A_{2} B_{2}} \perp \bar{h}$, we have $a_{A_{1} B_{1}} \| a_{A_{2} B_{2}}$ (see C ??). Then the required result follows from T 1.2.46. \square

Corollary 1.3.26.13. Consider an acute angle $\angle(h, k)$. Let $A_{1}, A_{2}, \ldots, A_{n} \in k, n \in \mathbb{N}, n \geq 2$ and let $B_{1}, B_{2}, \ldots, B_{n}$ be the feet of the perpendiculars to \bar{h} drawn through $A_{1}, A_{2}, \ldots, A_{n}$, respectively. Then $\left[O \bar{A}_{1} A_{2} \ldots A_{n}\right]$ if and only if $\left[O B_{1} B_{2} \ldots B_{n}\right]$, where O is the vertex of the angle $\angle(h, k)$.

Proof. Follows from the preceding corollary (C 1.3.26.13) and C 1.3.26.9, C 1.3.26.10.
Lemma 1.3.26.14. The altitude drawn from the vertex B of the right angle $\angle B=\angle A B C$ of a right triangle $\triangle A B C$ to the (line containing the) opposite side $A C$ is an interior altitude. Furthermore, the feet of the perpendiculars drawn from points of the sides $(A B),(B C)$ to the line $a_{A B}$ also lie between A and C.

Proof. Since, by hypothesis, $\angle A B C$ is a right angle, the angles $\angle B A C, \angle B C A$ are acute. Therefore, $D \in A_{C} \cap C_{A}=$ $(A C)$ (see C 1.3.18.11, L 1.2.15.1). Now suppose $E \in(A B), F \in a_{A C}$, and $a_{E F} \perp a_{A C}$. From C 1.3.26.12 we have $[A F D]$, and we can write $[A F D] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A F C]$.

Lemma 1.3.26.15. Given an acute or right angle $\angle(h, k)$ and a point C inside it, the foot B of the perpendicular lowered from C to \bar{h} lies on h. Similarly, by symmetry the foot A of the perpendicular lowered from C to \bar{k} lies on k.

Proof. Denote by O the vertex of the angle (h, k) and denote $l \rightleftharpoons O_{C}$. Using L 1.2.21.4, C 1.3.16.4 we see that $\angle(h, l)<\angle(h, k)$. Since, by hypothesis, $\angle(h, k)$ is acute, the angle $\angle(h, l)$ is also acute in view of L 1.3.16.20. Hence $F \in h$ by C 1.3.18.11.

Theorem 1.3.27. Let a point D lie between points A, C and the intervals $A D, D C$ are congruent. Suppose, further, that the lines $a_{A H}, a_{C L}$ are both perpendicular to the line $a_{H L}$ and the points H, D, L colline. Then the point D lies between the points H, L and $A H \equiv C L, \angle A H D \equiv \angle C L D$.

[^116]

Figure 1.147: If point D lies between A, C, the intervals $A D, D C$ are congruent, the lines $a_{A H}, a_{C L}$ are both perpendicular to $a_{H L}$, and the points H, D, L colline, then D lies between H, L and $A H \equiv C L, \angle A H D \equiv \angle C L D$.

Figure 1.148: If $a_{P X}$ is the right bisector of $K L$ then $K X \equiv X L$.

Proof. (See Fig. 1.147.) Using A 1.2.2, A 1.3.1, choose a point L^{\prime} so that $\left[H D L^{\prime}\right]$ and $D H \equiv D L^{\prime}$. Then we have ${ }^{385} A D \equiv D C \& D H \equiv D L^{\prime} \& \angle A D H \equiv \angle C D L^{\prime} \stackrel{\text { A1.3.5 }}{\Longrightarrow} \angle A H D \equiv \angle C L^{\prime} D$. Hence $a_{C L^{\prime}} \perp a_{H L} \& a_{C L} \perp a_{H L} \& L^{\prime} \in$ $a_{H L}=a_{H D} \stackrel{\text { L1.3.24.1 }}{\Longrightarrow} L^{\prime}=L$.

Right Bisectors of Intervals

A line a drawn through the center of an interval $K L$ and perpendicular to the line $a_{K L}$ is called the right bisector of the interval $K L$.

Lemma 1.3.28.1. Every interval has exactly one right bisector in the plane containing both the interval and the bisector.

Proof. See T 1.3.22, L 1.3.8.3.
Lemma 1.3.28.2. If a line $a_{P X}$ is the right bisector of an interval $K L$ then $K X \equiv X L$.
Proof. Let $M=\operatorname{mid} K L$. (Then, of course, $M \in a_{P X}$.) If $X=M$ (see Fig. 1.148, a)) then there is noting to prove. If $M \neq X$ (see Fig. $1.148, \mathrm{~b})$) then ${ }^{386}$ We have $K M \equiv M L \& M X \equiv M X \& \angle K M X \equiv \angle L M X \xrightarrow{\mathrm{~T} 1.3 .4} \triangle K M X \equiv$ $\triangle L M X \Rightarrow K X \equiv X L$.

Lemma 1.3.28.3. If $K X \equiv X L$ and $a_{X Y} \perp a_{K L}$, then the line $a_{X Y}$ is the right bisector of the interval $K L$.
Proof. Denote $M \rightleftharpoons a_{X Y} \cap a_{K L}$. By hypothesis, $X M$ is the altitude, drawn from the vertex X of an isosceles (with $K X \equiv X L$) triangle $\triangle K X L$ to its side $K L$. Therefore, by $\mathrm{T} 1.3 .25, X M$ is also a median. Hence $K M \equiv M L$ and [KML], which makes $a_{X Y}$ the right bisector of the interval $K L$.

Lemma 1.3.28.4. If $K X \equiv X L, K Y \equiv Y L, Y \neq X$, and the points K, L, X, Y are coplanar, then the line $a_{X Y}$ is the right bisector of the interval $K L$.

[^117]

Figure 1.149: If $K X \equiv X L, K Y \equiv Y L, Y \neq X$, and the points K, L, X, Y are coplanar, then $a_{X Y}$ is the right bisector of $K L$.

Proof. (See Fig. 1.149.) Denote $M \rightleftharpoons$ mid $K L$. Since $X \neq Y$, either X or Y is distinct from M. Suppose $X \neq M$. ${ }^{387}$ Since $X M$ is the median joining the vertex X of the isosceles triangle $\triangle K X L$ with its base, by T 1.3.24 $X M$ is also an altitude. That is, we have $a_{X M} \perp a_{K L}$. In the case when $Y=M$ there is nothing else to prove, as $a_{X Y}$ then has all the properties of a right bisector. If $Y \neq M$, we have $a_{Y M} \perp a_{K L}$. ${ }^{388}$ Since the lines $a_{X M}, a_{Y M}$ perpendicular to the line $a_{K L}$ at M lie in the same plane containing $a_{K L}$, by L 1.3.8.3 we have $a_{X M}=a_{Y M}=a_{X Y}$, which concludes the proof for this case.

Theorem 1.3.28. Suppose points B, C lie on the same side of a line $a_{K L}$, the lines $a_{K B}, a_{L C}$ are perpendicular to the line $a_{K L}$, and the interval $K B$ is congruent to the interval $L C$. Then the right bisector of the interval $K L$ (in the plane containing the points $B, C, K, L)$ is also the right bisector of the interval $B C, \angle K B C \equiv \angle L C B$, and the lines $a_{K L}, a_{B C}$ are parallel.

Proof. (See Fig. 1.150.) Let a be the right bisector of the interval $K L$ in the plane $\alpha_{B K L}$. Denote $M \rightleftharpoons$ $(K L) \cap a$. We have $a_{K B} \perp a_{K L} \& a \perp a_{K L} \& a_{L C} \perp a_{K L} \stackrel{\text { C1.3.26.3 }}{\Longrightarrow} a_{K B}\|a \& a\| a_{L C} \& a_{K B} \| a_{L C} . a \subset$ $\alpha_{B K L} \& M \in(K L) \cap a\left\|a_{K B} \stackrel{P 1.2 .44 .1}{\Longrightarrow} \exists Y([B Y L] \& Y \in a) . a \subset \alpha_{B L C} \& Y \in(B L) \cap a \& a\right\| a_{L C} \xrightarrow{P 1.2 .44 .1}$ $\exists X([B X C] \& X \in a) .{ }^{389} B C a_{K L} \& X \in(B C) \stackrel{\text { L1.2.19.9 }}{\Longrightarrow} B X a_{K L} \& C X a_{K L}$. Note that $M \in(K L) \cap a \& X \in$ $a \& a \perp a_{K L} \Rightarrow \angle K M X \equiv \angle L M X$. Hence, $K M \equiv L M \& M X \equiv M X \& \angle K M X \equiv \angle L M X \xrightarrow{\text { T1.3.4 }} \triangle K M X \equiv$ $\triangle L M X \Rightarrow K X \equiv L X \& \angle M K X \equiv \angle M L X \& \angle K X M \equiv \angle L X M$. Since, evidently, $a_{K M}=a_{K L}$, we have $B X a_{K L} \Rightarrow B X a_{K M} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow} K_{X} \subset \operatorname{Int} \angle M K B \vee K_{B} \subset$ Int $\angle M K X \vee K_{X}=K_{B}$. But $K_{B} \subset$ Int $\angle M K X \xrightarrow{\text { L1.2.21.21 }}$ $\exists P\left(P \in K_{B} \cap(M X)\right) \Rightarrow \exists P P \in a_{K B} \cap a$, which contradicts $a_{K B} \| a$. It is even easier to note that $K_{X}=$ $K_{B} \Rightarrow X \in a_{K B} \cap a$ - again a contradiction. Thus, we have $K_{X} \subset \angle M K B$. Similarly, we can show that $L_{X} \subset$ Int $\angle M L C .{ }^{390}$ By T 1.3.16 the angles $\angle M K B, \angle M L C$, both being right angles (recall that, by hypothesis, $a_{K B} \perp a_{K L}=a_{K M}$ and $\left.a_{L C} \perp a_{K L}=a_{L M}\right)$, are congruent. Therefore, we have $\angle M K B \equiv \angle M L C$. Hence $B X a_{K M} \& C X a_{L M} \& \angle M K B \equiv \angle M L C \& \angle M K X \equiv \angle M L X \xrightarrow{\text { T1.3.9 }} \angle B K X \equiv \angle C L X . K B \equiv L C \& K X \equiv$ $L X \& \angle B K X \equiv \angle C L X \xrightarrow{\mathrm{~T} 1.3 .4} \triangle B K X \equiv \triangle C L X \Rightarrow B X \equiv C X \& \angle K B X \equiv \angle L C X \& \angle K X B \equiv \angle L X C$. $[B X C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} B_{X}=B_{C} \& C_{X}=C_{B} \Rightarrow \angle K B X=\angle K B C \& \angle L C X=\angle L C B . \angle K B X \equiv \angle L C X \& \angle K B X=$ $\angle K B C \& \angle L C X=\angle L C B \Rightarrow \angle K B C \equiv \angle L C B$. Since $\angle M K B$ is a right angle, by C 1.3.17.4 the other two angles, $\angle K M B$ and $\angle K B M$, of the triangle $\triangle M K B$, are bound to be acute. Since the angle $\angle K M B$ is acute and the angle $\angle K M X$ is a right angle, by L 1.3 .16 .17 we have $\angle K M B<\angle K M X$. Hence $B X a_{K M} \& \angle K M B<$ $\angle K M X \stackrel{\text { C1.3.16.4 }}{\Longrightarrow} M_{B} \subset I n t \angle K M X \xrightarrow{\text { L1.2.21.10 }} \exists E\left([K E X] \& E \in M_{B}\right) .[K E X] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} K_{E}=K_{X} \& X_{E}=X_{K}$. $E \in M_{B} \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[M E B] \vee[M B E] \vee E=B$. But the assumptions that $[M B E]$ or $E=B$ lead (by L 1.2.21.4, L 1.2.21.6, L 1.2.11.3) respectively, to $K_{B} \subset \operatorname{Int} \angle M K X$ or $K_{X}=K_{B}$ - the possibilities discarded above. Thus, we have [MEB]. By L 1.2.21.4, L 1.2.21.6 $[M E B] \Rightarrow X_{K}=X_{E} \subset$ Int $\angle B X M$. Similarly, it can be shown that $X_{L} \subset$ Int $\angle C X M$.

[^118]

Figure 1.150: Suppose points B, C lie on the same side of $a_{K L}$, the lines $a_{K B}, a_{L C}$ are perpendicular to $a_{K L}$, and the interval $K B \equiv L C$. Then the right bisector of $K L$ (in the plane containing B, C, K, L) is also the right bisector of $B C, \angle K B C \equiv \angle L C B$, and $a_{K L} \| a_{B C}$.
$391 \angle K X M \equiv \angle L X M \& \angle K X B \equiv \angle L X C \& X_{K} \subset$ Int $\angle B X M \& X_{L} \subset$ Int $\angle C X M \xrightarrow{\mathrm{~T} 1.3 .9} \angle B X M \equiv \angle C X M$. In view of $[B X C]$ this implies that $\angle B X M, \angle C X M$ are both right angles. Together with $B X \equiv C X$ and $X \in a$ this means that the line a is the right bisector of the interval $B C$. Finally, the lines $a_{K L}=a_{K M}, a_{B C}=a_{K X}$, both being perpendicular to the line $a=a_{M X}$, are parallel by C 1.3.26.2.

Proposition 1.3.28.1. If F, D are the midpoints of the sides $A B$, $A C$, respectively, of a triangle $\triangle A B C$, then the right bisector of the interval $B C$ is perpendicular to the line $a_{F D}$ and the lines $a_{B C}, a_{F D}$ are parallel.

Proof. Obviously, $F \neq D \Rightarrow \exists a_{F D}$. Using L 1.3.8.1, draw through points A, B, C the perpendiculars to $a_{F D}$ with feet H, K, L, respectively. ${ }^{392}$ If $D=H$ (see Fig. 1.151, a)), then, obviously, also $D=L$, but certainly $F \neq K \neq D$. If $F=H$ (see Fig. 1.151, b)), then also $F=K$, but $D \neq L \neq F$. In both of these cases we have $a_{K B} \perp a_{K L}=a_{F D}$, $a_{L C} \perp a_{K L}$. On the other hand, if both $D \neq H$ and $F \neq H$ (and then, consequently, $D \neq K, D \neq L, F \neq K, F \neq L$, $H \neq K, H \neq L, K \neq L$ - see Fig. 1.151, c)) then $[A D C] \& a_{A H} \perp a_{H L}=a_{F D} \& a_{L C} \perp a_{H L} \&[A F B] \& a_{K B} \perp$ $a_{K H}=a_{F D} \& H \in a_{F D} \& K \in a_{F D} \& L \in a_{F D} \stackrel{\text { T1.3.9 }}{\Longrightarrow} A H \equiv K B \& A H \equiv L C \Rightarrow K B \equiv L C$. ${ }^{393}$ We have also $[A F B] \&[A D C] \& A \notin a_{F D} \& B \notin a_{F D} \& C \notin a_{F D} A a_{F D} B \& A a_{F D} C \stackrel{\text { L1.2.17.9 }}{\Longrightarrow} B C a_{F D}=a_{K L}$. Since $a_{K B} \perp a_{K L}$, $a_{L C} \perp a_{K L}$, and $B C a_{K L}$, by T 1.3.28 the right bisector a of the interval $K L$ is also the right bisector of the interval. This means that the line a is perpendicular to $a_{F D}$ and the lines $a_{B C}, a_{F D}$ are parallel.

Proposition 1.3.28.2. If $A B C D$ is a simple plane quadrilateral with $A B \equiv C D, B C \equiv A D$, then $A B C D$ is a parallelogram. ${ }^{394}$ Furthermore, we have $A E \equiv E C, B E \equiv E D$, where $E=(A C) \cap(B D)$. ${ }^{395}$

Proof. $A B \equiv C D \& B C \equiv A D \& A C \equiv A C \stackrel{\mathrm{~T} 1.3 .10}{\Longrightarrow} \triangle A B C \equiv \triangle C D A \Rightarrow \angle A B C \equiv \angle C D A \& \angle B A C \equiv \angle A C D$ $\& \angle A C B \equiv \angle C A D$. Since, by hypothesis, the points A, B, C, D are coplanar and no three of them are collinear, by L 1.2.17.8 the points B, D lie either on one side or on opposite sides of the line $a_{A C}$. Suppose the former. Then $B D a_{A C} \& A_{B} \neq A_{D} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow} A_{D} \subset$ Int $\angle B A C \vee A_{B} \subset$ Int $\angle C A D$. ${ }^{396}$ Suppose $A_{D} \subset$ Int $\angle B A C$ (see Fig. 1.152, a)). Then $\stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists X\left(X \in A_{D} \&[B X C]\right) . X \in A_{D} \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[A D X] \vee X=D \vee[A X D]$. But the last two options contradict the simplicity of $A B C D$ in view of $\operatorname{Pr} 1.2 .10$, $\operatorname{Pr} 1.2 .11$. Thus, $[A D X]$ is the only remaining option. But $[B X C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} C_{X}=C_{B}$, and by L 1.2.21.6, L 1.2.21.4 $[A D X] \Rightarrow C_{D} \subset$ Int $\angle A C X$.

[^119]

Figure 1.151: If F, D are the midpoints of the sides $A B, A C$, respectively, of $\triangle A B C$, then the right bisector of $B C$ is perpendicular to $a_{F D}$ and $a_{B C}, a_{F D}$ are parallel.

Figure 1.152: If $A B C D$ is a simple plane quadrilateral with $A B \equiv C D, B C \equiv A D$, then $A B C D$ is a parallelogram.

Using C 1.3.16.4 then gives $\angle A C D<\angle A C X=\angle A C B \equiv \angle C A D<\angle B A C$. Hence by L 1.3.16.6-L 1.3.16.8 $\angle A C D<\angle B A C$, which contradicts $\angle B A C \equiv \angle A C D$ in view of L 1.3.16.11. Similarly, suppose $A_{B} \subset \operatorname{Int} \angle C A D$ (see Fig. 1.152, b)). Then $\stackrel{\text { L1.2.21.10 }}{\Longrightarrow} \exists Y\left(Y \in A_{B} \&[C Y D]\right) . ~ Y \in A_{B} \stackrel{\text { L1.2.11.8 }}{\Longrightarrow}[A B Y] \vee Y=B \vee[A Y B]$. But the last two options contradict the simplicity of $A B C D$ in view of $\operatorname{Pr} 1.2 .10, \operatorname{Pr} 1.2 .11$. Thus, $[A B Y]$ is the only remaining option. But $[C Y D] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} C_{Y}=C_{D}$, and by L 1.2.21.6, L 1.2.21.4 $[A B Y] \Rightarrow C_{B} \subset$ Int $\angle A C Y$. Using C 1.3.16.4 then gives $\angle A C B<\angle A C Y=\angle A C D \equiv \angle B A C<\angle C A D$. Hence by L 1.3.16.6-L 1.3.16.8 $\angle A C B<\angle C A D$, which contradicts $\angle A C B \equiv \angle C A D$ in view of L1.3.16.11. The two contradictions show that, in fact, the points B, D lie on opposite sides of the line $a_{A C}$. Hence $B a_{A C} D \& \angle B A C \equiv \angle A C D \stackrel{\text { C1.3.26.3 }}{\Longrightarrow} a_{A B} \| a_{C D}$. Since the conditions of the theorem obviously apply also to the quadrilateral $B C D A$ (see, for instance, T 1.2.49 about simplicity), we can conclude immediately that the lines $a_{B C}, a_{A D}$ are also parallel, so $A B C D$ is indeed a parallelogram. Since $A B C D$ is a parallelogram, by L 1.2 .47 .2 the open intervals $(A C),(B D)$ concur at some point E. We have $[A E C] \&[B E D] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{E}=A_{C} \& C_{E}=C_{A} \& B_{E}=B_{D} \& D_{E}=D_{B}$. Hence $A B \equiv C D \& \angle B A E=$ $\angle B A C \equiv \angle D C A=\angle D C E \& \angle A B E=\angle A B D \equiv \angle C D B=\angle C D E \stackrel{T 1.3 .5}{\Longrightarrow} \triangle A E B \equiv \triangle C E D \Rightarrow A E \equiv C E \& B E \equiv$ $E D$.

Consider a pair (just a two-element set) of lines $\{a, b\}$ (in particular, we can consider a strip $a b$) and points $A \in a$, $B \in b$. If for all $A_{1} \in a, B_{1} \in b$ such that $A_{1} \neq A, B_{1} \neq B$ and the points A_{1}, B_{1} lie on the same side of the line $a_{A B}$ we have $\angle A B B_{1} \equiv \angle B A A_{1}$, we say that the interval $A B$ (or, for that matter, the line $a_{A B}$) is equally inclined with respect to the pair $\{a, b\}$ or simply that it is equally inclined to (the lines) a, b.

Using T 1.3 .6 it is easy to see that for the interval $A B$ (line $a_{A B}$) to be equally inclined to the strip $a b$ it suffices to find just one pair $A_{1} \in a, B_{1} \in b$ such that $A_{1} \neq A, B_{1} \neq B, A_{1} B_{1} a_{A B}$ and $\angle A B B_{1} \equiv \angle B A A_{1}$.

Given an interval $A B$ equally inclined to a strip $a b$, where $A \in a, B \in b$, draw through the midpoint M of $A B$ the line c perpendicular to $a_{A B}$ (see T 1.3.22, L 1.3.8.1). In other words, c is the right bisector of $A B$. Then we have

Proposition 1.3.29.1. The line c is parallel to both a and b. Furthermore, c is the right bisector of any interval $A^{\prime} B^{\prime}$, where $A^{\prime} \in a, B^{\prime} \in b$, equally inclined to the strip $a b$.

Proof. To show that c is parallel to both a and b suppose the contrary, i.e. that c meets, say, a in some point A_{1}. Using A 1.3.1 take a point B_{1} such that $A A_{1} \equiv B B_{1}$ and the points A_{1}, B_{1} lie on the same side of the line $a_{A B}$. Since, by hypothesis, the interval $A B$ is equally inclined to the strip $a b$, we have $\angle A_{1} A B \equiv \angle A B B_{1}$. As M is the midpoint of $A B$, we have (by definition of midpoint) $[A M B]$ and $A M \equiv M B$. Hence $[A M B] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{M}=A_{B} \& B_{M}=$
$B_{A} \Rightarrow \angle A_{1} A M=\angle A_{1} A B \& \angle M B B_{1}=\angle A B B_{1}$ Now we can write $A A_{1} \equiv B B_{1} \& \angle A_{1} A M \equiv \angle M B B_{1} \& A M \equiv$ $M B \stackrel{\mathrm{~T} 1.3 .4}{\Longrightarrow} \triangle M A A_{1} \equiv \triangle M B B_{1} \Rightarrow \angle A M A_{1} \equiv \angle B M B_{1} \& M A_{1} \equiv M B_{1}$. Since, by hypothesis, the line $c \ni A_{1}$ is perpendicular to $a_{A B}$ at M, the angles $\angle A M A_{1}, \angle B M A_{1}$ are congruent to each other (they are both right angles). As $\angle B M A_{1} \equiv \angle B M B_{1}{ }^{397}$ and the points A_{1}, B_{1} lie on the same side of the line $a_{A B}$, we have $M_{A_{1}}=M_{B_{1}}$. But $B_{1} \in M_{A_{1}} \& M A_{1} \equiv M B_{1} \stackrel{\text { T1.3.2 }}{\Longrightarrow} B_{1}=A_{1}$, which implies that the line $a \ni A_{1}$ meets the line $b \ni B_{1}$ contrary to our assumption that $a \| b$. This contradiction shows that in fact we have $c\|a, c\| b$.

Now from L 1.2.19.26 we have $\exists M^{\prime} \in c \cap\left(A^{\prime} B^{\prime}\right)$. Using L 1.2.19.9 (see also L 1.2.1.3) we see that the points A^{\prime}, M^{\prime}, as well as M^{\prime}, B^{\prime} lie on the same side of the line $a_{A M}=a_{M B}=a_{A B}$. Since $A M \equiv M B \& M M^{\prime} \equiv$ $M M^{\prime} \& \angle A M M^{\prime} \equiv \angle B M M^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A M M^{\prime} \equiv \triangle B M M^{\prime} \Rightarrow A M^{\prime} \equiv B M^{\prime} \& \angle M A M^{\prime} \equiv \angle M B M^{\prime} \& \angle A M^{\prime} M \equiv$ $\angle B M^{\prime} M$. Taking into account that $\angle B A A^{\prime} \equiv \angle A B B^{\prime}$ (recall that $A B$ is equally inclined to the strip ab by hypothesis) and $[A M B] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{M}=A_{B} \& B_{M}=B_{A} \Rightarrow \angle A^{\prime} A M=\angle A^{\prime} A B \& \angle M B B^{\prime}=\angle A B B^{\prime}$, we have $\angle M A A^{\prime} \equiv \angle M B B^{\prime}$. In view of the fact that the points A^{\prime}, M^{\prime}, as well as M^{\prime}, B^{\prime} lie on the same side of the line $a_{A M}=a_{M B}=a_{A B}$, from T 1.3.9 we find that $\angle M^{\prime} A A^{\prime} \equiv \angle M^{\prime} B B^{\prime}$. Since the points A^{\prime}, B^{\prime} lie on the same side of the line $a_{A B}$ and the lines $a=a_{A A^{\prime}}, b=b_{B B^{\prime}}$ are parallel, the points A, B lie on the same side of the line $a_{A^{\prime} B^{\prime}}$ (see C 1.2.47.5). Arguing as above (using L 1.2.19.9, L 1.2.1.3), or directly using C $1.2 .47 .5,{ }^{398}$ we see that the points A, M, as well as M, B lie on the same side of the line $a_{A^{\prime} M^{\prime}}=a_{M^{\prime} B^{\prime}}=a_{A^{\prime} B^{\prime}}$. Furthermore, in view of C 1.2.47.6 the ray $M^{\prime}{ }_{A}$ lies inside the angle $\angle M M^{\prime} A^{\prime}$ and the ray M_{B}^{\prime} lies inside the angle $\angle M M^{\prime} B^{\prime}$. In view of the fact that the interval $A^{\prime} B^{\prime}$ is equally inclined with respect to the strip $a b$, this implies that $\angle A A^{\prime} B^{\prime} \equiv \angle B B^{\prime} A^{\prime}$. Taking into account $\left[A^{\prime} M^{\prime} B^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A^{\prime}{ }_{M^{\prime}}=A^{\prime}{ }_{B^{\prime}} \&{B^{\prime}}_{M^{\prime}}=B^{\prime}{ }_{A^{\prime}} \Rightarrow \angle A A^{\prime} M^{\prime}=\angle A A^{\prime} B \& \angle M^{\prime} B^{\prime} B=\angle A^{\prime} B^{\prime} B$, we have $\angle A A^{\prime} M^{\prime} \equiv \angle B B^{\prime} M^{\prime}$. Now we can write $A M^{\prime} \equiv B M^{\prime} \& \angle M^{\prime} A A^{\prime} \equiv \angle M^{\prime} B B^{\prime} \& \angle A A^{\prime} M^{\prime} \equiv \angle B B^{\prime} M^{\prime} \xrightarrow{\mathrm{T} 1.3 .19}$ $\triangle A A^{\prime} M^{\prime} \equiv \triangle B B^{\prime} M^{\prime} \Rightarrow A^{\prime} M^{\prime} \equiv B^{\prime} M^{\prime} \& \angle A M^{\prime} A^{\prime} \equiv \angle B M^{\prime} B^{\prime}$. Finally, $\angle A M^{\prime} M \equiv \angle B M^{\prime} M \& \angle A M^{\prime} A^{\prime} \equiv$ $\angle B M^{\prime} B^{\prime} \& M^{\prime}{ }_{A} \subset \operatorname{Int} \angle A^{\prime} M^{\prime} M \& M_{B}^{\prime} \subset \operatorname{Int} \angle B^{\prime} M^{\prime} M \stackrel{\mathrm{~T} 1.3 .9}{\Longrightarrow} \angle A^{\prime} M^{\prime} M \equiv \angle B^{\prime} M^{\prime} M$. But the relation [$A^{\prime} M^{\prime} B^{\prime}$] implies that the angles $\angle A^{\prime} M^{\prime} M, \angle B^{\prime} M^{\prime} M$ are adjacent supplementary, and we see that these angles are right, as required.

Isometries on the Line

Lemma 1.3.29.2. If $[A B C], A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, A C \equiv A^{\prime} C^{\prime}$, then $\left[A^{\prime} B^{\prime} C^{\prime}\right]$.
Proof. First, observe that using L 1.3.13.3, L 1.3.13.7 ${ }^{399}[A B C] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& A C \equiv A^{\prime} C^{\prime} \Rightarrow A^{\prime} B^{\prime}<$ $A^{\prime} C^{\prime} \& B^{\prime} C^{\prime}<A^{\prime} C^{\prime}$. To show that $B^{\prime} \in a_{A^{\prime} C^{\prime}}$, suppose the contrary, i.e. $B^{\prime} \notin a_{A^{\prime} C^{\prime}}$. Let $B^{\prime \prime}$ be the foot of the perpendicular to $a_{A^{\prime} C^{\prime}}$ drawn through B^{\prime}. Obviously, $B^{\prime \prime} \neq A^{\prime}$ (see Fig. 1.153, a), c)), for otherwise by C 1.3.18.2 $A^{\prime} C^{\prime}=B^{\prime \prime} C^{\prime}<B^{\prime} C^{\prime}$, which (in view of L 1.3.16.10) contradicts the inequality $B^{\prime} C^{\prime}<A^{\prime} C^{\prime}$ proven above. Similarly, we have $B^{\prime \prime} \neq C^{\prime}$, because the assumption $B^{\prime \prime}=C^{\prime}$ would imply $A^{\prime} C^{\prime}=A^{\prime} B^{\prime \prime}<A^{\prime} B^{\prime}$ - a contradiction with $A^{\prime} B^{\prime}<A^{\prime} C^{\prime}$ shown above. 400 We can write $B^{\prime \prime} \in a_{A^{\prime} C^{\prime}} \& B^{\prime \prime} \neq A^{\prime} \& B^{\prime \prime} \neq C^{\prime} \stackrel{\mathrm{T1.2.2}}{\Longrightarrow}\left[B^{\prime \prime} A^{\prime} C^{\prime}\right] \vee\left[A^{\prime} B^{\prime \prime} C^{\prime}\right] \vee\left[A^{\prime} C^{\prime} B^{\prime \prime}\right]$. The assumption that $\left[B^{\prime \prime} A^{\prime} C^{\prime}\right]$ (see Fig. 1.153, a), d)) would (by L 1.3.13.3) imply $A^{\prime} C^{\prime}<B^{\prime \prime} C^{\prime}$, whence $A^{\prime} C^{\prime}<$ $B^{\prime \prime} C^{\prime} \& B^{\prime \prime} C^{\prime}<B^{\prime} C^{\prime} \stackrel{\text { L1.3.13.8 }}{\Longrightarrow} A^{\prime} C^{\prime}<B^{\prime} C^{\prime}-$ a contradiction with $B^{\prime} C^{\prime}<A^{\prime} C^{\prime}$. Similarly, $\left[A^{\prime} C^{\prime} B^{\prime \prime}\right]$ would (by L 1.3.13.3) imply $A^{\prime} C^{\prime}<B^{\prime \prime} C^{\prime}$, whence $A^{\prime} C^{\prime}<B^{\prime \prime} C^{\prime} \& B^{\prime \prime} C^{\prime}<B^{\prime} C^{\prime} \stackrel{\text { L1.3.13.8 }}{\Longrightarrow} A^{\prime} C^{\prime}<B^{\prime} C^{\prime}$ - a contradiction with $B^{\prime} C^{\prime}<A^{\prime} C^{\prime} .{ }^{401}$ But the remaining variant $\left[A^{\prime} B^{\prime \prime} C^{\prime}\right]$ (see Fig. 1.153, a), b)) also leads to contradiction, for (using T 1.3.1, L 1.3.13.7) $A^{\prime} B^{\prime \prime}<A^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \Rightarrow A^{\prime} B^{\prime \prime}<A B, B^{\prime \prime} C^{\prime}<B^{\prime} C^{\prime} \& B^{\prime} C^{\prime} \equiv B C \Rightarrow B^{\prime \prime} C^{\prime}<B C$, and $\left[A^{\prime} B^{\prime \prime} C^{\prime}\right] \&[A B C] \& A^{\prime} B^{\prime \prime}<A B \& B^{\prime \prime} C^{\prime}<B C \stackrel{\text { L1.3.21.3 }}{\Longrightarrow} A^{\prime} C^{\prime}<A C$, which (in view of L 1.3.13.11) contradicts $A C \equiv A^{\prime} C^{\prime}$. The resulting major contradiction shows that in fact the point B^{\prime} has to lie on the line $a_{A^{\prime} C^{\prime}}$. We have $B^{\prime} \in a_{A^{\prime} C^{\prime}} \& B^{\prime} \neq A^{\prime} \& B^{\prime} \neq C^{\prime} \xrightarrow{\mathrm{T1.2.2}}\left[B^{\prime} A^{\prime} C^{\prime}\right] \vee\left[A^{\prime} B^{\prime} C^{\prime}\right] \vee\left[A^{\prime} C^{\prime} B^{\prime}\right]$. But the first of these cases leads to contradiction, as does the third, because $\left[B^{\prime} A^{\prime} C^{\prime}\right] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A^{\prime} C^{\prime}<B^{\prime} C^{\prime},\left[A^{\prime} C^{\prime} B^{\prime}\right] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A^{\prime} C^{\prime}<A^{\prime} B^{\prime}$. Thus, we conclude that $\left[A^{\prime} B^{\prime} C^{\prime}\right]$, q.e.d.

Corollary 1.3.29.3. Isometries transform line figures (sets of points lying on one line) into line figures. ${ }^{402}$

Proof. Obviously, we need to consider only figures containing at least 3 points. If we take such a figure \mathcal{A} and a line $a_{A_{1} A_{3}}$ defined by two arbitrarily chosen points A_{1}, A_{3} of \mathcal{A}, by L 1.1.1.4 any other point A_{2} of \mathcal{A} will lie on $a_{A_{1} A_{3}}$. Using T 1.2.2, we can assume without any loss of generality that $\left[A_{1} A_{2} A_{3}\right]$. If $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a motion, mapping the

[^120]

Figure 1.153: Illustration for proof of L 1.3.29.2.
figure \mathcal{A} into a point set \mathcal{B}, we have by the preceding lemma (L 1.3.34.1): $\left[B_{1} B_{2} B_{3}\right]$, where $B_{i}=\phi\left(A_{i}\right), i=1,2,3$. Hence by L 1.2.1.3 the points B_{1}, B_{2}, B_{3} are collinear, q.e.d.

Corollary 1.3.29.4. Isometries transform lines into lines. ${ }^{403}$
Proof. From the preceding corollary we immediately have $f(a) \subset a^{\prime} .{ }^{404}$
Lemma 1.3.29.5. Given a collinear set of points \mathcal{A} congruent to a set of points \mathcal{A}^{\prime}, for any point O, lying on the line a containing the set \mathcal{A} and distinct from points $A, B \in \mathcal{A}$, there is exactly one point O^{\prime} lying on the line a^{\prime} containing the set \mathcal{A}^{\prime} such that the sets $\mathcal{A} \cup O, \mathcal{A}^{\prime} \cup O^{\prime}$ are congruent.

Proof. Suppose an interval $A B$ is congruent to an interval $A^{\prime} B^{\prime}$, where $A, B \in \mathcal{A}, A^{\prime}, B^{\prime} \in \mathcal{A}^{\prime}$. Since the points A, B, O are collinear, by T 1.2 .2 either $[O A B]$, or $[O B A]$, or $[A O B]$. Suppose first A lies between O, B. Using A 1.3.1, choose $A^{\prime} O_{B^{\prime}}^{\prime c}$ (unique by T 1.3.1) such that $O A \equiv O^{\prime} A^{\prime}$. Now we can write $[O A B] \&\left[O^{\prime} A^{\prime} B^{\prime}\right] \& O A \equiv$ $O^{\prime} A^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\text { P1.3.9.3 }}{\Longrightarrow} O B \equiv O^{\prime} B^{\prime}$. Thus, we have $\{O, A, B\} \equiv\left\{O^{\prime}, A^{\prime}, B^{\prime}\right\}$. Similarly, by symmetry for the case when B lies between O, A we also have $\{O, A, B\} \equiv\left\{O^{\prime}, A^{\prime}, B^{\prime}\right\}$. ${ }^{405}$ Finally, if O lies between A, B, by C 1.3.9.2 we have $\exists O^{\prime}\left[A^{\prime} O^{\prime} B^{\prime}\right] \& O A \equiv O^{\prime} A^{\prime} \& O B \equiv O^{\prime} B^{\prime}$. Thus, again $\{O, A, B\},\left\{O^{\prime}, A^{\prime}, B^{\prime}\right\}$ are congruent. To complete the proof of the lemma we need to show that for all $P \in \mathcal{A}$ we have $O P \equiv O^{\prime} P^{\prime}$, where $P^{\prime} \in \mathcal{A}^{\prime}$. We already know this result to be correct for $P=A$ and $P=B$. We need to prove it for $P \neq A, P \neq B$. We further assume that the point $P^{\prime} \in \mathcal{A}^{\prime}$ is chosen so that $A P \equiv A^{\prime} P^{\prime}$. Then, of course, also $B P \equiv B^{\prime} P^{\prime}$. These facts reflect the congruence of the sets $\mathcal{A}, \mathcal{A}^{\prime}$. Again, we start with the case when $[O A B]$. Since the points O, A, B, P are collinear and distinct, from T 1.2 .2 , T 1.2 .5 we have either $[P O B]$, or $[O P A]$, or $[A P B]$, or $[O B P]$ (see Fig. 1.154, a)-d), respectively). Suppose first $[P O B]$. We then have: $[P O B] \&[O A B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[P O A] \&[P A B]$. $[P A B] \& P A \equiv P^{\prime} A^{\prime} \& A B \equiv A^{\prime} B^{\prime} \& P B \equiv P^{\prime} B^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[P^{\prime} A^{\prime} B^{\prime}\right] .\left[P^{\prime} A^{\prime} B^{\prime}\right] \&\left[O^{\prime} A^{\prime} B^{\prime}\right] \xrightarrow{\mathrm{L} 1.2 .15 .2} P^{\prime} \in A_{B^{\prime}}^{\prime c} \& O^{\prime} \in$ $A_{B^{\prime}}^{c} .[P O A] \& P^{\prime} \in A_{B^{\prime}}^{c} \& O^{\prime} \in A_{B^{\prime}}^{c} \& A P \equiv A^{\prime} P^{\prime} \& O A \equiv O^{\prime} A^{\prime} \stackrel{\text { L1.3.9.1 }}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime}$. Suppose now [OPA]. Then $[O P A] \&[O A B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[P A B] \&[O P B] .[P A B] \& P A \equiv P^{\prime} A^{\prime} \& A B \equiv A^{\prime} B^{\prime} \& P B \equiv P^{\prime} B^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[P^{\prime} A^{\prime} B^{\prime}\right]$. $\left[P^{\prime} A^{\prime} B^{\prime}\right] \&\left[O^{\prime} A^{\prime} B^{\prime}\right] \stackrel{L 1.2 .15 .2}{\Longrightarrow} P^{\prime} \in A_{B^{\prime}}^{c} \& O^{\prime} \in A_{B^{\prime}}^{c} . \quad[O P A] \& P^{\prime} \in A_{B^{\prime}}^{c} \& O^{\prime} \in A_{B^{\prime}}^{c} \& A P \equiv A^{\prime} P^{\prime} \& O A \equiv$ $O^{\prime} A^{\prime} \stackrel{\text { L1.3.9.1 }}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime}$. Suppose $[A P B]$. Then $[A P B] \& A P \equiv A^{\prime} P^{\prime} \& P B \equiv P^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \xrightarrow{\text { L1.3.29.2 }}\left[A^{\prime} P^{\prime} B^{\prime}\right]$. $[O A B] \&[A P B] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[O A P] . \quad\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[A^{\prime} P^{\prime} B^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[O^{\prime} A^{\prime} P^{\prime}\right] . \quad[O A P] \&\left[O^{\prime} A^{\prime} P^{\prime}\right] \& O A \equiv O^{\prime} A^{\prime} \& A P \equiv$ $A^{\prime} P^{\prime} \stackrel{\text { P1.3.9.3 }}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime}$. Finally, suppose $[O B P]$. Then $[O B P] \&[O A B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[O A P] \&[A B P]$. $[A B P] \& A B \equiv$ $A^{\prime} B^{\prime} \& B P \equiv B^{\prime} P^{\prime} \& A P \equiv A^{\prime} P^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[A^{\prime} B^{\prime} P^{\prime}\right] .\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[A^{\prime} B^{\prime} P^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .1}{\Longrightarrow}\left[O^{\prime} A^{\prime} P^{\prime}\right] .[O A P] \&\left[O^{\prime} A^{\prime} P^{\prime}\right] \& O A \equiv$ $O^{\prime} A^{\prime} \& A P \equiv A^{\prime} P^{\prime} \stackrel{\mathrm{P}}{\stackrel{A .3 .9 .3}{\Longrightarrow}} O P \equiv O^{\prime} P^{\prime}$. Similarly, it can be shown that when $[O B A]$ the congruence $O P \equiv O^{\prime} P^{\prime}$ always holds. ${ }^{406}$ We turn to the remaining case, when O lies between A, B. Since the points O, A, B, P are collinear

[^121]and distinct, from T 1.2.2, T 1.2 .5 we have either $[P A B]$, or $[A P O]$, or $[O P B]$, or $[A B P]$ (see Fig. 1.154, e)-h), respectively). Suppose first $[P A B]$. We have: $[P A B] \& P A \equiv P^{\prime} A^{\prime} \& A B \equiv A^{\prime} B^{\prime} \& P B \equiv P^{\prime} B^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[P^{\prime} A^{\prime} B^{\prime}\right]$. $[P A B] \&[A O B] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[P A O] . \quad\left[P^{\prime} A^{\prime} B^{\prime}\right] \&\left[A^{\prime} O^{\prime} B^{\prime}\right] \stackrel{\mathrm{L} 1.23 .2}{\Longrightarrow}\left[P^{\prime} A^{\prime} O^{\prime}\right] . \quad[P A O] \&\left[P^{\prime} A^{\prime} O^{\prime}\right] \& O A \equiv O^{\prime} A^{\prime} \& A P \equiv$ $A^{\prime} P^{\prime} \xrightarrow{\text { P1.3.9.3 }} O P \equiv O^{\prime} P^{\prime}$. Suppose now $[O P B]$. Then $[A O B] \&[O P B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A O P] \&[A P B]$. $[A P B] \& A P \equiv$ $A^{\prime} P^{\prime} \& P B \equiv P^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[A^{\prime} P^{\prime} B^{\prime}\right] .\left[A^{\prime} O^{\prime} B^{\prime}\right] \&\left[A^{\prime} P^{\prime} B^{\prime}\right] \stackrel{\mathrm{L} 1.2 .11 .13}{\Longrightarrow} O^{\prime} \in A^{\prime}{ }_{B^{\prime}} \& P^{\prime} \in A_{B^{\prime}}^{\prime} .[A O P] \& O^{\prime} \in$ $A^{\prime}{ }_{B^{\prime}} \& P^{\prime} \in A^{\prime}{ }_{B^{\prime}} \& A O \equiv A^{\prime} O^{\prime} \& A P \equiv A^{\prime} P^{\prime} A^{\prime}{ }_{B^{\prime}} \& O^{\prime} \in A^{\prime}{ }_{B^{\prime}} \& A P \equiv A^{\prime} P^{\prime} \& O A \equiv O^{\prime} A^{\prime} \xrightarrow{\mathrm{L} 1.3 .9 .1} O P \equiv O^{\prime} P^{\prime}$. The cases when $[A B P],[A P O]$ can be reduced to the cases $[P A B],[O P B]$, respectively by the substitutions $A \rightarrow B$, $B \rightarrow A .{ }^{407}$

Theorem 1.3.29. Let A_{i}, where $i \in \mathbb{N}_{n}, n \geq 3$, be a finite sequence of points with the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers. Suppose, further, that the sequence A_{i} is congruent to a sequence B_{i}, where $i \in \mathbb{N}_{n}$. ${ }^{408}$ Then the points $B_{1}, B_{2}, \ldots, B_{n}$ are in order $\left[B_{1} B_{2} \ldots B_{n}\right]$, i.e. the sequence of points $B_{i}, i \in \mathbb{N}_{n}, n \geq 3(n \in \mathbb{N})$ on one line has the property that a point lies between two other points iff its number has an intermediate value between the numbers of these two points.

Proof. By induction on n. For $n=3$ see the preceding lemma (L 1.3.29.2). Observe further that when $n \geq 4$ the conditions of the theorem, being true for the sequences A_{i}, B_{i} of n points, are also true for the sequences $A_{1}, A_{2}, \ldots, A_{n-1}$ and $B_{1}, B_{2}, \ldots, B_{n-1}$, each consisting of $n-1$ points. The induction assumption then tells us that the points $B_{1}, B_{2}, \ldots, B_{n-1}$ are in order $\left[B_{1} B_{2} \ldots B_{n-1}\right]$. Since the points $A_{1}, A_{2}, \ldots, A_{n}$ are in order $\left[A_{1} A_{2} \ldots A_{n}\right]$ (see L 1.2.7.3), we can write $\left[A_{1} A_{n-1} A_{n}\right] \& A_{1} A_{n-1} \equiv B_{1} B_{n-1} \& A_{n-1} A_{n} \equiv B_{n-1} B_{n} \& A_{1} A_{n} \equiv B_{1} B_{n} \xrightarrow{\mathrm{~L} 1.3 .29 .2}$ $\left[B_{1} B_{n-1} B_{n}\right] .\left[B_{1} B_{n-2} B_{n-1}\right] \&\left[B_{1} B_{n-1} B_{n}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[B_{n-2} B_{n-1} B_{n}\right]$. Applying L 1.2.7.3 again, we see that the points $B_{1}, B_{2}, \ldots, B_{n}$ are in order $\left[B_{1} B_{2} \ldots B_{n}\right]$, q.e.d.

Corollary 1.3.29.1. Isometries are either sense-preserving or sense-reversing transformations.

Proof.

Theorem 1.3.30. Given a figure \mathcal{A} containing a point O on line a, a point A on a, and a line a^{\prime} containing points O^{\prime}, A^{\prime}, there exists exactly one motion $f: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ and, correspondingly, one figure \mathcal{A}^{\prime} such that $f(O)=O^{\prime}$ and if A, B lie (on line a) on the same side (on opposite sides) of the point O, where $B \in \mathcal{A}$ then the points A^{\prime} and $B^{\prime}=f(B)$ also lie (on line a^{\prime}) on the same side (on opposite sides) of the point $O^{\prime} .{ }^{409}$

Proof. We set, by definition, $f(O) \stackrel{\text { def }}{\Longleftrightarrow} O^{\prime}$. For $B \in O_{A} \cap \mathcal{A}$, using A 1.3.1, choose $B^{\prime} \in O^{\prime}{ }_{A^{\prime}}$ so that $O B \equiv O^{\prime} B^{\prime}$. Similarly, for $B \in O_{A}^{c} \cap \mathcal{A}$, using A 1.3.1, choose $B^{\prime} \in\left(O^{\prime} A^{\prime}\right)^{c}$ so that again $O B \equiv O^{\prime} B^{\prime}$. In both cases we let, by definition, $f(B) \rightleftharpoons B^{\prime}$. Note that, by construction, if $B, C \in \mathcal{A}$ and $B^{\prime}=f(B), C^{\prime}=f(C)$, then the point pairs B, C and B^{\prime}, C^{\prime} lie either both on one side (see Fig. 1.155, a)) or both on opposite sides (see Fig. 1.155, b)) of the points O, O^{\prime}, respectively. Hence by P 1.3.9.3 $B C \equiv B^{\prime} C^{\prime}$ for all $B, C \in \mathcal{A}$, which completes the proof. ${ }^{410} \square$
P are collinear and distinct, from T 1.2.2, T 1.2 .5 we have either $[P O A]$, or $[O P B]$, or $[B P A]$, or $[O A P]$. Suppose first $[P O A]$. We then have: $[P O A] \&[O B A] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[P O B] \&[P B A] . \quad[P B A] \& P B \equiv P^{\prime} B^{\prime} \& B A \equiv B^{\prime} A^{\prime} \& P A \equiv P^{\prime} A^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[P^{\prime} B^{\prime} A^{\prime}\right]$. $\left[P^{\prime} B^{\prime} A^{\prime}\right] \&\left[O^{\prime} B^{\prime} A^{\prime}\right] \stackrel{\mathrm{L} 1.2 .15 .2}{\Longrightarrow} P^{\prime} \in{B^{\prime}}_{A^{\prime}}^{\prime} \& O^{\prime} \in{B^{\prime}}_{A^{\prime}} .[P O B] \& P^{\prime} \in{B^{\prime}}_{A^{\prime}} \& O^{\prime} \in B_{A^{\prime}}^{c}$ \& $B P \equiv B^{\prime} P^{\prime} \& O B \equiv O^{\prime} B^{\prime} \xrightarrow{\mathrm{L} 1.3 .9 .1} O P \equiv O^{\prime} P^{\prime}$. Suppose now $[O P B]$. Then $[O P B] \&[O B A] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[P B A] \&[O P A] .[P B A] \& P B \equiv P^{\prime} B^{\prime} \& B A \equiv B^{\prime} A^{\prime} \& P A \equiv P^{\prime} A^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[P^{\prime} B^{\prime} A^{\prime}\right]$. $\left[P^{\prime} B^{\prime} A^{\prime}\right] \&\left[O^{\prime} B^{\prime} A^{\prime}\right] \stackrel{L 1.2 .15 .2}{\Longrightarrow} P^{\prime} \in B^{\prime c}{ }_{A^{\prime}} \& O^{\prime} \in B^{\prime c}{ }_{A^{\prime}} .[O P B] \& P^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& O^{\prime} \in B^{\prime \prime}{ }_{A^{\prime}} \& B P \equiv B^{\prime} P^{\prime} \& O B \equiv O^{\prime} B^{\prime} \xrightarrow{L 1.3 .9 .1} O P \equiv O^{\prime} P^{\prime}$. Suppose $[B P A]$. Then $[B P A] \& B P \equiv B^{\prime} P^{\prime} \& P A \equiv P^{\prime} A^{\prime} \& B A \equiv B^{\prime} A^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[B^{\prime} P^{\prime} A^{\prime}\right] . \quad[O B A] \&[B P A] \xrightarrow{\mathrm{L} 1.2 .3 .2}[O B P]$. $\left[O^{\prime} B^{\prime} A^{\prime}\right] \&\left[B^{\prime} P^{\prime} A^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[O^{\prime} B^{\prime} P^{\prime}\right] . \quad[O B P] \&\left[O^{\prime} B^{\prime} P^{\prime}\right] \& O B \equiv O^{\prime} B^{\prime} \& B P \equiv B^{\prime} P^{\prime} \stackrel{P 1.3 .9 .3}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime} . \quad$ Finally, suppose $[O B P]$. Then $[O B P] \&[O A B] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[O B P] \&[B A P] . \quad[B A P] \& B A \equiv B^{\prime} A^{\prime} \& A P \equiv A^{\prime} P^{\prime} \& B P \equiv B^{\prime} P^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[B^{\prime} A^{\prime} P^{\prime}\right]$. $\left[O^{\prime} B^{\prime} A^{\prime}\right] \&\left[B^{\prime} A^{\prime} P^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .1}{\Longrightarrow}\left[O^{\prime} B^{\prime} P^{\prime}\right] .[O B P] \&\left[O^{\prime} B^{\prime} P^{\prime}\right] \& O B \equiv O^{\prime} B^{\prime} \& B P \equiv B^{\prime} P^{\prime} \stackrel{\mathrm{P}, .3 .9 .3}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime}$.
${ }^{407}$ Again, to further convince the reader of the validity of these substitutions and the symmetry considerations underlying them, we present here the results of such substitutions. Suppose first $[P B A]$. We have: $[P B A] \& P B \equiv P^{\prime} B^{\prime} \& B A \equiv B^{\prime} A^{\prime} \& P A \equiv P^{\prime} A^{\prime} \xrightarrow{\text { L1.3.29.2 }}$ $\left[P^{\prime} B^{\prime} A^{\prime}\right] .[P B A] \&[B O A] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}[P B O] .\left[P^{\prime} B^{\prime} A^{\prime}\right] \&\left[B^{\prime} O^{\prime} A^{\prime}\right] \stackrel{\mathrm{LI.2.3}}{ }{ }^{2}\left[P^{\prime} B^{\prime} O^{\prime}\right] .[P B O] \&\left[P^{\prime} B^{\prime} O^{\prime}\right] \& O B \equiv O^{\prime} B^{\prime} \& B P \equiv B^{\prime} P^{\prime} \xrightarrow{\mathrm{P} 1.3 .9 .3}$ $O P \equiv O^{\prime} P^{\prime}$. Suppose now $[O P A]$. Then $[B O A] \&[O P A] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[B O P] \&[B P A] . \quad[B P A] \& B P \equiv B^{\prime} P^{\prime} \& P A \equiv P^{\prime} A^{\prime} \& B A \equiv$ $B^{\prime} A^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[B^{\prime} P^{\prime} A^{\prime}\right] .\left[B^{\prime} O^{\prime} A^{\prime}\right] \&\left[B^{\prime} P^{\prime} A^{\prime}\right] \xrightarrow{\mathrm{L} 1.2 .11 .13}{ }^{\prime} O^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& P^{\prime} \in B^{\prime}{ }_{A^{\prime}} .[B O P] \& O^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& P^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& B O \equiv B^{\prime} O^{\prime} \& B P \equiv$ $B^{\prime} P^{\prime} B^{\prime c}{ }_{A^{\prime}} \& O^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& B P \equiv B^{\prime} P^{\prime} \& O B \equiv O^{\prime} B^{\prime} \stackrel{\mathrm{L} 1.3 .9 .1}{\Longrightarrow} O P \equiv O^{\prime} P^{\prime}$.
${ }^{408}$ According to the definition, two sequences can be congruent only if they consist of equal number of points.
${ }^{409}$ That is, for $B \in \mathcal{A}$ if $B \in O_{A}$ then $B^{\prime} \in O_{A^{\prime}}^{\prime}$ and $B \in O_{A}^{c}$ implies $B^{\prime} \in O_{A^{\prime}}^{\prime \prime}$.
${ }^{410}$ Uniqueness is obvious from A 1.3.1.

a)

b)

c)

d)

e)

$\dot{\mathrm{A}}$		
$\mathrm{f})$	$\dot{\mathrm{P}}$	$\dot{\mathrm{O}}$

g)

h)

Figure 1.154: Illustration for proof of L 1.3.29.5.

Figure 1.155: Illustration for proof of T 1.3.30.

Figure 1.156: Isometries transform rays into rays.

Isometries of Collinear Figures

Corollary 1.3.30.1. Isometries transform rays into rays. If a ray O_{A} is transformed into $O^{\prime}{ }_{A^{\prime}}$ then O maps into O^{\prime}.

Proof. Taking a point B such that $[O A B],,^{411}$ using A 1.3.1, we can choose O^{\prime} with the properties $\left[O^{\prime} A^{\prime} B^{\prime}\right]$ (i.e., $O^{\prime} \in A_{B^{\prime}}^{c}$), $O A \equiv O^{\prime} A^{\prime}$, where $A^{\prime}=f(A), B^{\prime}=f(B), f$ being a given isometry. Suppose now C is an arbitrary point on the ray O_{A}, distinct from A, B. Denote $C^{\prime} \rightleftharpoons f(C) .{ }^{412}$ We have $C \in O_{A}=O_{B} \& C \neq A \& C n e B \xrightarrow{\mathrm{~T} 1.2 .15}$ $C \in(O A) \vee C \in(A B) \vee C \in B_{A}^{c}$.

Consider first the case when $[O C A]$ (see Fig. 1.156, a)). We have then $[O C A] \&[O A B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[C A B]$. By congruence we can write $[C A B] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& A C \equiv A^{\prime} C^{\prime} \stackrel{\text { L1.3.29.2 }}{\Longrightarrow}\left[C^{\prime} A^{\prime} B^{\prime}\right]$. Also, we have $\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[C^{\prime} A^{\prime} B^{\prime}\right] \stackrel{\text { L1.2.11.16 }}{\Longrightarrow} O^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& C^{\prime} \in B^{\prime}{ }_{A^{\prime}}$. Hence $[O C A] \& O A \equiv O^{\prime} A^{\prime} \& A C \equiv A^{\prime} C^{\prime} \& O^{\prime} \in A_{B^{\prime}}^{\prime c} \& C^{\prime} \in$ ${A^{\prime}}_{B^{\prime}} \stackrel{\text { L1.3.9.1 }}{\Longrightarrow}\left[O^{\prime} C^{\prime} A^{\prime}\right] \& O C \equiv O^{\prime} C^{\prime} \xrightarrow{\mathrm{L} 1.2 .11 .13} C^{\prime} \in O^{\prime}{ }_{A^{\prime}}$.

Now we turn to the case when $[A C B]$ (see Fig. 1.155, b)). Note that this implies $[O A B] \&[A C B] \xrightarrow{\text { L1.2.3.2 }}$ $[O A C]$. By congruence we can write $[A C B] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& A C \equiv A^{\prime} C^{\prime} \stackrel{\text { L1.3.29.2 }}{\Longrightarrow}\left[A^{\prime} C^{\prime} B^{\prime}\right]$. Hence $\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[A^{\prime} B^{\prime} C^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[O^{\prime} A^{\prime} C^{\prime}\right] \xrightarrow{\mathrm{L} 1.2 .11 .16} C^{\prime} \in O^{\prime}{ }_{A^{\prime}}$.

Finally, suppose $C \in B_{A}^{c}$, i.e. $[A B C]$ (see Fig. 1.155, c)). Note that this implies $[O A B] \&[A B C] \xrightarrow{\text { L1.2.3.1 }}$ $[O A C]$. By congruence we can write $[A B C] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& A C \equiv A^{\prime} C^{\prime} \xrightarrow{\text { L1.3.29.2 }}\left[A^{\prime} B^{\prime} C^{\prime}\right]$. Hence $\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[A^{\prime} B^{\prime} C^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .1}{\Longrightarrow}\left[O^{\prime} A^{\prime} C^{\prime}\right] \xrightarrow{\mathrm{L} 1.2 .11 .16} C^{\prime} \in O^{\prime}{ }_{A^{\prime}}$.

Furthermore, in the last two cases we can write $[O A C] \&\left[O^{\prime} A^{\prime} C\right] \& O A \equiv O^{\prime} A^{\prime} \& A C \equiv A^{\prime} C^{\prime} \stackrel{\mathrm{P} 1.3 .9 .3}{ } O C \equiv O^{\prime} C^{\prime}$.
Thus, we have shown that $C \in O_{A}$ implies $C^{\prime} \in O_{A^{\prime}}^{\prime}$, where $C^{\prime}=f(C)$. This fact can be written down as $f\left(O_{A}\right) \subset O^{\prime}{ }_{A^{\prime}}$. Also, we have $O C \equiv O^{\prime} C^{\prime}$, where $C^{\prime}=f(C)$.

To show that $f(O)=O^{\prime}$ denote $O^{\prime \prime} \rightleftharpoons f(O)$ (now we assume that the domain of f includes O). f being an isometry, we have $[O A B] \& O A \equiv O^{\prime \prime} A^{\prime} \& O B \equiv O^{\prime \prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\text { L1.3.29.2 }}{\Longrightarrow}\left[O^{\prime \prime} A^{\prime} B^{\prime}\right] .\left[O^{\prime} A^{\prime} B^{\prime}\right] \&\left[O^{\prime \prime} A^{\prime} B^{\prime}\right] \xrightarrow{\text { L1.2.15.2 }}$ $O^{\prime} \in A_{B^{\prime}}^{\prime c} \& O^{\prime \prime} \in A_{B^{\prime}}^{\prime}$. Hence by T 1.3.1 $O^{\prime \prime}=O^{\prime}$.

To show that $f\left(O_{A}\right)=O^{\prime}{ }_{A^{\prime}}$ we need to prove that for all $C^{\prime} \in O^{\prime}{ }_{A^{\prime}}$ there exists $C \in O_{A}$ such that $f(C)=C^{\prime}$. To achieve this, given $C^{\prime} \in O^{\prime}{ }_{A^{\prime}}$ it suffices to choose (using A 1.3.1) $C \in O_{A}$ so that $O C \equiv O^{\prime} C^{\prime}$. Then C^{\prime} will coincide with $f(C)$ (this follows from T 1.3.1 and the arguments given above showing that $O C \equiv O^{\prime} f(C)$ for any $C \in O_{A}$).)

Corollary 1.3.30.2. Isometries transform open intervals into open intervals. If an open interval $(A B)$ is transformed into an open interval $\left(A^{\prime} B^{\prime}\right)$ then A maps into one of the ends of the interval $A^{\prime} B^{\prime}$, and B maps into its other end.

Proof. Let C, D be two points on the open interval $(A B)$ (see T 1.2.8). Without loss of generality we can assume that $[A C D]$. ${ }^{413}$ Then $[A C D] \&[A D B] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[C D B] \&[A C B]$. Thus, the points A, B, C, D are in the order $[A C D B]$. Suppose f is a given isometry. We need to prove that the image of the open interval $(A B)$ under f is an open interval . Denote $C^{\prime} \rightleftharpoons f(C), D^{\prime} \rightleftharpoons f(D)$. Using A 1.3.1, choose points $A^{\prime} \in C_{D^{\prime}}^{\prime c}, B^{\prime} \in D_{C^{\prime}}^{c}$ (in view of L 1.2.15.2 this means that $\left[A^{\prime} C^{\prime} D^{\prime}\right],\left[C^{\prime} D^{\prime} B^{\prime}\right]$, respectively) such that $A C \equiv A^{\prime} C^{\prime}, D B \equiv D^{\prime} B^{\prime}$. Note that $\left[A^{\prime} C^{\prime} D^{\prime}\right] \&\left[C^{\prime} D^{\prime} B^{\prime}\right] \stackrel{\text { L1.2.3.1 }}{\Longrightarrow}\left[A^{\prime} C^{\prime} B^{\prime}\right] \&\left[A^{\prime} D^{\prime} B^{\prime}\right]$. In order to prove that the open interval $\left(A^{\prime} B^{\prime}\right)$ is the image $(A B)$ we need to show that $\forall P \in(A B) f(P) \in\left(A^{\prime} B^{\prime}\right)$. Denote $P^{\prime} \rightleftharpoons f(P)$. We have $P \in(A B) \& P \neq$

[^122]

Figure 1.157: Illustration for proof of C 1.3.30.2.
$A \& P \neq C \& P \neq D \stackrel{\text { L1.2.7.7 }}{\Longrightarrow} P \in(A C) \vee P \in(C D) \vee P \in(D B)$. Suppose first $P \in(A C)$ (see Fig. 1.157, a)). Then $[A C D] \&[A P C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[P C D]$. Since f is a motion, we can write $[P C D] \& P C \equiv P^{\prime} C^{\prime} \& C D \equiv$ $C^{\prime} D^{\prime} \& P D \equiv P^{\prime} D^{\prime} \stackrel{\text { L1.3.29.2 }}{\Longrightarrow}\left[P^{\prime} C^{\prime} D^{\prime}\right] . \quad\left[A^{\prime} C^{\prime} D^{\prime}\right] \&\left[P^{\prime} C^{\prime} D^{\prime}\right] \stackrel{\mathrm{L} 1.2 .15 .2}{\Longrightarrow} A^{\prime} \in C_{D^{\prime}}^{\prime c} \& P^{\prime} \in C_{D^{\prime}}^{c} . \quad[A P C] \& A^{\prime} \in$ $C^{\prime c}{ }_{D^{\prime}} \& P^{\prime} \in C^{\prime}{ }_{D^{\prime}} \& A C \equiv A^{\prime} C^{\prime} \& C P \equiv C^{\prime} P^{\prime} \stackrel{\mathrm{L} 1.3 .9 .1}{\Longrightarrow}\left[A^{\prime} P^{\prime} C^{\prime}\right] \& A P \equiv A^{\prime} P^{\prime} .\left[A^{\prime} P^{\prime} C^{\prime}\right] \&\left[A^{\prime} C^{\prime} B^{\prime}\right] \xrightarrow{\mathrm{L} 1.2 .3 .2}\left[A^{\prime} P^{\prime} B^{\prime}\right]$. Suppose now $P \in(C D)$ (see Fig. 1.157, b)). f being a motion, we have $[C P D] \& C P \equiv C^{\prime} P^{\prime} \& P D \equiv P^{\prime} D^{\prime} \& C D \equiv$ $C^{\prime} D^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[C^{\prime} P^{\prime} D^{\prime}\right] .\left[C^{\prime} P^{\prime} D^{\prime}\right] \& C^{\prime} \in\left(A^{\prime} B^{\prime}\right) \& D^{\prime} \in\left(A^{\prime} B^{\prime}\right) \stackrel{\mathrm{T} 1.2 .3}{\Longrightarrow} P^{\prime} \in\left(A^{\prime} B^{\prime}\right) . \quad\left[A^{\prime} C^{\prime} D^{\prime}\right] \&\left[C^{\prime} P^{\prime} D^{\prime}\right] \xrightarrow{\text { L1.2.3.2 }}$ $\left[A^{\prime} C^{\prime} P^{\prime}\right] .[A C P] \&\left[A^{\prime} C^{\prime} P^{\prime}\right] \& A C \equiv A^{\prime} C^{\prime} \& C P \equiv C^{\prime} P^{\prime} \stackrel{\text { L1.3.9.1 }}{\Longrightarrow} A P \equiv A^{\prime} P^{\prime}$. With the aid of the substitutions $A \rightarrow B, B \rightarrow A, C \rightarrow D, D \rightarrow C, A^{\prime} \rightarrow B^{\prime}, B^{\prime} \rightarrow A^{\prime}, C^{\prime} \rightarrow D^{\prime}, D^{\prime} \rightarrow C^{\prime}$ we can show that the congruence $B P \equiv B^{\prime} P^{\prime}$ holds in this case as well. ${ }^{414}$ Finally, for $[D P B]$ we can show that $P^{\prime} \in\left(A^{\prime} B^{\prime}\right)$ using the substitutions $A \rightarrow B, B \rightarrow A, C \rightarrow D, D \rightarrow C, A^{\prime} \rightarrow B^{\prime}, B^{\prime} \rightarrow A^{\prime}, C^{\prime} \rightarrow D^{\prime}, D^{\prime} \rightarrow C^{\prime}$, and our result for the case $[A P C] .{ }^{415}$

Making the substitutions $A \rightarrow B, C \rightarrow D, D \rightarrow C, A^{\prime} \rightarrow B^{\prime}, C^{\prime} \rightarrow D^{\prime}, D^{\prime} \rightarrow C^{\prime}, A^{\prime \prime} \rightarrow B^{\prime \prime}$, we find that $f(B)=B^{\prime}$.

417
To show that $f(A B)=\left(A^{\prime} B^{\prime}\right)$ we need to prove that for all $P^{\prime} \in\left(A^{\prime} B^{\prime}\right)$ there exists $P \in(A B)$ such that $f(P)=P^{\prime}$.

To achieve this, given $P^{\prime} \in\left(A^{\prime} B^{\prime}\right)$ it suffices to choose (using C 1.3.9.2) $P \in(A B)$ so that $A P \equiv A^{\prime} P^{\prime}$. Then P^{\prime} will coincide with $f(P)$ (this follows from T 1.3.1 and the arguments given above showing that $A P \equiv A^{\prime} f(P)$ for any $P \in(A B)$).

Corollary 1.3.30.3. Isometries transform half-open (half-closed) intervals into half-open (half-closed) intervals.
Proof.
Corollary 1.3.30.4. Isometries transform closed intervals into closed intervals.
Proof.

General Notion of Symmetry

Some general definitions are in order. ${ }^{418}$ Consider an arbitrary set \mathcal{M}. ${ }^{419}$ A function $f: \mathcal{M} \rightarrow \mathcal{M}$, mapping the set \mathcal{M} onto itself, will be referred to as a transformation of the set \mathcal{M}. Given a subset $\mathcal{A} \subset \mathcal{M}$ of the set \mathcal{M}, a transformation f of M is called a symmetry transformation, or a symmetry element, of the set \mathcal{A} iff it has the following properties:

Property 1.3.6. The function f transforms elements of the set \mathcal{A} into elements of the same set, i.e. $\forall x \in \mathcal{A} f(x) \in \mathcal{A}$.

[^123]Property 1.3.7. f transforms distinct elements of \mathcal{A} into distinct elements of this set, i.e. $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$, where $x_{1}, x_{2} \in \mathcal{A}$. ${ }^{420}$
Property 1.3.8. Every element y of \mathcal{A} is an image of some element x of this set: $\forall y \in \mathcal{A} \exists x \in \mathcal{A} y=f(x)$. ${ }^{421}$
If f is a symmetry element of \mathcal{A}, we also say that \mathcal{A} is symmetric with respect to (or symmetric under) the transformation \mathcal{A}. Let $S_{0}(A)$ be the set of all symmetry elements of A. Define multiplication on $S_{0}(A)$ by $\psi \circ \varphi(x)=\psi(\varphi(x))$, where $\psi, \varphi \in S_{0}$. Then $\left(S_{0}(A), \circ\right)$ is a group ${ }^{422}$ with identity function as the identity element, and inverse functions as inverse elements. We call this group the full symmetry group of A. However, the full symmetry group is so broad as to be practically useless. Therefore, for applications to concrete problems, we need to restrict it as outlined below. Let $S(A)$ be the set of all elements of $S_{0}(A)$, satisfying conditions $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$, so that for each condition C_{i} the following properties hold:

1. If $\varphi(x)$ and $\psi(x)$ satisfy the condition C_{i} then their product $\psi(x) \circ \phi(x)$ also satisfies this condition;
2. If $\varphi(x)$ satisfies the condition C_{i}, then its inverse function $(\varphi(x))^{-1}$ also satisfies this condition.

Thus $(S(A), \circ)$ forms a subgroup of the full symmetry group and is also termed a (partial) symmetry ${ }^{423}$ group.
With these definitions, we immediately obtain the following simple, but important theorems.
Theorem 1.3.31. If the object A is a (set-theoretical) union of objects $A_{\alpha}, \alpha \in \mathcal{A}$, its symmetry group contains as a subgroup the intersection of the groups of symmetry of all objects A_{α}. This can be written as

$$
\begin{equation*}
S\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right) \supset \bigcap_{\alpha \in \mathcal{A}} S\left(A_{\alpha}\right) \tag{1.1}
\end{equation*}
$$

Proof. Let $f \in \bigcap_{\alpha \in \mathcal{A}} S\left(A_{\alpha}\right)$ and $x \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$. Then $\exists \alpha_{0}$ such that $x \in A_{\alpha_{0}}$. Because $f \in S\left(A_{\alpha_{0}}\right)$, we have $f(x) \in A_{\alpha_{0}}$, whence $f(x) \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ and therefore $f \in S\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right)$. If $y \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$, since $y \in A_{\alpha_{0}}$ and $f \in S\left(A_{\alpha_{0}}\right)$, there exists $x \in A_{\alpha_{0}}$ such that $y=f(x)$. Therefore, for every $y \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ we can find $x \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ such that $y=f(x)$. \square

Theorem 1.3.32. If the object A is a (set-theoretical) union of objects $A_{\alpha}, \alpha \in \mathcal{A}$, and all its symmetry transformations f satisfy $f\left(A_{\alpha}\right) \cap A_{\beta}=\emptyset$, where $\alpha \neq \beta, \alpha, \beta \in \mathcal{A}$, then

$$
\begin{equation*}
S\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right)=\bigcap_{\alpha \in \mathcal{A}} S\left(A_{\alpha}\right) \tag{1.2}
\end{equation*}
$$

Proof. Given the condition of the theorem, we need to prove that

$$
\begin{equation*}
S\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right) \subset \bigcap_{\alpha \in \mathcal{A}} S\left(A_{\alpha}\right) \tag{1.3}
\end{equation*}
$$

Let $f \in S\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right)$ and $x \in A_{\alpha_{0}} \alpha_{0} \in \mathcal{A}$. Then $x \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ and therefore $f(x) \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$. But since $f\left(A_{\alpha}\right) \cap A_{\beta}=\emptyset$, where $\alpha \neq \beta, \alpha, \beta \in \mathcal{A}$, we have $f(x) \in A_{\alpha_{0}}$. If $y \in A_{\alpha_{0}} \subset \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$, there exists $x \in \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ such that $y=f(x)$. Then $x \in A_{\alpha_{0}}$, because otherwise $x \in A_{\beta}$, where $\alpha_{0} \neq \beta$, and $f(x) \in A_{\beta} \cap A_{\alpha_{0}}=\emptyset$ - a contradiction. Since the choice of $\alpha_{0} \in \mathcal{A}$ was arbitrary, we have proven that $f \in \bigcap_{\alpha \in \mathcal{A}} S\left(A_{\alpha}\right)$. \square

In what follows, we shall usually refer to transformations on a line a, i.e. functions $\mathcal{P}_{a} \rightarrow \mathcal{P}_{a}$ (transformations on a plane α, i.e. functions $\mathcal{P}_{\alpha} \rightarrow \mathcal{P}_{\alpha}$; transformations in space, i.e. functions $\left.\mathcal{C}^{P t} \rightarrow \mathcal{C}^{P t}\right)$ as line transformations (plane transformations; spatial, or space transformations).

For convenience we denote the identity transformation (the transformation sending every element of the set into itself: $x \mapsto x$ for all $x \in \mathcal{M}$.) of an arbitrary set \mathcal{M} by $\operatorname{id} \mathcal{M}$, or simply id when \mathcal{M} is assumed to be known from context or not relevant.

Given a point O on a line a, define the transformation $f=r e f l_{(a, O)}$ of the set \mathcal{P}_{a} of the points of the line a, as follows: For $A \in \mathcal{P}_{a} \backslash\{O\}$ we choose, using A 1.3.1, $A^{\prime} \in O_{A}^{c}$ so that $O A \equiv O A^{\prime}$, and let, by definition, $f(A) \rightleftharpoons A^{\prime}$. Finally, we let $f(O) \rightleftharpoons O$. This transformation is called the reflection of (the points of) the line a in the point O.

Observe that, of the two rays into which the point O separates the line a, the reflection of the set of points of a in O transforms the first ray into the second ray and the second into the first.

Theorem 1.3.33. Given a set of at least two points ${ }^{424} \mathcal{A}$ on a line a and a point O^{\prime} on a line a^{\prime}, there are at most two figures on a^{\prime} congruent to \mathcal{A} and containing the point O^{\prime}. To be precise, there is exactly one figure \mathcal{A}^{\prime} if it is symmetric under the transformation of reflection in the point O^{\prime}. There are two figures $\mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}$, both containing O^{\prime} and congruent to \mathcal{A} when \mathcal{A}^{\prime} (and then, of course, also $\mathcal{A}^{\prime \prime}$) is not symmetric under the reflection in O^{\prime}.

Proof.

Lemma 1.3.33.1. The reflection of a line a in a point O is a bijection.

[^124]Proof. Obvious from A 1.3.1, T 1.3.1, T 1.3.2.
Lemma 1.3.33.2. The reflection of a line a in a point O preserves distances between points. That is, the reflection of a line a in a point O is an isometry.

Proof. We need to show that $A B \equiv A^{\prime} B^{\prime}$, where $A^{\prime} \rightleftharpoons \operatorname{refl}_{(a, O)}(A), B^{\prime} \rightleftharpoons \operatorname{refl}_{(a, O)}(B)$ for all points $A \in a, B \in a$. In the case where one of the points A, B coincides with O this is already obvious from the definition of the reflection transformation.

Suppose now that the points O, A, B are all distinct. Then from T 1.2 .2 we have either $[A O B]$, or $[O A B]$, or $[O B A]$.

Assuming the first of these variants, we can write using the definition of reflection $[A O B] \&\left[A^{\prime} O B^{\prime}\right] \& O A \equiv$ $O A^{\prime} \& O B \equiv O B^{\prime} \stackrel{\mathrm{A} 1.3 .3}{\Longrightarrow} A B \equiv A^{\prime} B^{\prime}$.

Suppose now that $[O A B]$. Then $[O A B] \& B^{\prime} \in O^{\prime} A^{\prime} \& O A \equiv O A^{\prime} \& O B \equiv O B^{\prime} \stackrel{\text { L.3.9.1 }}{\Longrightarrow} A B \equiv A^{\prime} B^{\prime} \&\left[O^{\prime} A^{\prime} B^{\prime}\right]$. 425

Lemma 1.3.33.3. Double reflection of the same line a in the same point O (i.e. a composition of this reflection with itself) is the identity transformation, i.e. $r e f l_{(a, O)}^{2}=\mathrm{id} .{ }^{426}$

Proof.
Lemma 1.3.33.4. The point O is the only fixed point of the reflection of the line a in O.
Proof.
Lemma 1.3.33.5. The reflection of a line a in a point O is a sense-reversing transformation.
Proof. In view of L 1.2.13.4 we can assume without loss of generality that O is the origin with respect to which the given order on a is defined. The result then follows in a straightforward way from the definition of order on the line a and the trivial details are left to the reader to work out. ${ }^{427}$

Theorem 1.3.34. Proof.
Given a line a on a plane α, define the transformation $f=\operatorname{refl}_{(\alpha, a)}$ of the set \mathcal{P}_{α} of the points of the plane α, as follows: For $A \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a}$ we choose, using A 1.3.1, $A^{\prime} \in O_{A}^{c}$ so that $O A \equiv O A^{\prime}$, where O is the foot of the perpendicular lowered from A to a (this perpendicular exists according to L 1.3.8.1), and let, by definition, $f(A) \rightleftharpoons A^{\prime}$. Finally, we let $f(P) \rightleftharpoons P$ for any $P \in a$.

This transformation is called the reflection of (the points of) the plane α in the line a.
Lemma 1.3.34.1. The reflection of a plane α in a line a is a bijection.
Proof.
Lemma 1.3.34.2. The reflection of a plane α in a line a preserves distances between points. That is, the reflection of a plane α in a line a is an isometry.

Proof.
Lemma 1.3.34.3. Double reflection of the same plane α in the same line a (i.e. a composition this reflection with itself) is the identity transformation, i.e. $\operatorname{refl}_{(\alpha, a)}^{2}=\mathrm{id} .{ }^{428}$

Proof.
Lemma 1.3.34.4. The set \mathcal{P}_{a} is the maximum fixed set of the reflection of the line α in the line a.
Proof.
Theorem 1.3.34. Consider a non-collinear point set \mathcal{A}, points $A, B \in \mathcal{A}$, and points $A^{\prime}, B^{\prime}, C^{\prime}$ such that $A B \equiv A^{\prime} B^{\prime}$ and $C^{\prime} \notin a_{A^{\prime} B^{\prime}}$. Then there are at most four figures \mathcal{A}^{\prime} containing A^{\prime}, B^{\prime}, lying in the plane $\alpha_{A^{\prime} B^{\prime} C^{\prime}}$ and such that $\mathcal{A} \equiv \mathcal{A}^{\prime}$. Given one such figure \mathcal{A}^{\prime} the remaining figures are obtained by reflection in the line $a_{A^{\prime} B^{\prime}}$, by reflection in the line drawn through the midpoint M^{\prime} of $A^{\prime} B^{\prime}$ perpendicular to it, and by the combination of the two reflections (this combination is reflection in M^{\prime}).

[^125]Proof. \square
Theorem 1.3.36. Motion preserves angles. That is, if a figure \mathcal{A} is congruent to a figure \mathcal{B}, the angle $\angle A_{1} A_{2} A_{3}$ formed by any three non-collinear points $A_{1}, A_{2}, A_{3} \in \mathcal{A}$ of the first figure is congruent to the angle formed by the corresponding three points B_{1}, B_{2}, B_{3} of the second figure, i.e. $\angle A_{1} A_{2} A_{3} \equiv \angle B_{1} B_{2} B_{3}$, where $B_{i}=\phi\left(A_{i}\right)$ (ϕ being the motion), $i=1,2,3$.

Proof. By hypothesis, the points A_{1}, A_{2}, A_{3} are not collinear. Neither are B_{1}, B_{2}, B_{3} (see C 1.3.29.3). Since $\phi \mathcal{A} \rightarrow \mathcal{B}$ is a motion, we can write $A_{1} A_{2} \equiv B_{1} B_{2}, A_{1} A_{3} \equiv B_{1} B_{3}, A_{2} A_{3} \equiv B_{2} B_{3}$, whence by T 1.3.10 $\triangle A_{1} A_{2} A_{3} \equiv \triangle B_{1} B_{2} B_{3}$, which implies $\angle A_{1} A_{2} A_{3} \equiv \angle B_{1} B_{2} B_{3}$, q.e.d.

Theorem 1.3.37. Suppose we are given:

- A figure \mathcal{A} lying in plane α and containing at least three non-collinear points;
- A line $a \subset \alpha$, containing a point O of \mathcal{A} and a point A (not necessarily lying in \mathcal{A});
- A point E lying in plane α not on a;
- Two distinct points O^{\prime}, A^{\prime} on a line a^{\prime} lying in a plane α^{\prime}, and a point E^{\prime} lying in α^{\prime} not on a^{\prime}.

Then there exists exactly one motion $f: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ and, correspondingly, one figure \mathcal{A}^{\prime}, such that:

1. $O^{\prime}=f(O)$.
2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A^{\prime} and $B^{\prime}=f(B)$ also lie on line a^{\prime} on the same side (on opposite sides) of the point O^{\prime}.
3. If E, F lie in plane α on the same side (on opposite sides) of the line a, then the points E^{\prime} and $F^{\prime}=f(F)$ also lie (in plane α^{\prime}) on the same side (on opposite sides) of the line $a^{\prime} .{ }^{429}$

Proof. 1, 2 are proved exactly as in T 1.3.30. ${ }^{430}$ Thus, we have contsructed the restriction of f to $\mathcal{A} \cap \mathcal{P}_{a}$, which is itself a motion (see proof of T 1.3.30). Suppose now $F \in \mathcal{A}, F \notin a$. Using A 1.3.4, A 1.3.1, construct a point F^{\prime} such that $F^{\prime} \in \alpha^{\prime}, F^{\prime} \notin a^{\prime}, \angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime}, O F \equiv O^{\prime} F^{\prime}$, and, finally, if E, F lie in plane α on one side (on opposite sides) of the line a, then E^{\prime}, F^{\prime} lie in plane α^{\prime} on one side (on opposite sides) of the line a^{\prime}. ${ }^{431}$ (See Fig. 1.158, a).) We set, by definition, $f(F) \rightleftharpoons F^{\prime}$. For the case $B \in O_{A}, B^{\prime} \in O^{\prime}{ }_{A^{\prime}}$ we have by L 1.2.11.3 $O_{B}=O_{A}, O_{B^{\prime}}=O_{A^{\prime}}^{\prime}$, whence $\angle A O F=\angle B O F, \angle A^{\prime} O^{\prime} F^{\prime}=\angle B^{\prime} O^{\prime} F^{\prime}$. Thus, we have $\angle B O F \equiv \angle B^{\prime} O^{\prime} F^{\prime}$. Recall that also $O B \equiv O^{\prime} B^{\prime}$, where $B \in O_{A} \cap \mathcal{A}, B^{\prime} \in O^{\prime}{ }_{A^{\prime}} \cap \mathcal{A}^{\prime}, B^{\prime}=f(B)$, for, as we have shown above, the restriction of f to $\mathcal{A} \cap \mathcal{P}_{a}$ is itself a motion. Therefore, we obtain $O B \equiv O^{\prime} B^{\prime} \& O F \equiv O^{\prime} F^{\prime} \& \angle B O F \equiv \angle B^{\prime} O^{\prime} F^{\prime} \stackrel{\mathrm{T} 1.3 .4}{\Longrightarrow} \triangle B O F \equiv \triangle B^{\prime} O^{\prime} F^{\prime} \Rightarrow B F \equiv B^{\prime} F^{\prime}$. Observe further, that $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime} \xrightarrow{\mathrm{T} 1.3 .6} \operatorname{adjsp} \angle A O F \equiv \operatorname{adjsp} \angle A^{\prime} O^{\prime} F^{\prime}$. If $C \in O_{A}$, i.e. if $[A O C]$ (see L 1.2.15.2), then $\angle C O F=\operatorname{adjsp} \angle A O F$. Similarly, $C^{\prime} \in O_{A^{\prime}}^{\prime}$ implies $\angle C O F=\operatorname{adjsp} \angle A O F$. Recall again that for points C, C^{\prime} such that $C \in O_{A}^{c} \cap \mathcal{A}, C^{\prime} \in O_{A^{\prime}}^{\prime c} \cap \mathcal{A}, C^{\prime}=f(C)$, in view of the already established properties of line motion, we can write $O C \equiv O^{\prime} C^{\prime}$. Hence $O C \equiv O^{\prime} C^{\prime} \& O F \equiv O^{\prime} F^{\prime} \& \angle C O F \equiv \angle C^{\prime} O^{\prime} F^{\prime} \xrightarrow{T 1.3 .4} \triangle C O F \equiv$ $\triangle C^{\prime} O^{\prime} F^{\prime} \Rightarrow C F \equiv C^{\prime} F^{\prime}$. Thus, we have proven that for all points $B \in \mathcal{P}_{a} \cap \mathcal{A}$ and all points $F \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \cap \mathcal{A}$ we have $B F \equiv B^{\prime} F^{\prime}=f(B) f(F)$.

Suppose now $F \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \cap \mathcal{A}, G \in \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \cap \mathcal{A}$. We need to prove that always $F G \equiv F^{\prime} G^{\prime}$, where $F^{\prime}=f(F) \in$ $\mathcal{P}_{\alpha^{\prime}} \backslash \mathcal{P}_{a^{\prime}} \cap \mathcal{A}^{\prime}, G^{\prime}=f(G) \in \mathcal{P}_{\alpha^{\prime}} \backslash \mathcal{P}_{a^{\prime}} \cap \mathcal{A}^{\prime}$. Consider first the case when the points F, O, G are collinear. Then either $G \in O_{F}$ or $G \in O_{F}^{c}$. Suppose first $G \in O_{F}$. (See Fig. 1.158, b).) Then by L 1.2.11.3 $O_{G}=O_{F}$, whence $\angle A O F=\angle A O G$. In view of $\mathrm{L} 1.2 .19 .8 G \in O_{F}$ implies that F, G lie in α on one side of a. We also have by construction above: $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime}, \angle A O G \equiv \angle A^{\prime} O^{\prime} G^{\prime}$. Consider the case when E, F lie in α on one side of a. Then E, G also lie on the same side of a. In fact, otherwise $E F a \& E a G \xrightarrow{\text { L1.2.17.10 }} F a G$, which contradicts our assumption that $F G a$. Since both E, F and E, G lie on one side of a, by construction the pairs E^{\prime}, F^{\prime} and E^{\prime}, G^{\prime} lie in α^{\prime} on the same side of a^{\prime}. And, obviously, by transitivity of the relation "to lie on one side", we have $F^{\prime} G^{\prime} a^{\prime}$. Now turn to the case when E, F lie in α on opposite sides of $a .{ }^{432}$ Then E, G also lie on opposite sides of a. In fact, otherwise $E a F \& E G a \stackrel{\text { L1.2.17.10 }}{\Longrightarrow} F a G$, which contradicts our assumption that $F G a$. Since both E, F and E, G lie on opposite sides of a, by construction the pairs E^{\prime}, F^{\prime} and E^{\prime}, G^{\prime} lie in α^{\prime} on opposite sides of a^{\prime}. Hence $E^{\prime} a^{\prime} F^{\prime} \& E^{\prime} a^{\prime} G^{\prime} \stackrel{\text { L1.2.17.9 }}{\Longrightarrow} F^{\prime} G^{\prime} a^{\prime}$. Now we can write $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime} \& \angle A O G \equiv \angle A^{\prime} O^{\prime} G^{\prime} \& \angle A O F=$ $\angle A O G \& F^{\prime} G^{\prime} a^{\prime} \stackrel{\text { L1.3.2.1 }}{\Longrightarrow} O^{\prime} F^{\prime}=O^{\prime}{ }_{G^{\prime}} \Rightarrow G^{\prime} \in O^{\prime}{ }_{F^{\prime}}$. Thus, we have shown that once F, G lie on one side of O, the points F^{\prime}, G^{\prime} lie on one side of O^{\prime}. Suppose now $G \in O_{F}^{c}$, i.e. $[F O G]$. In view of L 1.2.19.8 $G \in O_{F}^{c}$ implies that F, G lie in α on opposite sides of a. We also have by construction above: $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime}, \angle A O G \equiv \angle A^{\prime} O^{\prime} G^{\prime}$. Consider the case when E, F lie in α on one side of a. Then E, G lie on opposite sides of a. (See Fig. 1.158, c).) In fact, otherwise transitivity of the relation "to lie on one side of a line" would give $E F a \& E G a \Rightarrow F a G$, which contradicts our assumption that $F a G$. Since E, F lie in α on one side of a and E, G lie on opposite sides of a, by construction it follows that the points E^{\prime}, F^{\prime} lie in α^{\prime} on one side of a^{\prime} and E^{\prime}, G^{\prime} lie on opposite sides of a^{\prime}. Hence $E^{\prime} F^{\prime} a^{\prime} \& E^{\prime} a^{\prime} G^{\prime} \stackrel{\text { L1.2.17.10 }}{\Longrightarrow} F^{\prime} a^{\prime} G^{\prime}$. Now turn to the case when E, F lie in α on opposite sides of a. Then E, G lie on one side of a. In fact, otherwise $E a F \& E a G \stackrel{\text { L1.2.17.9 }}{\Longrightarrow} F G a$, which contradicts our assumption that $F a G$. Since E, F

[^126]lie in α on opposite sides of a and E, G lie on one side of a, by construction the points E^{\prime}, F^{\prime} lie in α^{\prime} on opposite sides of a^{\prime} and E^{\prime}, G^{\prime} lie on one side of a^{\prime}. Hence $E^{\prime} a^{\prime} F^{\prime} \& E^{\prime} G^{\prime} a^{\prime} \stackrel{\text { L1.2.17.10 }}{\Longrightarrow} F^{\prime} a^{\prime} G^{\prime}$. Now, using C 1.3.6.1, ${ }^{433}$ we can write $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime} \& \angle A O G \equiv \angle A^{\prime} O^{\prime} G^{\prime} \& \angle A O G=\operatorname{adjsp} \angle A O F \& F^{\prime} a^{\prime} G^{\prime} \Rightarrow O_{G^{\prime}}^{\prime}=O_{F^{\prime}}^{\prime c} \Rightarrow G^{\prime} \in O_{F^{\prime}}^{\prime}$.

Thus, we conclude that in the case when the points F, O, G are collinear, either F, G lie on one side of O and F^{\prime}, G^{\prime} lie on one side of O^{\prime}, or F, G lie on opposite sides of O and F^{\prime}, G^{\prime} lie on opposite sides of O^{\prime}. Combined with the congruences (true by construction) $O F \equiv O^{\prime} F^{\prime}, O G \equiv O^{\prime} G^{\prime}$, by P 1.3.9.3 this gives us $F G \equiv F^{\prime} G^{\prime}$.

Suppose now F, O, G are not collinear. Then, obviously, $O_{G} \neq O_{F}^{c}$. We also know that if the points F, G lie in α on one side (on opposite sides) of a, the points F^{\prime}, G^{\prime} lie in α^{\prime} on one side (on opposite sides) of a^{\prime}. (See Fig. 1.158, d), e).) Hence, taking into account $\angle A O F \equiv \angle A^{\prime} O^{\prime} F^{\prime}, \angle A O G \equiv \angle A^{\prime} O^{\prime} G^{\prime}$, by T 1.3 .9 we get $\angle F O G \equiv \angle F^{\prime} O^{\prime} G^{\prime}$. Finally, we have $O F \equiv O^{\prime} F^{\prime} \& \angle F O G \equiv \angle F^{\prime} O^{\prime} G^{\prime} \& O G \equiv O^{\prime} G^{\prime} \stackrel{\mathrm{T1.3.4}}{\Longrightarrow} \triangle F O G \equiv \triangle F^{\prime} O^{\prime} G^{\prime} \Rightarrow F G \equiv F^{\prime} G^{\prime}$, which completes the proof.

Lemma 1.3.37.1. Isometries transform a cross into a cross. ${ }^{434}$

Proof.

Theorem 1.3.38. Proof.

Denote by $\mu A B$ the equivalence class of congruent intervals containing an interval $A B$. We define addition of classes of congruent intervals as follows: Take an element $A B$ of the first class $\mu A B$ and, using A 1.3.1, lay off the interval $B C$ of the second class $\mu B C$ into the ray B_{A}^{c}, complementary to the ray $A_{B} .{ }^{435}$ Then the sum of the classes $A B, B C$ is, by definition, the class $\mu A C$, containing the interval $A C$. Note that this addition of classes is well defined, for $A B \equiv A_{1} B_{1} \& B C \equiv B_{1} C_{1} \&[A B C] \&\left[A_{1} B_{1} C_{1}\right] \stackrel{\text { L1.3.9.1 }}{\Longrightarrow} A C \equiv A_{1} C_{1}$, which implies that the result of summation does not depend on the choice of representatives in each class. Thus, put simply, we have $[A B C] \Rightarrow \mu A C=\mu A B+\mu B C$. Conversely, the notation $A C \in \mu_{1}+\mu_{2}$ means that there is a point B such that $[A B C]$ and $A B \in \mu_{1}, B C \in \mu_{2}$. In the case when $\mu A B+\mu C D=\mu E F$ and $A^{\prime} B^{\prime} \equiv A B, C^{\prime} D^{\prime} \equiv C D, E^{\prime} F^{\prime} \equiv E F$ (that is, when $\mu A B+\mu C D=\mu E F$ and $A^{\prime} B^{\prime} \in \mu A B, C^{\prime} D^{\prime} \in \mu C D, E^{\prime} F^{\prime} \in \mu E F$), we can say, with some abuse of terminology, that the interval $E^{\prime} F^{\prime}$ is the sum of the intervals $A^{\prime} B^{\prime}, C^{\prime} D^{\prime}$.

The addition (of classes of congruent intervals) thus defined has the properties of commutativity and associativity, as the following two theorems ($\mathrm{T} 1.3 .39, \mathrm{~T} 1.3 .40$) indicate:

Theorem 1.3.39. The addition of classes of congruent intervals is commutative: For any classes μ_{1}, μ_{2} we have $\mu_{1}+\mu_{2}=\mu_{2}+\mu_{1}$.

Proof. Suppose $A^{\prime} C^{\prime} \in \mu_{1}+\mu_{2}$. According to our definition of the addition of classes of congruent intervals this means that there is an interval $A C$ such that $[A B C]$ and $A B \in \mu_{1}=\mu A B, B C \in \mu_{2}=\mu B C$. But the fact that $C B \in \mu_{2}=\mu C B, B A \in \mu_{1}=\mu B A,[C B A]$, and $A^{\prime} C^{\prime} \equiv C A$ implies $A^{\prime} C^{\prime} \in \mu_{2}+\mu_{1}$. Thus, we have proved that $\mu_{1}+\mu_{2} \subset \mu_{2}+\mu_{1}$ for any two classes μ_{1}, μ_{2} of congruent intervals. By symmetry, we immediately have $\mu_{2}+\mu_{1} \subset \mu_{1}+\mu_{2}$. Hence $\mu_{1}+\mu_{2}=\mu_{2}+\mu_{1}$, q.e.d.

Theorem 1.3.40. The addition of classes of congruent intervals is associative: For any classes μ_{1}, μ_{2}, μ_{3} we have $\left(\mu_{1}+\mu_{2}\right)+\mu_{3}=\mu_{1}+\left(\mu_{2}+\mu_{3}\right)$.

Proof. Suppose $A D \in\left(\mu_{1}+\mu_{2}\right)+\mu_{3}$. Then there is a point C such that $[A C D]$ and $A C \in \mu_{1}+\mu_{2}, C D \in \mu_{3}$. In its turn, $A C \in \mu_{1}+\mu_{2}$ implies that $\exists B[A B C] \& A B \in \mu_{1} \& B C \in \mu_{2}$. We have $[A B C] \&[A C D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A B D] \&[B C D]$. Hence $[B C D] \& B C \in \mu_{2} \& C D \in \mu_{3} \Rightarrow B D \in \mu_{2}+\mu_{3} .[A B D] \& A B \in \mu_{1} \& B D \in \mu_{2}+\mu_{3} \Rightarrow A D \in \mu_{1}+\left(\mu_{2}+\mu_{3}\right)$. Thus, we have proved that $\left(\mu_{1}+\mu_{2}\right)+\mu_{3} \subset \mu_{1}+\left(\mu_{2}+\mu_{3}\right)$ for any classes $\mu_{1}, \mu_{2}, \mu_{3}$ of congruent intervals.

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$ for the sum of n classes $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of congruent intervals without needing to care about where we put the parentheses.

If a class $\mu B C$ of congruent intervals is equal to the sum $\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n} C_{n}$ of classes $\mu B_{1} C_{1}, \mu B_{2} C_{2}, \ldots, \mu B_{n} C_{n}$ of congruent intervals, and $\mu B_{1} C_{1}=\mu B_{2} C_{2}=\cdots=\mu B_{n} C_{n}$ (that is, $B_{1} C_{1} \equiv B_{2} C_{2} \equiv \cdots \equiv B_{n} C_{n}$), we write $\mu B C=n \mu B_{1} C_{1}$ or $\mu B_{1} C_{1}=(1 / n) \mu B C$.

Proposition 1.3.40.1. If $\mu A B+\mu C D=\mu E F, A^{\prime} B^{\prime} \in \mu A B, C^{\prime} D^{\prime} \in \mu C D, E^{\prime} F^{\prime} \in \mu E F$, then $A^{\prime} B^{\prime}<E^{\prime} F^{\prime}$, $C^{\prime} D^{\prime}<E^{\prime} F^{\prime}$.

[^127]

c)

b)

d)

e)

Proof. By the definition of addition of classes of congruent intervals, there are intervals $L M \in \mu A B, M N \in C D$, $L N \in E F$ such that $[L M N]$. By C 1.3.13.4 $L M<L N$. Finally, using T 1.3.1, L 1.3.13.6, L 1.3.13.7 we can write $A^{\prime} B^{\prime} \equiv A B \& L M \equiv A B \& E^{\prime} F^{\prime} \equiv E F \& L N \equiv E F \& L M<L N \Rightarrow A^{\prime} B^{\prime}<E^{\prime} F^{\prime}$. Similarly, $C^{\prime} D^{\prime}<E^{\prime} F^{\prime}$.

At this point we can introduce the following jargon. For classes $\mu A B, \mu C D$ or congruent intervals we write $\mu A B<\mu C D$ or $\mu C D>\mu A B$ if there are intervals $A^{\prime} B^{\prime} \in \mu A B, C^{\prime} D^{\prime} \in C D$ such that $A^{\prime} B^{\prime}<C^{\prime} D^{\prime}$. T 1.3.1, L 1.3.13.6, L 1.3.13.7 then show that this notation is well defined: it does not depend on the choice of the intervals $A^{\prime} B^{\prime}, C^{\prime} D^{\prime}$. For arbitrary classes $\mu A B, \mu C D$ of congruent intervals we then have either $\mu A B<\mu C D$, or $\mu A B=$ $\mu C D$, or $\mu A B>\mu C D$ (with the last inequality being equivalent to $\mu C D<\mu A B$). From L 1.3.13.11 we see also that any one of these options excludes the two others.

Proposition 1.3.40.2. If $\mu A B+\mu C D=\mu E F, \mu A B+\mu G H=\mu L M$, and $C D<G H$, then $E F<L M$. ${ }^{436}$
Proof. By hypothesis, there are intervals $P Q \in \mu A B, Q R \in \mu C D, P^{\prime} Q^{\prime} \in \mu A B, Q^{\prime} R^{\prime} \in \mu G H$, such that $[P Q R],\left[P^{\prime} Q^{\prime} R^{\prime}\right], P R \in \mu E F, P^{\prime} R^{\prime} \in \mu L M$. Obviously, $P Q \equiv A B \& P^{\prime} Q^{\prime} \equiv A B \xrightarrow{T 1.3 .1} P Q \equiv P^{\prime} Q^{\prime}$. Using L 1.3.13.6, L 1.3.13.7 we can also write $Q R \equiv C D \& C D<G H \& Q^{\prime} R^{\prime} \equiv G H \Rightarrow Q R<Q^{\prime} R^{\prime}$. We then have $[P Q R] \&\left[P^{\prime} Q^{\prime} R^{\prime}\right] \& P Q \equiv P^{\prime} Q^{\prime} \& Q R<Q^{\prime} R^{\prime} \stackrel{\text { L1.3.21.1 }}{\Longrightarrow} P R<P^{\prime} R^{\prime}$. Finally, again using L 1.3.13.6, L 1.3.13.7, we obtain $P R \equiv E F \& P R<P^{\prime} R^{\prime} \& P^{\prime} R^{\prime} \equiv L M \Rightarrow E F<L M$. \square

Proposition 1.3.40.3. If $\mu A B+\mu C D=\mu E F, \mu A B+\mu G H=\mu L M$, and $E F<L M$, then $C D<G H .{ }^{437}$
Proof. We know that either $\mu C D=\mu G H$, or $\mu G H<\mu C D$, or $\mu C D<\mu G H$. But $\mu C D=\mu G H$ would imply $\mu E F=\mu L M$, which contradicts $E F<L M$ in view of L1.3.13.11. Suppose $\mu G H<\mu C D$. Then, using the preceding proposition (P 1.3.40.2), we would have $L M<E F$, which contradicts $E F<L M$ in view of L 1.3.13.10. Thus, we have $C D<G H$ as the only remaining possibility.

Proposition 1.3.40.4. A class $\mu B C$ of congruent intervals is equal to the sum $\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n} C_{n}$ of classes $\mu B_{1} C_{1}, \mu B_{2} C_{2}, \ldots, \mu B_{n} C_{n}$ of congruent intervals iff there are points $A_{0}, A_{1}, \ldots, A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, A_{i-1} A_{i} \in \mu B_{i} C_{i}$ for all $i \in \mathbb{N}_{n}$ and $A_{0} A_{n} \in \mu B C$. ${ }^{438}$

Proof. Suppose $\mu B C=\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n} C_{n}$. We need to show that there are points $A_{0}, A_{1}, \ldots, A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, A_{i-1} A_{i} \equiv B_{i} C_{i}$ for all $i \in \mathbb{N}_{n}$, and $A_{0} A_{n} \equiv B C$. For $n=2$ this has been established previously. ${ }^{439}$ Suppose now that for the class $\mu_{n-1} \rightleftharpoons \mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n-1} C_{n-1}$ there are points $A_{0}, A_{1}, \ldots, A_{n-1}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-2}, A_{i-1} A_{i} \in \mu B_{i} C_{i}$ for all $i \in \mathbb{N}_{n-1}$, and $A_{0} A_{n-1} \in \mu_{n-1}$. Using A 1.3.1, choose a point A_{n} such that $A_{0} A_{n} \equiv B C$ and the points A_{n-1}, A_{n} lie on the same side of the point A_{0}. Since, by hypothesis, $\mu B C=\mu_{n-1}+\mu B_{n} C_{n}$, there are points D_{0}, D_{n-1}, D_{n} such that $D_{0} D_{n-1} \in \mu_{n-1}$, $D_{n-1} D_{n} \in \mu B_{n} C_{n}, D_{0} D_{n} \in \mu B C$, and $\left[D_{0} D_{n-1} D_{n}\right]$. Since $D_{0} D_{n-1} \in \mu_{n-1} \& A_{0} A_{n-1} \in \mu_{n-1} \Rightarrow D_{0} D_{n-1} \equiv$ $A_{0} A_{n-1}, D_{0} D_{n} \in \mu B C \& A_{0} A_{n} \in \mu B C \Rightarrow D_{0} D_{n} \equiv A_{0} A_{n},\left[D_{0} D_{n-1} D_{n}\right]$, and A_{n-1}, A_{n} lie on the same side of A_{0}, by L 1.3.9.1 we have $D_{n-1} D_{n} \equiv A_{n-1} A_{n},\left[A_{0} A_{n-1} A_{n}\right]$. By L 1.2.7.3 the fact that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-2}$ implies that the points $A_{0}, A_{1}, \ldots, A_{n-1}$ are in order $\left[A_{0} A_{1} \ldots A_{n-1}\right]$. In particular, we have $\left[A_{0} A_{n-2} A_{n-1}\right]$. Hence, $\&\left[A_{0} A_{n-1} A_{n}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[A_{n-2} A_{n-1} A_{n}\right]$. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are points $A_{0}, A_{1}, \ldots A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, A_{i-1} A_{i} \in \mu B_{i} C_{i}$ for all $i \in \mathbb{N}_{n}$ and $A_{0} A_{n} \in \mu B C$. We need to show that the class $\mu B C$ of congruent intervals is equal to the sum $\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n} C_{n}$ of the classes $\mu B_{1} C_{1}, \mu B_{2} C_{2}, \ldots, \mu B_{n} C_{n}$. For $n=2$ this has been proved before. Denote μ_{n-1} the class containing the interval $A_{0} A_{n-1}$. Now we can assume that $\mu_{n-1}=\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n-1} C_{n-1} .{ }^{440}$ Since the points $A_{0}, A_{1}, \ldots, A_{n}$ are in the order $\left[A_{0} A_{1} \ldots A_{n}\right]$ (see L 1.2.7.3), we have, in particular, $\left[A_{0} A_{n-1} \ldots A_{n}\right]$. As also $A_{0} A_{n-1} \in \mu_{n-1}, A_{n-1} A_{n} \in \mu B_{n} C_{n}, A_{0} A_{n} \in \mu B C$, it follows that $\mu B C=\mu_{n-1}+\mu B_{n} C_{n}=\mu B_{1} C_{1}+\mu B_{2} C_{2}+\cdots+\mu B_{n-1} C_{n-1}+\mu B_{n} C_{n}$, q.e.d. \square

Proposition 1.3.40.5. For classes $\mu_{1}, \mu_{2}, \mu_{3}$ of congruent intervals we have: $\mu_{1}+\mu_{2}=\mu_{1}+\mu_{3}$ implies $\mu_{2}=\mu_{3}$.
Proof. We know that either $\mu_{2}<\mu_{3}$, or $\mu_{2}=\mu_{3}$, or $\mu_{2}<\mu_{3}$. But by P 1.3.40.2 $\mu_{2}<\mu_{3}$ would imply $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$, and $\mu_{2}>\mu_{3}$ would imply $\mu_{1}+\mu_{2}>\mu_{1}+\mu_{3}$. But both $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ and $\mu_{1}+\mu_{2}>\mu_{1}+\mu_{3}$ contradict $\mu_{1}+\mu_{2}=\mu_{1}+\mu_{3}$, whence the result.

Proposition 1.3.40.6. For any classes μ_{1}, μ_{3} of congruent intervals such that $\mu_{1}<\mu_{3}$, there is a unique class μ_{2} of congruent intervals with the property $\mu_{1}+\mu_{2}=\mu_{3}$.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that $\mu_{1}<\mu_{3}$ in view of L 1.3.13.3 implies that there are points A, B, C such that $A B \in \mu_{1}, A C \in \mu_{3}$, and $[A B C]$. Denote $\mu_{2} \rightleftharpoons \mu B C .{ }^{441}$

[^128]From the definition of sum of classes of congruent intervals then follows that $\mu_{1}+\mu_{2}=\mu_{3}$. \square
If $\mu_{1}+\mu_{2}=\mu_{3}$ (and then, of course, $\mu_{2}+\mu_{1}=\mu_{3}$ in view of $T 1.3 .39$), we shall refer to the class μ_{2} of congruent intervals as the difference of the classes μ_{3}, μ_{1} of congruent intervals and write $\mu_{2}=\mu_{3}-\mu_{1}$. That is, $\mu_{2}=\mu_{3}-\mu_{1} \stackrel{\text { def }}{\Longleftrightarrow} \mu_{1}+\mu_{2}=\mu_{3}$. The preceding proposition shows that the difference of classes of congruent intervals is well defined.

With subtraction of classes of congruent intervals thus defined, the familiar rules of algebra apply, analogous to the corresponding properties of subtraction of natural numbers. For example, we have the following identities:

Proposition 1.3.40.7. $\mu_{1}+\left(\mu_{2}-\mu_{3}\right)=\left(\mu_{1}-\mu_{3}\right)+\mu_{2}=\left(\mu_{1}+\mu_{2}\right)-\mu_{3}$ for any classes $\mu_{1}, \mu_{2}, \mu_{3}$ of congruent intervals assuming, of course, that $\mu_{2}>\mu_{3}$.

Proof.

Proposition 1.3.40.8. $\mu_{1}-\left(\mu_{1}-\mu_{2}\right)=\mu_{2}$ for any classes μ_{1}, μ_{2} of congruent intervals assuming, of course, that $\mu_{1}>\mu_{2}$.

Proof.

Proposition 1.3.40.9 (The Triangle Inequality). Any side of a triangle is less than the sum of its other two sides. In other words, in a triangle $\triangle A B C$ we have $\mu A C<\mu A B+\mu B C$, etc.

Proof. Follows from C 1.3.18.2.
A line a, meeting a plane α in the point $O,{ }^{442}$ is said to be perpendicular to α (at the point O) if it is perpendicular to any line b drawn in plane α through O. We will write this as $a \perp \alpha$, or sometimes as $(a \perp \alpha)_{O}{ }^{443}$ If a line a is perpendicular to a plane α (at a point O), the plane α is said to be perpendicular to the line a, written $\alpha \perp a$, or we can also say that the line a and the plane α (mentioned in any order) are perpendicular (at O).

Theorem 1.3.41. Suppose a line d is perpendicular to two (distinct) lines a, c, drawn in a plane α through a point $O .{ }^{444}$ Then d is perpendicular to α, i.e. it is perpendicular to any line b drawn in plane α through O.

Proof. Let lines a, b, c be divided by the point O into the following pairs of rays: h and h^{c}, k and k^{c}, l and l^{c}, respectively. In other words, we have $\mathcal{P}_{a}=h \cup\{O\} \cup h^{c}, \mathcal{P}_{b}=k \cup\{O\} \cup k^{c}, \mathcal{P}_{c}=l \cup\{O\} \cup l^{c}$. It should be obvious that by renaming the rays h, k, l and their complementary rays h^{c}, k^{c}, l^{c} appropriately, we can arrange them so that $k \subset$ $\operatorname{Int} \angle(h, l) .{ }^{445}$ Making use of A 1.1.3, A 1.3.1, choose points $D_{1} \in d, D_{2} \in d$ so that $\left[D_{1} O D_{2}\right], O D_{1} \equiv O D_{2}$. Taking some points $A \in h, C \in l$, we have $\angle D_{1} O A \equiv \angle D_{2} O A, \angle D_{1} O C \equiv \angle D_{2} O C$ (the angles in question being right angles, because, by hypothesis, $a_{O D_{1}}=d \perp a, a_{O D_{2}}=d \perp c$.) Hence $O D_{1} \equiv \angle O D_{2} \& O A \equiv O A \& \angle D_{1} O A \equiv \angle D_{2} O A \xrightarrow{\text { T1.3.4 }}$ $\triangle A O D_{1} \equiv \triangle A O D_{2} \Rightarrow A D_{1} \equiv A D_{2}, O D_{1} \equiv O D_{2} \& O C \equiv O C \& \angle D_{1} O C \equiv \angle D_{2} O C \xrightarrow{\mathrm{~T} 1.3 .4} \triangle C O D_{1} \equiv \triangle C O D_{2} \Rightarrow$ $C D_{1} \equiv C D_{2}$. Therefore, $A D_{1} \equiv A D_{2} \& C D_{1} \equiv C D_{2} \& A C \equiv A C \stackrel{\mathrm{~T} 1.3 .10}{\Longrightarrow} \triangle A D_{1} C \equiv \triangle A D_{2} C \Rightarrow \angle D_{1} A C \equiv$ $\angle D_{2} A C$. We also have $k \subset \operatorname{Int} \angle(h, l) \xrightarrow{\text { L1.2.21.10 }} \exists B(B \in k \&[A B C])$. But $[A B C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{B}=A_{C} \Rightarrow \angle D_{1} A B=$ $\angle D_{1} A C \& \angle D_{2} A B=\angle D_{2} A C$, and we have $\angle D_{1} A C \equiv \angle D_{2} A C \& \angle D_{1} A B=\angle D_{1} A C \& \angle D_{2} A B=\angle D_{2} A C \Rightarrow$ $\angle D_{1} A B \equiv \angle D_{2} A B$. Hence $A D_{1} \equiv A D_{2} \& A B \equiv A B \& D_{1} A B \equiv \angle D_{2} A B \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle D_{1} A B \equiv \triangle D_{2} A B \Rightarrow B D_{1} \equiv$ $B D_{2}$. Finally, we have $O D_{1} \equiv O D_{2} \& B D_{1} \equiv B D_{2} \Rightarrow \angle a_{O B} \perp a_{D_{1} D_{2}},{ }^{446}$ which obviously amounts to $b \perp d$, q.e.d.

Theorem 1.3.42. Suppose a line d is perpendicular to two (distinct) lines a, c, meeting in a point O. Then any line b perpendicular to d in O^{447} lies in the plane α defined by the intersecting lines a, c. In particular, if a line d is perpendicular to a plane α at a point O, any line b drawn through O perpendicular to d lies in the plane α.

[^129]

Figure 1.159: Suppose a line d is perpendicular to two lines a, c, drawn in a plane α through a point O. Then d is perpendicular to α.

Proof. By T 1.1.3 $\exists \alpha(a \subset \alpha \& c \subset \alpha)$. By T 1.3.41 $d \perp \alpha$. Let b be a line, perpendicular to d at O, i.e. $O=b \cap d$, $b \perp d$. Using T 1.1.3, draw a plane β containing the lines b, d, intersecting at O. Since the point O lies on both planes α, β, these planes by T 1.1 .5 have a common line f. Note that, from definition, $d \perp \alpha \& f \subset \alpha \Rightarrow d \perp f$. But since the lines b, f both lie in one plane β and are both perpendicular to d at the same point O, by L 1.3.8.3 we have $b=f \subset \alpha$, q.e.d.

Theorem 1.3.43. Given a line a and an arbitrary point O on it, there is exactly one plane α perpendicular to a at O.

Proof. (See Fig. 1.161.) By L 1.1.2.1 $\exists B B \notin a$. By T $1.2 .1 \exists \beta(a \subset \beta \& B \in \beta)$. By L $1.1 .2 .6 \exists C C \notin \beta$. By T 1.2 .1 $\exists \gamma(a \subset \gamma \& B \in \gamma) . C \notin \beta \& C \in \gamma \Rightarrow \beta \neq \gamma$. Using L 1.3.8.3, we can draw in plane β a line b perpendicular to a. Similarly, by L 1.3.8.3 $\exists c(c \subset \gamma \& c \perp a)$. Obviously, $b \neq c$, for otherwise the planes β and γ, both drawn through the lines a and $b=c$, intersecting at O, would coincide. Since the lines b, c are distinct and concur at O, by T 1.1.3 there exists a plane α containing both b and c. Then by T 1.3.41 $a \perp \alpha$.

To show uniqueness, suppose there are two distinct planes $\alpha, \beta, \alpha \neq \beta$, both perpendicular to the line a at the same point O. (See Fig. 1.162.) Since the planes α, β are distinct, there is a point B such that $B \in \beta, B \notin \alpha$. We have $B \notin a \stackrel{\text { T1.1.2 }}{\Longrightarrow} \exists \gamma(a \subset \gamma \& B \in \gamma)$. ${ }^{448}$ We have $O \in \alpha \cap \gamma \xrightarrow{\text { T1.1.5 }} \exists c(c=\alpha \cap \gamma) .^{449} a \perp \alpha \& c \subset \alpha \& O \in c \Rightarrow a \perp c$. $a \perp \beta \& a_{O B} \subset \beta \& O \in a_{O B} \Rightarrow a \perp a_{O B}$. We see now that the lines $a_{O B}, c$, lying in the plane γ, are both perpendicular to the line a at the same point O. By L 1.3.8.3 this means that $a_{O B}=c$, which implies $B \in c \subset \alpha-\mathrm{a}$ contradiction with B having been chosen so that $B \notin \alpha$. The contradiction shows that in fact there can be no more than one plane perpendicular to a given line at a given point, q.e.d.

Theorem 1.3.44. Given a plane α and an arbitrary point O on it, there is exactly one line a perpendicular to α at O.

Proof. It is convenient to start by proving uniqueness. Suppose the contrary, i.e. that there are two distinct lines, a and b, both perpendicular to the plane α at the same point O (see Fig. 1.163.) Since a, b are distinct lines concurrent at O, by T 1.1.3 there is a plane β containing both of them. We have $O \in \alpha \cap \beta \stackrel{\text { T1.1.5 }}{\Longrightarrow} \exists f f=\alpha \cap \beta$. $a \perp \alpha \& b \perp \alpha \& f \subset \alpha \Rightarrow a \perp f \& b \perp f$. We come to the conclusion that the lines a, b, lying in the same plane β as the line f, are both perpendicular to f in the same point O, in contradiction with L 1.3.8.3. This contradiction shows that in fact there can be no more than one line perpendicular to a given plane at a given point.

To show existence of a line a such that $a \perp \alpha$ at O (See Fig. 1.164), take in addition to O two other points B, C on α such that O, B, C do not colline (see T 1.1.6). Using the preceding theorem (T 1.3.43), construct planes β, γ such that $\left(a_{O B} \perp \beta\right)_{O},\left(a_{O C} \perp \gamma\right)_{O} .{ }^{450}$ Observe, further, that $\beta \neq \gamma$, for otherwise, using the result of the proof of uniqueness given above, we would have $\left(a_{O B} \perp \beta\right)_{O} \&\left(a_{O C} \perp \gamma\right)_{O} \& \beta=\gamma \Rightarrow a_{O B}=a_{O C}$, which contradicts the

[^130]

Figure 1.160: Suppose a line d is perpendicular to two (distinct) lines a, c, meeting in a point O. Then any line b perpendicular to d in O lies in the plane α defined by the intersecting lines a, c.

Figure 1.161: Illustration for proof of existence in T 1.3.43.

Figure 1.162: Illustration for proof of uniqueness in T 1.3.43.
choice of the points B, C as non-collinear with O. Sharing a point O, the distinct planes β, γ have in common a whole line a by T 1.1.5. We have $a_{O B} \perp \beta \& a \subset \beta \Rightarrow a \perp a_{O B}, a_{O C} \perp \gamma \& a \subset \gamma \Rightarrow a \perp a_{O C}$. Being perpendicular at the same point O to both lines $a_{O B}, a_{O C}$ lying in plane α, the line a is perpendicular to α by T1.3.41.

Theorem 1.3.45. Given a plane α and an arbitrary point O not on it, exactly one line a perpendicular to α can be drawn through O.

Proof. (See Fig. 1.165.) Draw a line a in plane α (see C 1.1.6.4). Using L 1.3.8.1, draw through O a line b perpendicular to a at some point Q. Using L 1.3.8.3, draw in α a line c perpendicular to a at Q. Using L 1.3.8.3 again, draw through O a line d perpendicular to c at some point P. If $P=Q$, the line $a_{O P}$, being perpendicular at the point $P=Q$ to two distinct lines a, c in the plane α, is perpendicular to the plane α itself by T1.3.41. Suppose now $P \neq Q$. Using A 1.3.1, choose a point O^{\prime} such that $\left[O P O^{\prime}\right], O P \equiv O^{\prime} P$. Note that $(d \perp c)_{P}$ implies that $\angle O P Q, \angle O^{\prime} P Q$ are both right angles. Now we can write $O P \equiv O^{\prime} P \& \angle O P Q \equiv \angle O^{\prime} P Q \& P Q \equiv P Q \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle O P Q \equiv \triangle O^{\prime} P Q \Rightarrow O Q \equiv O^{\prime} Q$. Using T 1.1.3, draw a plane β through the two distinct lines $a_{O Q}, a_{P Q}$ meeting at Q. Since the line a is perpendicular at Q to both $a_{O Q}=b, a_{P Q}=c$, it is perpendicular to the plane β by T 1.3.41, which means, in particular, that a is perpendicular to $a_{O^{\prime} Q} \subset \beta$. Since $a \perp a_{O Q}, a \perp a_{O^{\prime} Q}$, where $a_{O Q} \subset \beta, a_{O^{\prime} Q} \subset \beta,{ }^{451}$ choosing on the line a a point A distinct from Q, we have by T 1.3 .16 ($\angle A Q O, \angle A Q O^{\prime}$ both being right angles) $\angle A Q O \equiv \angle A Q O^{\prime}$. Hence $A Q \equiv A Q \& \angle A Q O \equiv \angle A Q O^{\prime} \& \angle O Q \equiv \angle O^{\prime} Q \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A Q O \equiv \triangle A Q O^{\prime} \Rightarrow A O \equiv A O^{\prime}$. The interval $A P$, being the median of the isosceles triangle $\triangle O A O^{\prime}$ joining the vertex A with the base $O O^{\prime}$, is also an altitude. That is, we have $a_{A P} \perp a_{O O^{\prime}}$, where $a_{O O^{\prime}}=d$. Note that $A \in a \subset \alpha \& P \in c \subset \alpha \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{A P} \subset \alpha$. Since the line d is perpendicular at P to both $c \subset \alpha, a_{A P} \subset \alpha$, by T 1.3.41 we obtain $d \perp \alpha$, which completes the proof of existence.

To show uniqueness, suppose the contrary, i.e. suppose there are two lines a, b, both drawn through a point O, such that a, b are both perpendicular to a plane $\alpha \not \supset O$ at two distinct points A and B, respectively (See Fig. 1.166.) . Then $A \in \alpha \& B \in \alpha \stackrel{\text { A1.1. } 6}{\Longrightarrow} a_{A B} \subset \alpha$, and the angles $\angle O A B, \angle O B A$ of the triangle $\triangle O A B$ would both be right angles, which contradicts This contradiction shows that in fact through a point O not lying on a plane α at most one line perpendicular to α can be drawn.

In geometry, the set of geometric objects (usually points) with a given property is often referred to as the locus of points with that property.

Given an interval $A B$, a plane α, perpendicular to the line $a_{A B}$ at the midpoint M of $A B$, is called a perpendicular plane bisector of the interval $A B$.

Theorem 1.3.46. Every interval has exactly one perpendicular plane bisector.

[^131]

Figure 1.163: Illustration for proof of uniqueness in T 1.3.44.

Figure 1.164: Illustration for proof of existence in T 1.3.44.

Figure 1.165: Illustration for proof of existence in T 1.3.45.

Figure 1.166: Illustration for proof of uniqueness in T 1.3.45.

Figure 1.167: The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane bisector of the interval $A B$.

Proof. In fact, by T 1.3 .22 every interval $A B$ has exactly one midpoint M. By T 1.3 .43 there is exactly one plane perpendicular to $a_{A B}$ at M.

Theorem 1.3.47. The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane bisector of the interval $A B$.

Proof. (See Fig. 1.167.) Using T 1.3.43, draw a plane α perpendicular to $a_{A B}$ at $M=\operatorname{mid} A B$. Obviously, $A M \equiv$ $M B$ by the definition of midpoint. If $C \neq M, C \in \alpha$, then $a_{A B} \perp \alpha$ implies $\angle A M C \equiv \angle B M C$, both $\angle A M C, \angle B M C$ being right angles. Hence $A M \equiv M B \& \angle A M C \equiv \angle B M C \& C M \equiv C M \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A C M \equiv \triangle B C M \Rightarrow A C \equiv C B$, ${ }^{452}$ i.e. the point C is equidistant from A, B.

Suppose now that a point C is equidistant from A, B, and show that C lies in α. For $C=M$ this is true by construction. Suppose $C \neq M$. Then $C \notin a_{A B}$, the midpoint M of $A B$ being (by C 1.3.23.2) the only point of the line $a_{A B}$ equidistant from A, B. Hence we can write $A C \equiv B C \& A M \equiv B M \stackrel{\mathrm{T1.3.24}}{\Longrightarrow} a_{C M} \perp a_{A B}$, whence by Т 1.3.42 $a_{C M} \subset \alpha$.

Theorem 1.3.48. Proof.
Theorem 1.3.49. Proof.
Theorem 1.3.50. Proof.
Consider a subclass $\mathcal{C}^{g b r}$ of the class $\mathcal{C}_{0}^{g b r}$ of all those sets \mathfrak{J} that are equipped with a (weak) generalized betweenness relation. Let $\mathfrak{I}=\left\{\{\mathcal{A}, \mathcal{B}\} \mid \exists \mathfrak{J} \in \mathcal{C}^{g b r} \mathcal{A} \in \mathfrak{J} \& \mathcal{B} \in \mathfrak{J}\right\}$ be a set (of two - element subsets of $\mathcal{C}^{g b r}$) where a relation of generalized congruence is defined. ${ }^{453}$ Then we have: ${ }^{454}$

Lemma 1.3.51.1. Suppose geometric objects $\mathcal{B} \in \mathfrak{J}$ and $\mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}$ lie between geometric objects $\mathcal{A} \in \mathfrak{J}$, $\mathcal{C} \in \mathfrak{J}$ and $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime}, \mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$, respectively. Then $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime}$ imply $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$.

Proof. $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime} \stackrel{\text { L1.3.15.3 }}{\Longrightarrow} \exists \mathcal{C}^{\prime \prime} \quad\left[\mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} . \quad\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \stackrel{\text { Pr1.2.7 }}{\Longrightarrow} \quad\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right]$ $\&\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right]$. $[\mathcal{A B C}] \&\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right] \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \stackrel{\text { Pr1.3.3 }}{\Longrightarrow} \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$. Since also $\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right]$, by L 1.3.15.3 we conclude that $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$.

Lemma 1.3.51.2. Suppose geometric objects \mathcal{B} and \mathcal{B}^{\prime} lie between geometric objects \mathcal{A}, \mathcal{C} and \mathcal{A}^{\prime}, \mathcal{C}^{\prime}, respectively. Then $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$ imply $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime}$.

Proof. By L 1.3.15.14 we have either $\mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$, or $\mathcal{B}^{\prime} \mathcal{C}^{\prime}<\mathcal{B C}$, or $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime}$. Suppose $\mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$. Then $[\mathcal{A B C}] \&\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] \& \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime} \stackrel{\mathrm{L} 1.3 .14 .4}{\Longrightarrow} \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$, which contradicts $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$ in view of L 1.3.15.11. Suppose $\mathcal{B}^{\prime} \mathcal{C}^{\prime}<\mathcal{B C}$. In this case $[\mathcal{A B C}] \&\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] \& \mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{B}^{\prime} \mathcal{C}^{\prime}<\mathcal{B C} \stackrel{\text { L1.3.51.1 }}{\Longrightarrow} \mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{A C}$, which contradicts $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$ in view of L 1.3.15.10. Thus, we have $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime}$ as the only remaining possibility.

[^132]Lemma 1.3.51.3. Suppose geometric objects \mathcal{B} and \mathcal{B}^{\prime} lie between geometric objects \mathcal{A}, \mathcal{C} and \mathcal{A}^{\prime}, \mathcal{C}^{\prime}, respectively. Then $\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ and $\mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime}$ imply $\mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime} .{ }^{455}$

Proof. $\left.\mathcal{A B}<\mathcal{A}^{\prime} \mathcal{B}^{\prime} \& \mathcal{B C}<\mathcal{B}^{\prime} \mathcal{C}^{\prime} \stackrel{\text { L1.3.15.3 }}{\Longrightarrow} \exists \mathcal{A}^{\prime \prime}\left(\left[\mathcal{B}^{\prime} \mathcal{A}^{\prime \prime} \mathcal{A}^{\prime}\right]\right) \& \mathcal{B} \mathcal{A} \equiv \mathcal{B}^{\prime} \mathcal{A}^{\prime \prime}\right) \& \exists \mathcal{C}^{\prime \prime}\left(\left[\mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right)$. [$\left.\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{A}^{\prime} \mathcal{A}^{\prime \prime} \mathcal{B}^{\prime}\right]$ $\&\left[\mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \stackrel{\text { L1.2.7 }}{\Longrightarrow}\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right] \&\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{A}^{\prime} \mathcal{A}^{\prime \prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] .\left[\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \stackrel{\operatorname{Pr} 1.2 .7}{\Longrightarrow}\left[\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right] .[\mathcal{A B C}] \&\left[\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime}\right] \& \mathcal{A B} \equiv$ $\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime} \& \mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime \prime} \stackrel{\text { Pr1.3.3 }}{\Longrightarrow} \mathcal{A C} \equiv \mathcal{A}^{\prime \prime} \mathcal{C}^{\prime \prime}$. Finally, $\left[\mathcal{A}^{\prime} \mathcal{A}^{\prime \prime} \mathcal{C}^{\prime}\right] \&\left[\mathcal{A}^{\prime} \mathcal{C}^{\prime \prime} \mathcal{C}^{\prime}\right] \& \mathcal{A C} \equiv \mathcal{A}^{\prime \prime} \mathcal{C}^{\prime \prime} \stackrel{\text { L1.3.15.3 }}{\Longrightarrow} \mathcal{A C}<\mathcal{A}^{\prime} \mathcal{C}^{\prime}$.

In the following L 1.3.51.4-L 1.3.51.7 we assume that finite sequences of n geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n} \in \mathfrak{J}$ and $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n} \in \mathfrak{J}^{\prime}$, where $n \geq 3$, have the property that every geometric object of the sequence, except the first $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ and the last $\left(\mathcal{A}_{n}, \mathcal{B}_{n}\right.$, respectively), lies between the two geometric objects of the sequence with the numbers adjacent (in \mathbb{N}) to the number of the given geometric object. Suppose, further, that $\forall i \in \mathbb{N}_{n-2} \mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{A}_{i+1} \mathcal{A}_{i+2}$, $\mathcal{B}_{i} \mathcal{B}_{i+1} \equiv \mathcal{B}_{i+1} \mathcal{B}_{i+2} .{ }^{456}$

Lemma 1.3.51.4. If $\forall i \in \mathbb{N}_{n-1} \quad \mathcal{A}_{i} \mathcal{A}_{i+1} \leqq \mathcal{B}_{i} \mathcal{B}_{i+1}$ and $\exists i_{0} \in \mathbb{N}_{n-1} \quad \mathcal{A}_{i_{0}} \mathcal{A}_{i_{0}+1}<\mathcal{B}_{i_{0}} \mathcal{B}_{i_{0}+1}$, then $\mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$.
Proof. Choose $i_{0} \rightleftharpoons \min \left\{i \mid \mathcal{A}_{i} \mathcal{A}_{i+1}<\mathcal{B}_{i} \mathcal{B}_{i+1}\right\}$. For $i_{0} \in \mathbb{N}_{n-2}$ we have by the induction assumption $\mathcal{A}_{1} \mathcal{A}_{n-1}<$ $\mathcal{B}_{1} \mathcal{B}_{n-1}$. Then we can write either $\mathcal{A}_{1} \mathcal{A}_{n-1}<\mathcal{B}_{1} \mathcal{B}_{n-1} \& \mathcal{A}_{n-1} \mathcal{A}_{n} \equiv \mathcal{B}_{n-1} \mathcal{B}_{n} \stackrel{\text { L1.3.51.1 }}{\Longrightarrow} \mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$, or $\mathcal{A}_{1} \mathcal{A}_{n-1}<$ $\mathcal{B}_{1} \mathcal{B}_{n-1} \& \mathcal{A}_{n-1} \mathcal{A}_{n}<\mathcal{B}_{n-1} \mathcal{B}_{n} \stackrel{\text { L1.3.51.3 }}{\Longrightarrow} \mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$. For $i_{0}=n-1$ we have by T $1.3 .14 \mathcal{A}_{1} \mathcal{A}_{n-1} \equiv \mathcal{B}_{1} \mathcal{B}_{n-1}$. Then $\mathcal{A}_{1} \mathcal{A}_{n-1} \equiv \mathcal{B}_{1} \mathcal{B}_{n-1} \& \mathcal{A}_{n-1} \mathcal{A}_{n}<\mathcal{B}_{n-1} \mathcal{B}_{n} \stackrel{\text { L1.3.51.1 }}{\Longrightarrow} \mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$.
Corollary 1.3.51.5. If $\forall i \in \mathbb{N}_{n-1} \quad \mathcal{A}_{i} \mathcal{A}_{i+1} \leqq \mathcal{B}_{i} \mathcal{B}_{i+1}$, then $\mathcal{A}_{1} \mathcal{A}_{n} \leqq \mathcal{B}_{1} \mathcal{B}_{n}$.
Proof. Immediately follows from T 1.3.14, L 1.3.51.4.
Lemma 1.3.51.6. The inequality $\mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$ implies that $\forall i, j \in \mathbb{N}_{n-1} \mathcal{A}_{i} \mathcal{A}_{i+1}<\mathcal{B}_{j} \mathcal{B}_{j+1}$.
Proof. It suffices to show that $\mathcal{A}_{1} \mathcal{A}_{2}<\mathcal{B}_{1} \mathcal{B}_{2}$, because then by L 1.3.15.6, L 1.3.15.7 we have $\mathcal{A}_{1} \mathcal{A}_{2}<\mathcal{B}_{1} \mathcal{B}_{2} \& \mathcal{A}_{1} \mathcal{A}_{2} \equiv$ $\mathcal{A}_{i} \mathcal{A}_{i+1} \& \mathcal{B}_{1} \mathcal{B}_{2} \equiv \mathcal{B}_{j} \mathcal{B}_{j+1} \Rightarrow \mathcal{A}_{i} \mathcal{A}_{i+1}<\mathcal{B}_{j} \mathcal{B}_{j+1}$ for all $i, j \in \mathbb{N}_{n-1}$. Suppose the contrary, i.e. that $\mathcal{B}_{1} \mathcal{B}_{2} \leqq \mathcal{A}_{1} \mathcal{A}_{2}$. Then by L 1.3 .14 .1 , L 1.3 .15 .6 , L 1.3 .15 .7 we have $\mathcal{B}_{1} \mathcal{B}_{2} \leqq \mathcal{A}_{1} \mathcal{A}_{2} \& \mathcal{B}_{1} \mathcal{B}_{2} \equiv \mathcal{B}_{i} \mathcal{B}_{i+1} \& \mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{A}_{i} \mathcal{A}_{i+1} \Rightarrow \mathcal{B}_{i} \mathcal{B}_{i+1} \leqq$ $\mathcal{A}_{i} \mathcal{A}_{i+1}$ for all $i \in \mathbb{N}_{n-1}$, whence by C 1.3.51.5 $\mathcal{B}_{1} \mathcal{B}_{n} \leqq \mathcal{A}_{1} \mathcal{A}_{n}$, which contradicts the hypothesis in view of L 1.3.15.10, C 1.3.15.12.

Lemma 1.3.51.7. The congruence $\mathcal{A}_{1} \mathcal{A}_{n} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$ implies that $\forall i, j \in \mathbb{N}_{n-k} \quad \mathcal{A}_{i} \mathcal{A}_{i+k} \equiv \mathcal{B}_{j} \mathcal{B}_{j+k}$, where $k \in \mathbb{N}_{n-1}$. 457

Proof. Again, it suffices to show that $\mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{B}_{1} \mathcal{B}_{2}$, for then we have $\mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{B}_{1} \mathcal{B}_{2} \& \mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{A}_{i} \mathcal{A}_{i+1} \& \mathcal{B}_{1} \mathcal{B}_{2} \equiv$ $\mathcal{B}_{j} \mathcal{B}_{j+1} \stackrel{\text { L1.3.14.1 }}{\Longrightarrow} \mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{B}_{j} \mathcal{B}_{j+1}$ for all $i, j \in \mathbb{N}_{n-1}$, whence the result follows in an obvious way from T 1.3 .14 and L 1.3.14.1. Suppose $\mathcal{A}_{1} \mathcal{A}_{2}<\mathcal{B}_{1} \mathcal{B}_{2}$. ${ }^{458}$ Then by L 1.3.15.6, L 1.3.15.7 we have $\mathcal{A}_{1} \mathcal{A}_{2}<\mathcal{B}_{1} \mathcal{B}_{2} \& \mathcal{A}_{1} \mathcal{A}_{2} \equiv$ $\mathcal{A}_{i} \mathcal{A}_{i+1} \& \mathcal{B}_{1} \mathcal{B}_{2} \equiv \mathcal{B}_{i} \mathcal{B}_{i+1} \Rightarrow \mathcal{A}_{i} \mathcal{A}_{i+1}<\mathcal{B}_{i} \mathcal{B}_{i+1}$ for all $i \in \mathbb{N}_{n-1}$, whence $\mathcal{A}_{1} \mathcal{A}_{n}<\mathcal{B}_{1} \mathcal{B}_{n}$ by L 1.3.51.4, which contradicts $\mathcal{A}_{1} \mathcal{A}_{n} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$ in view of L 1.3.15.11.

If a finite sequence of geometric objects \mathcal{A}_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, has the property that every geometric object of the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in \mathbb{N}) numbers, and, furthermore, $\mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{A}_{2} \mathcal{A}_{3} \equiv \ldots \equiv \mathcal{A}_{n-1} \mathcal{A}_{n},{ }^{459}$ we say that the generalized interval $\mathcal{A}_{1} \mathcal{A}_{n}$ is divided into $n-1$ congruent intervals $\mathcal{A}_{1} \mathcal{A}_{2}, \mathcal{A}_{2} \mathcal{A}_{3}, \ldots, \mathcal{A}_{n-1} \mathcal{A}_{n}$ (by the geometric objects $\mathcal{A}_{2}, \mathcal{A}_{3}, \ldots \mathcal{A}_{n-1}$).

If a generalized interval $\mathcal{A}_{1} \mathcal{A}_{n}$ is divided into generalized intervals $\mathcal{A}_{i} \mathcal{A}_{i+1}, i \in \mathbb{N}_{n-1}$, all congruent to a generalized interval $\mathcal{A B}$ (and, consequently, to each other), we can also say, with some abuse of language, that the generalized interval $\mathcal{A}_{1} \mathcal{A}_{n}$ consists of $n-1$ generalized intervals $\mathcal{A B}$ (or, to be more precise, of $n-1$ instances of the generalized interval $\mathcal{A B}$).

If a generalized interval $\mathcal{A}_{0} \mathcal{A}_{n}$ is divided into n intervals $\mathcal{A}_{i-1} \mathcal{A}_{i}, i \in \mathbb{N}_{n}$, all congruent to a generalized interval $\mathcal{C D}$ (and, consequently, to each other), we shall say, using a different kind of folklore, that the generalized interval $\mathcal{C D}$ is laid off n times from the geometric object \mathcal{A}_{0} on the generalized ray $\mathcal{A}_{0 \mathcal{P}}$, reaching the geometric object \mathcal{A}_{n}, where \mathcal{P} is some geometric object such that the generalized ray $\mathcal{A}_{0 \mathcal{P}}$ contains the geometric objects $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$. ${ }^{460}$

[^133]Lemma 1.3.51.8. If generalized intervals $\mathcal{A}_{1} \mathcal{A}_{k}$ and $\mathcal{B}_{1} \mathcal{B}_{n}$ consist, respectively, of $k-1$ and $n-1$ generalized intervals $\mathcal{A B}$, where $k<n$, then the generalized interval $\mathcal{A}_{1} \mathcal{A}_{k}$ is shorter than the generalized interval $\mathcal{B}_{1} \mathcal{B}_{n}$.

Proof. We have, by hypothesis (and T 1.3.1) $\mathcal{A B} \equiv \mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{A}_{2} \mathcal{A}_{3} \equiv \ldots \equiv \mathcal{A}_{k-1} \mathcal{A}_{k} \equiv \mathcal{B}_{1} \mathcal{B}_{2} \equiv \mathcal{B}_{2} \mathcal{B}_{3} \equiv \ldots \equiv \mathcal{B}_{n-1} \mathcal{B}_{n}$, where $\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{i+2}\right]$ for all $i \in \mathbb{N}_{k-2}$ and $\left[\mathcal{B}_{i} \mathcal{B}_{i+1} \mathcal{B}_{i+2}\right]$ for all $i \in \mathbb{N}_{n-2}$. Hence by T 1.3.14 $\mathcal{A}_{1} \mathcal{A}_{k} \equiv \mathcal{B}_{1} \mathcal{B}_{k}$, and by L 1.2.22.11 $\left[\mathcal{B}_{1} \mathcal{B}_{k} \mathcal{B}_{n}\right]$. By L 1.3.15.3 this means $\mathcal{A}_{1} \mathcal{A}_{k}<\mathcal{B}_{1} \mathcal{B}_{n}$.

Lemma 1.3.51.9. If a generalized interval $\mathcal{E} \mathcal{F}$ consists of $k-1$ generalized intervals $\mathcal{A B}$, and, at the same time, of $n-1$ generalized intervals $\mathcal{C D}$, where $k>n$, the generalized interval $\mathcal{A B}$ is shorter than the generalized interval $\mathcal{C D}$.

Proof. We have, by hypothesis, $\mathcal{E F} \equiv \mathcal{A}_{1} \mathcal{A}_{k} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$, where $\mathcal{A B} \equiv \mathcal{A}_{1} \mathcal{A}_{2} \equiv \mathcal{A}_{2} \mathcal{A}_{3} \equiv \ldots \equiv \mathcal{A}_{k-1} \mathcal{A}_{k}, \mathcal{C D} \equiv \mathcal{B}_{1} \mathcal{B}_{2} \equiv$ $\mathcal{B}_{2} \mathcal{B}_{3} \equiv \ldots \equiv \mathcal{B}_{n-1} \mathcal{B}_{n}$, and, of course, $\forall i \in \mathbb{N}_{k-2}\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{i+2}\right]$ and $\forall i \in \mathbb{N}_{n-2}\left[\mathcal{B}_{i} \mathcal{B}_{i+1} \mathcal{B}_{i+2}\right]$. Suppose $\mathcal{A B} \equiv \mathcal{C D}$. Then the preceding lemma (L 1.3.51.8) would give $\mathcal{A}_{1} \mathcal{A}_{k}>\mathcal{B}_{1} \mathcal{B}_{n}$, which contradicts $\mathcal{A}_{1} \mathcal{A}_{k} \equiv \mathcal{B}_{1} \mathcal{B}_{n}$ in view of L 1.3.15.11. On the other hand, the assumption $\mathcal{A B}>\mathcal{C} \mathcal{D}$ would again give $\mathcal{A}_{1} \mathcal{A}_{k}>\mathcal{A}_{1} \mathcal{A}_{n}>\mathcal{B}_{1} \mathcal{B}_{n}$ by C 1.3.51.5, L 1.3.51.8. Thus, we conclude that $\mathcal{A B}<\mathcal{C D}$.

Corollary 1.3.51.10. If a generalized interval $\mathcal{A B}$ is shorter than the generalized interval $\mathcal{C D}$ and is divided into a larger number of congruent generalized intervals than is $\mathcal{A B}$, then (any of) the generalized intervals resulting from this division of $\mathcal{A B}$ are shorter than (any of) those resulting from the division of $\mathcal{C D}$.

Proof.
Lemma 1.3.51.11. Proof.
Let a generalized interval $\mathcal{A}_{0} \mathcal{A}_{n}$ be divided into n generalized intervals $\mathcal{A}_{0} \mathcal{A}_{1}, \mathcal{A}_{1} \mathcal{A}_{2} \ldots, \mathcal{A}_{n-1} \mathcal{A}_{n}$ (by the geometric objects $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots \mathcal{A}_{n-1}$) and a generalized interval $\mathcal{A}_{0}^{\prime} \mathcal{A}_{n}^{\prime}$ be divided into n generalized intervals $\mathcal{A}_{0}^{\prime} \mathcal{A}_{1}^{\prime}, \mathcal{A}_{1}^{\prime} \mathcal{A}_{2}^{\prime} \ldots, \mathcal{A}_{n-1}^{\prime} \mathcal{A}_{n}^{\prime}$ in such a way that $\forall i \in \mathbb{N}_{n} \mathcal{A}_{i-1} \mathcal{A}_{i} \equiv \mathcal{A}_{i-1}^{\prime} \mathcal{A}_{i}^{\prime}$. Also, let a geometric object \mathcal{B}^{\prime} lie on the generalized ray $\mathcal{A}_{0 \mathcal{A}_{i_{0}}^{\prime}}^{\prime}$, where $\mathcal{A}_{i_{0}}^{\prime}$ is one of the geometric objects $\mathcal{A}_{i}^{\prime}, i \in \mathbb{N}_{n}$; and, finally, let $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$. Then:
Lemma 1.3.51.12. - If \mathcal{B} lies on the generalized open interval $\left(\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the geometric object \mathcal{B}^{\prime} lies on the generalized open interval $\left(\mathcal{A}_{k-1}^{\prime} \mathcal{A}_{k}^{\prime}\right)$.

Proof. For $k=1$ we obtain the result immediately from $\operatorname{Pr} 1.3 .3$, so we can assume without loss of generality that $k>$ 1. Since $\mathcal{A}_{i_{0}}^{\prime}, \mathcal{B}^{\prime}$ (by hypothesis) and $\mathcal{A}_{i_{0}}^{\prime}, \mathcal{A}_{k-1}^{\prime}, \mathcal{A}_{k}^{\prime}$ (see L 1.2 .56 .18) lie on one side of \mathcal{A}_{0}^{\prime}, so do $\mathcal{A}_{k-1}^{\prime}, \mathcal{A}_{k}^{\prime}$, \mathcal{B}^{\prime}. Since also (by L 1.2.22.11) $\left[\mathcal{A}_{0} \mathcal{A}_{k-1} \mathcal{A}_{k}\right],\left[\mathcal{A}_{0}^{\prime} \mathcal{A}_{k-1}^{\prime} \mathcal{A}_{k}^{\prime}\right]$, we have $\left[\mathcal{A}_{0} \mathcal{A}_{k-1} \mathcal{A}_{k}\right] \&\left[\mathcal{A}_{k-1} \mathcal{B} \mathcal{A}_{k}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}\left[\mathcal{A}_{0} \mathcal{A}_{k-1} \mathcal{B}\right] \&\left[\mathcal{A}_{0} \mathcal{B} \mathcal{A}_{k}\right]$. Taking into account that (by hypothesis) $\mathcal{A}_{0} \mathcal{B} \equiv \mathcal{A}_{0}^{\prime} \mathcal{B}^{\prime}$ and (by L 1.3.51.7) $\mathcal{A}_{0} \mathcal{A}_{k-1} \equiv \mathcal{A}_{0}^{\prime} \mathcal{A}_{k-1}^{\prime}, \mathcal{A}_{0} \mathcal{A}_{k} \equiv \mathcal{A}_{0}^{\prime} \mathcal{A}_{k}^{\prime}$, we obtain by Pr 1.3.3 $\left[\mathcal{A}_{0}^{\prime} \mathcal{A}_{k-1}^{\prime} \mathcal{B}^{\prime}\right],\left[\mathcal{A}_{0}^{\prime} \mathcal{B}^{\prime} \mathcal{A}_{k}^{\prime}\right]$, whence by $\operatorname{Pr} 1.2 .6\left[\mathcal{A}_{k-1}^{\prime} \mathcal{B}^{\prime} \mathcal{A}_{k}^{\prime}\right]$, as required.

Lemma 1.3.51.13. - If \mathcal{B} coincides with the geometric object $\mathcal{A}_{k_{0}}$, where $k_{0} \in \mathbb{N}_{n}$, then \mathcal{B}^{\prime} coincides with $\mathcal{A}_{k_{0}}^{\prime}$.
Proof. Follows immediately from L 1.3.51.7, Pr 1.3.1.
Corollary 1.3.51.14. - If \mathcal{B} lies on the generalized half-open interval $\left[\mathcal{A}_{k-1} \mathcal{A}_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the geometric object \mathcal{B}^{\prime} lies on the generalized half-open interval $\left[\mathcal{A}_{k-1}^{\prime} \mathcal{A}_{k}^{\prime}\right)$.

Proof. Follows immediately from the two preceding lemmas, L 1.3.51.12 and L 1.3.51.13.
Theorem 1.3.51. Given a generalized interval $\mathcal{A}_{1} \mathcal{A}_{n+1}$, divided into n congruent generalized intervals $\mathcal{A}_{1} \mathcal{A}_{2}, \mathcal{A}_{2} \mathcal{A}_{3}, \ldots, \mathcal{A}_{n} \mathcal{A}_{n+1}$, if the first of these generalized intervals $\mathcal{A}_{1} \mathcal{A}_{2}$ is further subdivided into m_{1} congruent generalized intervals $\mathcal{A}_{1,1} \mathcal{A}_{1,2}, \mathcal{A}_{1,2} \mathcal{A}_{1,3}, \ldots, \mathcal{A}_{1, m_{1}} \mathcal{A}_{1, m_{1}+1}$, where $\forall i \in \mathbb{N}_{m_{1}-1}\left[\mathcal{A}_{1, i} \mathcal{A}_{1, i+1} \mathcal{A}_{1, i+2}\right]$, and we denote $\mathcal{A}_{1,1} \rightleftharpoons \mathcal{A}_{1}$ and $\mathcal{A}_{1, m_{1}+1} \rightleftharpoons \mathcal{A}_{2}$; the second generalized interval $\mathcal{A}_{2} \mathcal{A}_{3}$ is subdivided into mm_{2} congruent generalized intervals $\mathcal{A}_{2,1} \mathcal{A}_{2,2}, \mathcal{A}_{2,2} \mathcal{A}_{2,3}, \ldots, \mathcal{A}_{2, m_{2}} \mathcal{A}_{2, m_{2}+1}$, where $\forall i \in \mathbb{N}_{m_{2}-1}\left[\mathcal{A}_{2, i} \mathcal{A}_{2, i+1} \mathcal{A}_{2, i+2}\right]$, and we denote $\mathcal{A}_{2,1} \rightleftharpoons \mathcal{A}_{2}$ and $\mathcal{A}_{2, m_{1}+1} \rightleftharpoons \mathcal{A}_{3} ; \ldots ;$ the $n^{\text {th }}$ generalized interval $\mathcal{A}_{n} \mathcal{A}_{n+1}$ - into m_{n} congruent generalized intervals $\mathcal{A}_{n, 1} \mathcal{A}_{n, 2}, \mathcal{A}_{n, 2} \mathcal{A}_{n, 3}, \ldots, \mathcal{A}_{n, m_{n}} \mathcal{A}_{n, m_{n}+1}$, where $\forall i \in \mathbb{N}_{m_{n}-1}\left[\mathcal{A}_{n, i} \mathcal{A}_{n, i+1} \mathcal{A}_{n, i+2}\right]$, and we denote $\mathcal{A}_{1,1} \rightleftharpoons \mathcal{A}_{1}$ and $\mathcal{A}_{1, m_{1}+1} \rightleftharpoons \mathcal{A}_{n+1}$. Then the generalized interval $\mathcal{A}_{1} \mathcal{A}_{n+1}$ is divided into the $m_{1}+m_{2}+\cdots+m_{n}$ congruent generalized intervals $\mathcal{A}_{1,1} \mathcal{A}_{1,2}, \mathcal{A}_{1,2} \mathcal{A}_{1,3}, \ldots, \mathcal{A}_{1, m_{1}} \mathcal{A}_{1, m_{1}+1}, \mathcal{A}_{2,1} \mathcal{A}_{2,2}, \mathcal{A}_{2,2} \mathcal{A}_{2,3}, \ldots, \mathcal{A}_{2, m_{2}} \mathcal{A}_{2, m_{2}+1}, \ldots, \mathcal{A}_{n, 1} \mathcal{A}_{n, 2}, \mathcal{A}_{n, 2} \mathcal{A}_{n, 3}$, $\ldots, \mathcal{A}_{n, m_{n}} \mathcal{A}_{n, m_{n}+1}$.

In particular, if a generalized interval is divided into n congruent generalized intervals, each of which is further subdivided into m congruent generalized intervals, the starting generalized interval turns out to be divided into mn congruent generalized intervals.

Proof. Using L 1.2.22.11, we have for any $j \in \mathbb{N}_{n-1}:\left[\mathcal{A}_{j, 1} \mathcal{A}_{j, m_{j}} \mathcal{A}_{j, m_{j}+1}\right]$, $\left[\mathcal{A}_{j+1,1} \mathcal{A}_{j+1,2} \mathcal{A}_{j+1, m_{j+1}+1}\right]$. Since, by definition, $\mathcal{A}_{j, 1}=\mathcal{A}_{j}, \mathcal{A}_{j, m_{j}+1}=\mathcal{A}_{j+1,1}=\mathcal{A}_{j+1}$ and $\mathcal{A}_{j+1, m_{j+1}+1}=\mathcal{A}_{j+2}$, we can write $\left[\mathcal{A}_{j} \mathcal{A}_{j, m_{j}} \mathcal{A}_{j+1}\right] \&\left[\mathcal{A}_{j} \mathcal{A}_{j+1} \mathcal{A}_{j+2}\right] \xrightarrow{\operatorname{Pr} 1.2 .7}$ $\left.\left[\mathcal{A}_{j, m_{j}} \mathcal{A}_{j+1} \mathcal{A}\right]_{j+2}\right]$ and $\left[\mathcal{A}_{j, m_{j}} \mathcal{A}_{j+1} \mathcal{A}_{j+2}\right] \&\left[\mathcal{A}_{j+1} \mathcal{A}_{j+1,2} \mathcal{A}_{j+2}\right] \stackrel{\operatorname{Pr1.2.7}}{\Longrightarrow}\left[\mathcal{A}_{j, m_{j}} \mathcal{A}_{j+1} \mathcal{A}_{j+1,2}\right]$. Since this is proven for all $j \in \mathbb{N}_{n-1}$, we have all the required betweenness relations. The rest is obvious. ${ }^{461} \square$

[^134]Let $\mathfrak{J}, \mathfrak{J}^{\prime}$ be, respectively, either the pencil $\mathfrak{J}_{0}, \mathfrak{J}_{0}^{\prime}$ of all rays lying in a plane α, α^{\prime} on the same side of a line a, a^{\prime} containing the initial point O, O^{\prime} of the rays, or the pencil $\mathfrak{J}_{0}, \mathfrak{J}_{0}^{\prime}$ just described, augmented by the rays h, h^{c} and h^{\prime}, $h^{\prime c}$, respectively, where $h \cup\{O\} h^{c}=\mathcal{P}_{a}, h^{\prime} \cup\left\{O^{\prime}\right\} h^{\prime c}=\mathcal{P}_{a^{\prime}}{ }^{462}$ Then we have the following results through T 1.3.52:

Lemma 1.3.52.1. Suppose rays $k \in \mathfrak{J}$ and $k^{\prime} \in \mathfrak{J}^{\prime}$ lie between rays $h \in \mathfrak{J}, l \in \mathfrak{J}$ and $h^{\prime} \in \mathfrak{J}^{\prime}, l^{\prime} \in \mathfrak{J}$, respectively. Then $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$ and $\angle(k, l)<\angle\left(k^{\prime}, l^{\prime}\right)$ imply $\angle(h, l)<\angle\left(h^{\prime}, l^{\prime}\right)$.

Lemma 1.3.52.2. Suppose rays $k \in \mathfrak{J}$ and $k^{\prime} \in \mathfrak{J}^{\prime}$ lie between rays $h \in \mathfrak{J}, l \in \mathfrak{J}$ and $h^{\prime} \in \mathfrak{J}^{\prime}, l^{\prime} \in \mathfrak{J}$, respectively. Then $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$ and $\angle(h, l)<\angle\left(h^{\prime}, l^{\prime}\right)$ imply $\angle(k, l)<\angle\left(k^{\prime}, l^{\prime}\right)$.

Lemma 1.3.52.3. Suppose rays h and h^{\prime} lie between rays h, l and h^{\prime}, l^{\prime}, respectively. Then $\angle(h, k)<\angle\left(h^{\prime}, k^{\prime}\right)$ and $\angle(k, l)<\angle\left(k^{\prime}, l^{\prime}\right)$ imply $\angle(h, l)<\angle\left(h^{\prime}, l^{\prime}\right)$. ${ }^{463}$

In the following $\mathrm{L} 1.3 .52 .4-\mathrm{L} 1.3 .52 .7$ we assume that finite sequences of n rays $h_{1}, h_{2}, \ldots, h_{n} \in \mathfrak{J}$ and $k_{1}, k_{2}, \ldots, k_{n} \in \mathfrak{J}^{\prime}$, where $n \geq 3$, have the property that every ray of the sequence, except the first $\left(h_{1}, k_{1}\right)$ and the last (h_{n}, k_{n}, respectively), lies between the two rays of the sequence with the numbers adjacent (in \mathbb{N}) to the number of the given ray. Suppose, further, that $\forall i \in \mathbb{N}_{n-2} \angle\left(h_{i}, h_{i+1}\right) \equiv \angle\left(h_{i+1}, h_{i+2}\right), \angle\left(k_{i}, k_{i+1}\right) \equiv \angle\left(k_{i+1}, k_{i+2}\right)$.

Lemma 1.3.52.4. If $\forall i \in \mathbb{N}_{n-1} \angle\left(h_{i}, h_{i+1}\right) \leqq \angle\left(k_{i}, k_{i+1}\right)$ and $\exists i_{0} \in \mathbb{N}_{n-1} \angle\left(h_{i_{0}}, h_{i_{0}+1}\right)<\angle\left(k_{i_{0}}, k_{i_{0}+1}\right)$, then $\angle\left(h_{1}, h_{n}\right)<\angle\left(k_{1}, k_{n}\right)$.

Corollary 1.3.52.5. If $\forall i \in \mathbb{N}_{n-1} \angle\left(h_{i}, h_{i+1}\right) \leqq \angle\left(k_{i}, k_{i+1}\right)$, then $\angle\left(h_{1}, h_{n}\right) \leqq \angle\left(k_{1}, k_{n}\right)$.
Lemma 1.3.52.6. The inequality $\angle\left(h_{1}, h_{n}\right)<\angle\left(k_{1}, k_{n}\right)$ implies that $\forall i, j \in \mathbb{N}_{n-1} \angle\left(h_{i}, h_{i+1}\right)<\angle\left(k_{j}, k_{j+1}\right)$.
Lemma 1.3.52.7. The congruence $\angle\left(h_{1}, h_{n}\right) \equiv \angle\left(k_{1}, k_{n}\right)$ implies that $\forall i, j \in \mathbb{N}_{n-k} \angle\left(h_{i}, h_{i+k}\right) \equiv \angle\left(k_{j}, k_{j+k}\right)$, where $k \in \mathbb{N}_{n-1}$. ${ }^{464}$

If a finite sequence of rays h_{i}, where $i \in \mathbb{N}_{n}, n \geq 4$, has the property that every ray of the sequence, except for the first and the last, lies between the two rays with adjacent (in \mathbb{N}) numbers, and, furthermore, $\angle\left(h_{1}, h_{2}\right) \equiv \angle\left(h_{2}, h_{3}\right) \equiv$ $\ldots \equiv \angle\left(h_{n-1}, h_{n}\right),{ }^{465}$ we say that the angle $\angle\left(h_{1}, h_{n}\right)$ is divided into $n-1$ congruent angles $\angle\left(h_{1}, h_{2}\right), \angle\left(h_{2}, h_{3}\right), \ldots$, $\angle\left(h_{n-1}, h_{n}\right)$ (by the rays $\left.h_{2}, h_{3}, \ldots h_{n-1}\right)$.

If an angle $\angle\left(h_{1}, h_{n}\right)$ is divided angles $\angle\left(h_{i}, h_{i+1}\right)$, $i \in \mathbb{N}_{n-1}$, all congruent to an angle $\angle(h, k)$ (and, consequently, to each other), we can also say, with some abuse of language, that the angle $\angle\left(h_{1}, h_{n}\right)$ consists of $n-1$ angles $\angle(h, k)$ (or, to be more precise, of $n-1$ instances of the angle $\angle(h, k)$).

Lemma 1.3.52.8. If angles $\angle\left(h_{1}, h_{k}\right)$ and $\angle\left(k_{1}, k_{n}\right)$ consist, respectively, of $k-1$ and $n-1$ angles $\angle(h, k)$, where $k<n$, then the angle $\angle\left(h_{1}, h_{k}\right)$ is less than the angle $\angle\left(k_{1}, k_{n}\right)$.

Lemma 1.3.52.9. If an angle $\angle(p, q)$ consists of $k-1$ angles $\angle(h, k)$, and, at the same time, of $n-1$ angles $\angle(l, m)$, where $k>n$, the angle $\angle(h, k)$ is less than the angle $\angle(l, m)$.

Corollary 1.3.52.10. If an angle $\angle(h, k)$ is less than the angle $\angle(l, m)$ and is divided into a larger number of congruent angles than is $\angle(h, k)$, then (any of) the angles resulting from this division of $\angle(h, k)$ are less than (any of) those resulting from the division of $\angle(l, m)$.

Let an angle $\angle\left(h_{0}, h_{n}\right)$ be divided into n angles $\angle\left(h_{0}, h_{1}\right), \angle\left(h_{1}, h_{2}\right) \ldots, \angle\left(h_{n-1}, h_{n}\right)$ (by the rays $\left.h_{1}, h_{2}, \ldots h_{n-1}\right)$ and an angle $\angle\left(h_{0}^{\prime}, h_{n}^{\prime}\right)$ be divided into n angles $\angle\left(h_{0}^{\prime}, h_{1}^{\prime}\right), \angle\left(h_{1}^{\prime}, h_{2}^{\prime}\right) \ldots, \angle\left(h_{n-1}^{\prime}, h_{n}^{\prime}\right)$ in such a way that $\forall i \in$ $\mathbb{N}_{n} h_{i-1} h_{i} \equiv h_{i-1}^{\prime} h_{i}^{\prime}$. Also, let a ray k^{\prime} lie on the angular ray $h_{0 h_{i_{0}}^{\prime}}^{\prime}$, where $h_{i_{0}}^{\prime}$ is one of the rays $h_{i}^{\prime}, i \in \mathbb{N}_{n}$; and, finally, let $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. Then:

Lemma 1.3.52.11. - If the ray k lies inside the angle $\angle\left(h_{k-1}, h_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the ray k^{\prime} lies inside the angle $\angle\left(h_{k-1}^{\prime}, h_{k}^{\prime}\right)$.

Lemma 1.3.52.12. - If k coincides with the ray $h_{k_{0}}$, where $k_{0} \in \mathbb{N}_{n}$, then k^{\prime} coincides with $h_{k_{0}}^{\prime}$.
Corollary 1.3.52.13. - If k lies on the angular half-open interval $\left[h_{k-1} h_{k}\right)$, where $k \in \mathbb{N}_{n}$, then the ray k^{\prime} lies on the angular half-open interval $\left[h_{k-1}^{\prime} h_{k}^{\prime}\right)$.

[^135]Theorem 1.3.52. Given an angle $\angle\left(h_{1}, h_{n+1}\right)$, divided into n congruent angles $\angle\left(h_{1}, h_{2}\right), \angle\left(h_{2}, h_{3}\right), \ldots, \angle\left(h_{n}, h_{n+1}\right)$, if the first of these angles $\angle\left(h_{1}, h_{2}\right)$ is further subdivided into m_{1} congruent angles $\angle\left(h_{1,1}, h_{1,2}\right), \angle\left(h_{1,2}, h_{1,3}\right), \ldots$, $\angle\left(h_{1, m_{1}}, h_{1, m_{1}+1}\right)$, where $\forall i \in \mathbb{N}_{m_{1}-1} h_{1, i+1} \subset \operatorname{Int} \angle\left(h_{1, i}, h_{1, i+2}\right)$, and we denote $h_{1,1} \rightleftharpoons h_{1}$ and $h_{1, m_{1}+1} \rightleftharpoons$ h_{2}; the second angle $h_{2} h_{3}$ is subdivided into m_{2} congruent angles $h_{2,1} h_{2,2}, h_{2,2} h_{2,3}, \ldots, h_{2, m_{2}} h_{2, m_{2}+1}$, where $\forall i \in$ $\mathbb{N}_{m_{2}-1} h_{2, i+1} \subset \operatorname{Int} \angle\left(h_{2, i}, h_{2, i+2}\right)$, and we denote $h_{2,1} \rightleftharpoons h_{2}$ and $h_{2, m_{1}+1} \rightleftharpoons h_{3} ; \ldots ;$ the $n^{\text {th }}$ angle $\angle\left(h_{n}, h_{n+1}\right)$ - into m_{n} congruent angles $\angle\left(h_{n, 1}, h_{n, 2}\right), \angle\left(h_{n, 2}, h_{n, 3}\right), \ldots, \angle\left(h_{n, m_{n}}, h_{n, m_{n}+1}\right)$, where $\forall i \in \mathbb{N}_{m_{n}-1} h_{n, i+1} \subset$ Int $\angle\left(h_{n, i}, h_{n, i+2}\right)$, and we denote $h_{1,1} \rightleftharpoons h_{1}$ and $h_{1, m_{1}+1} \rightleftharpoons h_{n+1}$. Then the angle $\angle\left(h_{1}, h_{n+1}\right)$ is divided into the $m_{1}+m_{2}+\cdots+m_{n}$ congruent angles $\angle\left(h_{1,1}, h_{1,2}\right), \angle\left(h_{1,2}, h_{1,3}\right), \ldots, \angle\left(h_{1, m_{1}}, h_{1, m_{1}+1}\right), \angle\left(h_{2,1}, h_{2,2}\right), \angle\left(h_{2,2}, h_{2,3}\right), \ldots, \angle\left(h_{2, m_{2}}, h_{2, m_{2}+1}\right)$, $\ldots, \angle\left(h_{n, 1}, h_{n, 2}\right), \angle\left(h_{n, 2}, h_{n, 3}\right), \ldots, \angle\left(h_{n, m_{n}}, h_{n, m_{n}+1}\right)$.

In particular, if an angle is divided into n congruent angles, each of which is further subdivided into m congruent angles, the starting angle turns out to be divided into mn congruent angles.

Theorem 1.3.53. Suppose that we are given:

- A line a is perpendicular to planes γ, γ^{\prime} at points O, O^{\prime}, respectively.
- Two (distinct) planes α, β containing the line a.

Suppose further that:

- Points $A \in \alpha \cap \gamma, A_{1} \in \alpha \cap \gamma^{\prime}$, where $A \neq O, A_{1} \neq O^{\prime}$, lie (in the plane α) on the same side of the line a.
- Points $B \in \beta \cap \gamma, B_{1} \in \beta \cap \gamma^{\prime}$, where $B \neq O, B_{1} \neq O^{\prime}$, lie (in the plane β) on the same side of the line a.

Then the angles $\angle A O B, \angle A_{1} O^{\prime} B_{1}$ are congruent.
Proof. Using A 1.3.1 take points A^{\prime}, B^{\prime} so that $O A \equiv O^{\prime} A^{\prime}, O B \equiv O^{\prime} B^{\prime},\left[A_{1} O^{\prime} A^{\prime}\right],\left[B_{1} O^{\prime} B^{\prime}\right]$. Since $a_{O O^{\prime}}=a \perp$ $\gamma \Rightarrow a \perp a_{O A} \& a \perp a_{O B}, a \perp \gamma^{\prime} \Rightarrow a \perp a_{O^{\prime} A_{1}} \& a \perp a_{O^{\prime} B_{1}}$, and by T 1.3.16 all right angles are congruent, we can write $\angle A O O^{\prime} \equiv \angle A^{\prime} O^{\prime} O, \angle B O O^{\prime} \equiv \angle B^{\prime} O^{\prime} O$. ${ }^{466}$ Evidently, $A A_{1} a \&\left[A_{1} O^{\prime} A^{\prime}\right] \Rightarrow A a A^{\prime}$ (see L 1.2.17.10). Similarly, $B B_{1} a \&\left[B_{1} O^{\prime} B^{\prime}\right] \Rightarrow B a B^{\prime}$ (see L 1.2.17.10). Since $O A \equiv O^{\prime} A^{\prime}, \angle A O O^{\prime} \equiv \angle A^{\prime} O^{\prime} O, A a A^{\prime}$, and $O B \equiv O^{\prime} B^{\prime}$, $\angle B O O^{\prime} \equiv \angle B^{\prime} O^{\prime} O, B a B^{\prime}$, we can use C 1.3.23.4 to conclude that the open intervals $\left(O O^{\prime}\right),\left(A A^{\prime}\right),\left(B B^{\prime}\right)$ concur in the single point M which is the midpoint to all these intervals. This means that $A M \equiv A^{\prime} M, B M \equiv B^{\prime} M$, $\left[A M A^{\prime}\right],\left[B M B^{\prime}\right] .{ }^{467}$ The relations $\left[A M A^{\prime}\right],\left[B M B^{\prime}\right]$ imply that the angles $\angle A M B, \angle A^{\prime} M B^{\prime}$ are congruent and are, therefore, vertical. Hence $A M \equiv A^{\prime} M \& B M \equiv B^{\prime} M, \angle A M B \equiv \angle A^{\prime} M B^{\prime} \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A M B \equiv \triangle A^{\prime} M B^{\prime} \Rightarrow A B \equiv$ $A^{\prime} B^{\prime}$. Finally, $O A \equiv O^{\prime} A^{\prime} \& O B \equiv O^{\prime} B^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\mathrm{T} 1.3 .10}{\Longrightarrow} \triangle A O B \equiv \triangle A^{\prime} O^{\prime} B^{\prime}$.

Consider two half-planes χ, κ, forming the dihedral angle $\widehat{\chi \kappa}$, and let a be their common edge. Take a point $O \in a$. Let further α be the plane perpendicular to a at O (T1.3.43). From L1.2.55.8, the rays h, k that are the sections by the plane α of the half-planes χ, κ, respectively, form an angle $\angle(h, k)$ with the vertex $O .^{468}$ We shall refer to such an angle $\angle(h, k)$ as a plane angle of the dihedral angle $\widehat{\chi \kappa}$. Evidently, any dihedral angle has infinitely many plane angles, actually, there is a one-to-one correspondence between the points of a and the corresponding plane angles. ${ }^{469}$ But the preceding theorem (T 1.3 .53) shows that all the plane angles of a given dihedral angles are congruent. This observation legalizes the following definition: Dihedral angles are called congruent if their plane angles are congruent. We see from T 1.3.53 (and T 1.3.11) that congruence of angles is well defined.

Theorem 1.3.54. Congruence of dihedral angles satisfies the properties $P 1.3 .1-P 1.3 .3, P 1.3 .6$. Here the sets \mathfrak{J} with generalized betweenness relation are the pencils of half-planes lying on the same side of a given plane α and having the same edge $a \in \alpha$ (Of course, every pair consisting of a plane α and a line a on it gives rise to exactly two such pencils.); each of these pencils is supplemented with the (two) half-planes into which the appropriate line a (the pencil's origin, i.e. the common edge of the half-planes that constitute the pencil) divides the appropriate plane α. 470

Proof. To show that P 1.3 .1 is satisfied, consider a dihedral angle $\widehat{\chi \kappa}$ with a plane angle $\angle(h, k)$. Basically, we need to show that, given an arbitrary half -plane χ^{\prime} with the line a^{\prime} as its edge, we can draw in any of the two subspaces (defined by the plane containing χ^{\prime}) a half-plane κ^{\prime} with edge a^{\prime}, such that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime} \text {. Take a point } O^{\prime} \in a^{\prime} \text { and draw }{ }^{\prime} \text {. }{ }^{\prime} \text {. }}$ (using T 1.3.43) the plane α^{\prime} perpendicular to a^{\prime} at O^{\prime}. Denote by h^{\prime} the ray that is the section of χ^{\prime} by α^{\prime}. Using A 1.3.4, we then find the ray k^{\prime} with initial point O^{\prime} such that k^{\prime} lies on appropriate side of χ^{\prime} (i.e. on appropriate side of the plane $\bar{\chi}^{\prime}$ containing it) and $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. ${ }^{471}$ Now, drawing a plane β^{\prime} through a^{\prime} and a point on k^{\prime} (see T 1.1.2), we see from our definition of congruence of dihedral angles that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}$, where κ^{\prime} is the half-plane of β^{\prime} with edge a^{\prime}, containing the ray k^{\prime}, i.e. $k^{\prime} \subset \kappa^{\prime}$. Uniqueness of κ^{\prime} is shown similarly using C 1.2.55.24, A 1.3.4.

[^136]The property P 1.3.2 in our case follows immediately from the definition of congruence of dihedral angles and L 1.3.11.1.

To check P 1.3.3 consider three half-planes χ, κ, λ with common edge a, such that κ lies inside the dihedral angle $\widehat{\chi \kappa}$. Consider further the half-planes $\kappa^{\prime}, \lambda^{\prime}$ with common edge a^{\prime} lying on the same side of the plane $\bar{\chi}^{\prime}$ (with the same edge a^{\prime}) with the requirement that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}$. Denote by h, k, l the sections of χ, κ, λ, respectively, by a plane $\alpha \perp a$, drawn through a point $O \in a$ (T 1.3.43). Similarly, denote by $h^{\prime}, k^{\prime}, l^{\prime}$ the sections of $\chi^{\prime}, \kappa^{\prime}, \lambda^{\prime}$, respectively, by a plane $\alpha^{\prime} \perp a^{\prime}$, drawn through a point $O^{\prime} \in a^{\prime}$ (T 1.3.43). From definition of congruence of dihedral angles we immediately obtain $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right), \angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right)$. Using C 1.2.55.24 we conclude that k^{\prime}, l^{\prime} lie (in plane $\left.\alpha^{\prime}\right)$ on the same side of the line \bar{h}. Hence $\angle(k, l) \equiv \angle\left(k^{\prime}, l^{\prime}\right)(\mathrm{T} 1.3 .9)$ and $k^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, l^{\prime}\right)(\mathrm{P} 1.3 .9 .5)$. The result now follows from definition of congruence of dihedral angles and L 1.2.55.3.

To demonstrate P 1.3.6, suppose a half-plane ν lies in a pencil \mathfrak{J} between half-planes λ, μ. ${ }^{472}$ Suppose now that the half-planes λ, μ also belong to another pencil \mathfrak{J}^{\prime}. The result then follows from L1.2.56.3 applied to \mathfrak{J}^{\prime} viewed as a straight dihedral angle. ${ }^{473} \square$

Lemma 1.3.55.1. If a dihedral angle $\widehat{\chi \kappa}$ is congruent to a dihedral angle $\widehat{\chi^{\kappa}}$, the dihedral angle $\widehat{\chi^{c} \kappa}$ adjacent supplementary to the dihedral angle $\widehat{\chi \kappa}$ is congruent to the dihedral angle $\widehat{\chi^{\prime c} \kappa}$ adjacent supplementary to the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime} .}{ }^{474}$

Proof. Follows immediately from C 1.2.55.14, T 1.3.6.
Corollary 1.3.55.2. Suppose $\widehat{\chi \kappa}, \widehat{\kappa \lambda}$ are two adjacent supplementary dihedral angles (i.e. $\lambda=\chi^{c}$) and $\widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa^{\prime} \lambda^{\prime}}$ are two adjacent dihedral angles such that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \lambda^{\prime}}$. Then the dihedral angles $\widehat{\chi^{\prime} \kappa^{\prime}}$, $\widehat{\kappa^{\prime} \lambda^{\prime}}$ are adjacent supplementary, i.e. $\lambda^{\prime}=\chi^{\prime c}$.

Proof. Since, by hypothesis, the dihedral angles $\widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa^{\prime} \lambda^{\prime}}$ are adjacent, by definition of adjacency the half-planes χ^{\prime}, λ^{\prime} lie on opposite sides of $\bar{\kappa}^{\prime}$. Since the dihedral angles $\widehat{\chi \kappa}, \widehat{\kappa \lambda}$ are adjacent supplementary, as are the dihedral angles $\widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa^{\prime} \chi^{\prime c}}$, we have from the preceding lemma (L 1.3.55.1) $\widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \chi^{\prime c}}$. We also have, obviously, $\chi^{\prime} \bar{\kappa}^{\prime} \chi^{\prime c}$. Hence $\chi^{\prime} \bar{\kappa}^{\prime} \lambda^{\prime} \& \chi^{\prime} \bar{\kappa}^{\prime} \chi^{\prime c} \stackrel{\text { L1.2.52.4 }}{\Longrightarrow} \lambda^{\prime} \chi^{\prime c} \bar{\kappa}^{\prime} . \widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \lambda^{\prime}} \& \widehat{\kappa \lambda} \equiv \widehat{\kappa \chi^{\prime c}} \& \lambda^{\prime} \chi^{\prime c} \bar{\kappa}^{\prime} \xrightarrow{\text { T1.3.54 }} \chi^{\prime c}=\lambda^{\prime}$. Thus, the dihedral angles $\widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa^{\prime} \lambda^{\prime}}$ are adjacent supplementary, q.e.d.

Lemma 1.3.55.3. Every dihedral angle $\widehat{\chi \kappa}$ is congruent to its vertical dihedral angle $\widehat{\chi^{c} \kappa^{c}}$.
Proof. Follows immediately from C 1.2.55.14, T 1.3.6.

Corollary 1.3.55.4. If dihedral angles $\widehat{\chi^{\kappa}}$ and $\widehat{\chi^{c} \kappa^{\prime}}$ (where χ^{c} is, as always, the half-plane complementary to the half-plane χ) are congruent and the half-planes κ, κ^{\prime} lie on opposite sides of the plane $\bar{\chi}$, then the dihedral angles $\widehat{\chi \kappa}$ and $\widehat{\chi^{c} \kappa^{\prime}}$ are vertical dihedral angles (and thus are congruent).

Proof. ${ }^{475}$ By the preceding lemma (L ??) the vertical dihedral angles $\widehat{\chi^{\kappa}}, \widehat{\chi^{c} \kappa^{c}}$ are congruent. We have also $\kappa \bar{\chi} \kappa^{c} \& \kappa \bar{\chi} \kappa^{\prime} \stackrel{\text { L1.2.52.4 }}{\Longrightarrow} \kappa^{c} \kappa^{\prime} \bar{\chi}$. Therefore, $\widehat{\chi \kappa} \equiv \widehat{\chi^{c} \kappa^{c}} \& \widehat{\chi \kappa} \equiv \widehat{\chi^{c} \kappa^{\prime}} \& \kappa^{c} \kappa^{\prime} \bar{\chi} \xrightarrow{T 1.3 .54} \kappa^{\prime}=\kappa^{c}$, which completes the proof. \square

Now we are in a position to obtain for half-planes/dihedral angles the results analogous to T 1.3.9, C 1.3.9.6, and P 1.3.9.7 for conventional angles.

Theorem 1.3.56. Let χ, κ, λ and $\chi^{\prime}, \kappa^{\prime}, \lambda^{\prime}$ be triples of half-planes with edges a and a^{\prime}, respectively. Let also halfplanes χ, κ and $\chi^{\prime}, \kappa^{\prime}$ lie either both on one side or both on opposite sides of the planes $\lambda, \lambda^{\prime}$, respectively. ${ }^{476}$ In the case when χ, κ lie on opposite sides of λ we require further that the half-planes χ, κ do not lie on one plane. ${ }^{477}$ Then congruences $\widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}, \widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \lambda^{\prime}}$ imply $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}$.

[^137]Proof. Take points $O \in a, O^{\prime} \in a^{\prime}$ and draw planes $\alpha \ni O, \alpha^{\prime} \ni O^{\prime}$ such that $\alpha \perp a, \alpha^{\prime} \perp a^{\prime}$. Denote by h, k, l, respectively, the sections of the half-planes χ, κ, λ by the plane α, and by $h^{\prime}, k^{\prime}, l^{\prime}$, respectively, the sections of the half-planes $\chi^{\prime}, \kappa^{\prime}, \lambda^{\prime}$ by the plane α^{\prime}. Since, by hypothesis, we have $\widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}, \widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \lambda^{\prime}}$, using the definition of congruence of dihedral angles we see that $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right), \angle(k, l) \equiv\left(k^{\prime}, l^{\prime}\right)$. Hence, taking into account C 1.2.55.24, C 1.2.55.26, and T 1.3.9, we see that $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. Finally, using the definition of congruence of dihedral angles again, we conclude that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}$, q.e.d.
Proposition 1.3.56.5. Let χ, κ, λ and $\chi^{\prime}, \kappa^{\prime}, \lambda^{\prime}$ be triples of half-planes with edges a and a^{\prime}. If the half-plane χ lies inside the dihedral angle $\widehat{\lambda \kappa}$, and the half-planes χ^{\prime}, κ^{\prime} lie on one side of the line $\bar{\lambda}^{\prime}$, the congruences $\widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}$, $\widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime} \lambda^{\prime}}$ imply $\chi^{\prime} \subset$ Int $\widehat{\lambda^{\prime} \kappa^{\prime}} .{ }^{478}$
Proof. Follows from L 1.2.55.16, C 1.2.55.24, P 1.3.9.5 and the definition of interior of dihedral angle. ${ }^{479} \square$
Corollary 1.3.56.6. Let half-planes χ, κ and χ^{\prime}, κ^{\prime} lie on one side of planes $\bar{\lambda}$ and $\bar{\lambda}^{\prime}$, and let the dihedral angles $\widehat{\lambda \chi}, \widehat{\lambda \kappa}$ be congruent, respectively, to the dihedral angles $\widehat{\lambda^{\prime} \chi^{\prime}}, \widehat{\lambda^{\prime} \kappa^{\prime}}$. Then if the half-plane χ^{\prime} lies outside the dihedral angle $\widehat{\lambda^{\prime} \kappa}$, the half-plane χ lies outside the dihedral angle $\widehat{\lambda \kappa}$.

Proof. Indeed, if $\chi=\kappa$ then $\chi=\kappa \& \widehat{\lambda \chi} \equiv \widehat{\lambda^{\prime} \chi^{\prime}} \& \widehat{\lambda \kappa} \equiv \widehat{\lambda^{\prime} \kappa^{\prime}} \& \chi^{\prime} \kappa^{\prime} \bar{\lambda}^{\prime} \stackrel{\mathrm{T} 1.3 .54}{\Longrightarrow} \widehat{\lambda^{\prime} \chi^{\prime}}=\widehat{\lambda^{\prime} \kappa^{\prime}} \Rightarrow \chi^{\prime}=\kappa^{\prime}$ - a contradiction; if $\chi \subset$ Int $\widehat{\lambda \kappa}$ then $\chi \subset \operatorname{Int} \widehat{\lambda \kappa} \& \chi^{\prime} \kappa^{\prime} \overline{l^{\prime}} \& \widehat{\lambda \chi} \equiv \widehat{\lambda^{\prime} \chi^{\prime}} \& \widehat{\lambda \kappa} \equiv \widehat{\lambda^{\prime} \kappa^{\prime}} \stackrel{\mathrm{P} 1.3 .56 .5}{\Longrightarrow} \chi^{\prime} \subset$ Int $\widehat{\lambda^{\prime} \kappa^{\prime}}-$ a contradiction.
Proposition 1.3.56.7. Let a dihedral angle $\widehat{\lambda \kappa}$ be congruent to an angle $\widehat{\lambda^{\prime} \kappa^{\prime}}$. Then for any half-plane χ with the same edge as λ, κ, lying inside the dihedral angle $\widehat{\lambda \kappa}$, there is exactly one half-plane χ^{\prime} with the same edge as $\lambda^{\prime}, \kappa^{\prime}$, lying inside the dihedral angle $\widehat{\lambda^{\prime} \kappa^{\prime}}$ such that $\widehat{\lambda \chi} \equiv \widehat{\lambda^{\prime} \chi^{\prime}}, \widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}$.
Proof. Using T 1.3.54, choose χ^{\prime} so that $\chi^{\prime} \kappa^{\prime} \bar{\lambda}^{\prime} \& \widehat{\lambda \chi} \equiv \widehat{\lambda^{\prime} \chi^{\prime}}$. The rest follows from P 1.3.56.5, T 1.3.56.
An (extended) dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is said to be less than or congruent to an (extended) dihedral angle $\widehat{\chi \kappa}$ if there is a dihedral angle $\widehat{\lambda \mu}$ with the same edge a as $\widehat{\chi \kappa}$ such that the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is congruent to the dihedral angle $\widehat{\lambda \mu}$ and the interior of the dihedral angle $\widehat{\lambda \mu}$ is included in the interior of the dihedral angle $\widehat{\chi \kappa}$. If $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to $\widehat{\chi \kappa}$, we shall write this fact as $\widehat{\chi^{\prime} \kappa^{\prime}} \leqq \widehat{\chi \kappa}$. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi \kappa}$, we shall also say that the dihedral angle $\widehat{\chi \kappa}$ is greater than or congruent to the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$, and write this as $\widehat{\chi \kappa} \geqq \widehat{\chi^{\prime} \kappa^{\prime}}$.

A dihedral angle congruent to its adjacent supplementary dihedral angle will be referred to as a right dihedral angle.

Lemma 1.3.56.8. Any plane angle $\angle(h, k)$ of a right dihedral angle $\widehat{\chi \kappa}$ is a right angle. Conversely, any dihedral angle $\widehat{\chi \kappa}$ having a right plane angle $\angle(h, k)$ is right.

Proof. Follows from the definition of congruence of dihedral angles and C 1.2.55.14.
Lemma 1.3.56.9. Any dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$, congruent to a right dihedral angle $\widehat{\chi \kappa}$, is a right dihedral angle.
Proof. Denote by $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ plane angles (chosen arbitrarily) of $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$, respectively. By the preceding lemma (L 1.3.56.8) $\angle(h, k)$ is a right angle. From definition of congruence of dihedral angles we have $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. Hence by L ?? the angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is a right angle. Using the preceding lemma (L 1.3.56.8) again, we see that $\widehat{\chi \kappa}$ is a right dihedral angle, as required.

If half-planes χ, κ form a right dihedral angle $\widehat{\chi \kappa}$, the plane $\bar{\chi}$ is said to be perpendicular, or orthogonal, to the plane $\bar{\kappa}$. If a plane α is perpendicular to a plane β, we write this as $\alpha \perp \beta$.
Lemma 1.3.56.10. Orthogonality of planes is symmetric, i.e. $\alpha \perp \beta$ implies $\beta \perp \alpha$.
Proof.
Lemma 1.3.56.11. Suppose $\alpha \perp \beta$ and $\gamma \perp c$, where $c=\alpha \cap \beta$. Then the lines $c, b=\alpha \cap \gamma, a=\beta \cap \gamma$ are mutually perpendicular (i.e. each is so to each), and so are the planes α, β, γ. Also, $a \perp \alpha, b \perp \beta$.

Proof. Since, by hypothesis, the line c is perpendicular to the plane γ, by definition of orthogonality of a line and a plane the line c is perpendicular to any line in γ through O, where $O=c \cap \gamma=\alpha \cap \beta \cap \gamma$ is the point where the line c meets the plane γ. In particular, we have $c \perp a, c \perp b$. Also, we see that $a \perp b$, for the angle between lines a, b is a plane angle of the dihedral angle between planes α, β (see L 1.3.56.8). Since $a \perp c \subset \alpha, a \perp b \subset \alpha, a \ni O=b \cap c$, from T 1.3 .41 we see that the line a is perpendicular to the plane α. Similarly, $b \perp \beta$. Finally, since $a \perp b$ and the angle between

[^138]If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi \kappa}$, and, on the other hand, the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is known to be incongruent (not congruent) to the dihedral angle $\widehat{\chi \kappa}$, we say that the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is strictly less ${ }^{480}$ than the dihedral angle $\widehat{\chi \kappa}$, and write this as $\widehat{\chi^{\prime} \kappa^{\prime}}<\widehat{\chi \kappa}$. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is (strictly) less than a dihedral angle $\widehat{\chi \kappa}$, we shall also say that the dihedral angle $\widehat{\chi \kappa}$ is strictly greater ${ }^{481}$ than the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$.

Obviously, this definition implies that any proper (non-straight) dihedral angle is less than a straight dihedral angle.

We are now in a position to prove for dihedral angles the properties of the relations "less than" and "less than or congruent to" (and, for that matter, the properties of the relations "greater than" and greater than or congruent to") analogous to those of the corresponding relations of (point) intervals and conventional angles.

Comparison of Dihedral Angles

Lemma 1.3.56.12. For any half-plane λ having the same edge as the half-planes χ, κ and lying inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, there are dihedral angles μ, ν with the same edge as χ, κ, λ and lying inside $\widehat{\chi \kappa}$, such that $\widehat{\chi \kappa} \equiv \widehat{\mu \nu}$.

Proof. See T 1.3.54, L 1.3.15.1.
The following lemma is opposite, in a sense, to L 1.3.56.12
Lemma 1.3.56.13. For any two (distinct) half-planes μ, ν sharing the edge with the half-planes χ, κ and lying inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, there is exactly one half-plane λ with the same edge as $\chi, \kappa, \lambda, \mu$ and lying inside $\widehat{\chi \kappa}$ such that $\widehat{\mu \nu} \equiv \widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.2.
Lemma 1.3.56.14. A dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is (strictly) less than an angle $\widehat{\chi \kappa}$ iff:

- 1. There exists a half-plane λ sharing the edge with the half-planes χ, κ and lying inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, such that the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is congruent to the dihedral angle $\widehat{\chi \lambda} ; 482$ or
- 2. There are half-planes μ, ν sharing the edge with the half-planes χ, κ and lying inside the dihedral angle $\widehat{\chi \kappa}$ such that $\widehat{\chi^{\prime} \kappa^{\prime}} \equiv \angle(\mu, \nu)$.

In other words, a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is strictly less than a dihedral angle $\widehat{\chi \kappa}$ iff there is a dihedral angle $\widehat{\lambda \mu}$, whose sides have the same edge as χ, κ and both lie on a half-open dihedral angular interval $[\chi \kappa)$ (half-closed dihedral angular interval $(\chi \kappa])$, such that the dihedral angle $\widehat{\chi \kappa^{\prime}}$ is congruent to the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.3.■
Observe that the lemma L 1.3.56.14 (in conjunction with A 1.3.4) indicates that we can lay off from any half-plane a dihedral angle less than a given dihedral angle. Thus, there is actually no such thing as the least possible dihedral angle.

Corollary 1.3.56.15. If a half-plane λ shares the edge with half-planes χ, κ and lies inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, the dihedral angle $\widehat{\chi \lambda}$ is (strictly) less than the dihedral angle $\widehat{\chi \kappa}$.

If two (distinct) half-planes μ, ν share the edge with half-planes χ, κ and both lie inside the dihedral angle $\widehat{\chi \kappa}$ formed by them, the dihedral angle $\widehat{\mu \nu}$ is (strictly) less than the dihedral angle $\widehat{\chi \kappa}$.

Suppose half-planes κ, λ share the edge with the half-plane χ and lie on the same side of the plane $\bar{\chi}$. Then the inequality $\widehat{\chi \kappa}<\widehat{\chi \lambda}$ implies $\kappa \subset$ Int $\widehat{\chi \lambda}$.

Proof. See T 1.3.54, C 1.3.15.4, L 1.2.55.22.
Lemma 1.3.56.16. A dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi \kappa}$ iff there are half-planes λ, μ with the same edge as χ, κ and lying on the closed dihedral angular interval $[\chi \kappa]$, such that the dihedral angle $\widehat{\chi \kappa}$ is congruent to the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.5.
Lemma 1.3.56.17. If a dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is congruent to a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ and the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.6.

[^139]Lemma 1.3.56.18. If a dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ and the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is congruent to a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.7.
Lemma 1.3.56.19. If a dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ and the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.8.
Lemma 1.3.56.20. If a dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ and the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi^{\prime \prime} \kappa^{\prime \prime}}$ is less than or congruent to the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.9.
Lemma 1.3.56.21. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi \kappa}$ cannot be less than the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$.

Proof. See T 1.3.54, L 1.3.15.10.■
Lemma 1.3.56.22. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than a dihedral angle $\widehat{\chi \kappa}$, it cannot be congruent to that dihedral angle.

Proof. See T 1.3.54, L 1.3.15.11.
Corollary 1.3.56.23. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is congruent to a dihedral angle $\widehat{\chi \kappa}$, neither $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than $\widehat{\chi \kappa}$, nor $\widehat{\chi \kappa}$ is less than $\widehat{\chi^{\prime} \kappa^{\prime}}$.

Proof. See T 1.3.54, C 1.3.15.12.
Lemma 1.3.56.24. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than or congruent to a dihedral angle $\widehat{\chi \kappa}$ and the angle $\widehat{\chi^{\kappa}}$ is less than or congruent to the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$, the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is congruent to the dihedral angle $\widehat{\chi \kappa}$.

Proof. See T 1.3.54, L 1.3.15.13.
Lemma 1.3.56.25. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is not congruent to a dihedral angle $\widehat{\chi \kappa}$, then either the dihedral angle $\widehat{\chi^{\prime} \kappa}$ is less than the dihedral angle $\widehat{\chi \kappa}$, or the dihedral angle $\widehat{\chi \kappa}$ is less than the angle $\widehat{\chi^{\prime} \kappa^{\prime}}$.

Proof. See T 1.3.54, L 1.3.15.14.
Lemma 1.3.56.26. If a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than a dihedral angle $\widehat{\chi \kappa}$, the dihedral angle $\widehat{\chi^{\prime c} \kappa^{\prime}}$ adjacent supplementary to the former is greater than the dihedral angle $\widehat{\chi^{c} \kappa}$ adjacent supplementary to the latter.

Proof. $\widehat{\chi^{\prime} \kappa^{\prime}}<\widehat{\chi \kappa} \stackrel{\text { L1.3.56.14 }}{\Longrightarrow} \exists \lambda \lambda \subset \widehat{\chi \kappa} \& \widehat{\chi^{\prime} \kappa^{\prime}} \equiv \widehat{\chi \lambda} \stackrel{\text { P1.3.56.7 }}{\Longrightarrow} \exists \kappa^{\prime} \kappa^{\prime} \subset$ Int $\widehat{\chi^{\prime} \lambda^{\prime}} \& \widehat{\chi^{\kappa}} \equiv \widehat{\chi^{\prime} \lambda^{\prime}} . \kappa^{\prime} \subset$ Int $\widehat{\chi^{\prime} \lambda^{\prime}} \xrightarrow{\text { L1.2.55.27 }} \lambda^{\prime} \subset$ Int $\widehat{\chi^{\prime} \kappa^{\prime}}$. Also, $\widehat{\chi^{\kappa}} \equiv \widehat{\chi^{\prime} \lambda^{\prime}} \stackrel{\text { L1.3.55.1 }}{\Longrightarrow} \widehat{\chi^{c} \kappa} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}$. Finally, $\lambda^{\prime} \subset$ Int $\widehat{\chi^{\prime} \kappa^{\prime}} \& \widehat{\chi^{c} \kappa} \equiv \widehat{\chi^{\prime c} \lambda^{\prime}} \stackrel{\text { L1.3.56.14 }}{\Longrightarrow} \widehat{\chi^{c} \kappa}<\widehat{\chi^{\prime c} \kappa^{\prime}}$.
Lemma 1.3.56.27. Suppose $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ are plane angles of the angles $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$, respectively. Then $\angle(h, k)<$ $\angle\left(h^{\prime}, k^{\prime}\right)$ implies $\widehat{\chi \kappa}<\widehat{\chi^{\prime} \kappa^{\prime}}$.

Proof. By hypothesis, the angles $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ are, respectively, the sections of the dihedral angles $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$ by planes α, α^{\prime} drawn perpendicular to the edges a, a^{\prime} of $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$. Since $\angle(h, k)<\angle\left(h^{\prime}, k^{\prime}\right)$, there is a ray $l^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, k^{\prime}\right)$ such that $\angle(h, k) \equiv \angle\left(h^{\prime}, l^{\prime}\right)$ (see L 1.3.16.3). Drawing a plane β through a^{\prime} and a point $L^{\prime} \in l^{\prime}$ (see T ??), from L 1.2.55.3 we have $\lambda^{\prime} \subset$ Int $\widehat{\chi^{\prime} \kappa^{\prime}}$, where λ^{\prime} is the half-plane with edge a containing L^{\prime}. Since also, obviously, $\widehat{\chi \kappa} \equiv \widehat{\chi \lambda^{\prime}}$ (by definition of congruence of dihedral angles), we obtain the desired result.

The following lemma is converse, in a sense, to the one just proved.
Lemma 1.3.56.28. Suppose that a dihedral angle $\widehat{\chi \kappa}$ is less than a dihedral angle $\widehat{\chi \kappa}$. Then any plane angle $\angle(h, k)$ of $\widehat{\chi \kappa}$ is less than any plane angle $\angle\left(h^{\prime}, k^{\prime}\right)$ of $\widehat{\chi \kappa}$.

Proof. By hypothesis, the angles $\angle(h, k), \angle\left(h^{\prime}, k^{\prime}\right)$ are, respectively, the sections of the dihedral angles $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$ by planes α, α^{\prime} drawn perpendicular to the edges a, a^{\prime} of $\widehat{\chi \kappa}, \widehat{\chi^{\prime} \kappa^{\prime}}$. Since $\widehat{\chi \kappa}<\widehat{\chi^{\prime} \kappa^{\prime}}$, there is a half-plane $\lambda^{\prime} \subset$ Int $\widehat{\chi \kappa^{\prime}}$ such that $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}$ (see L 1.3.55.3). Denote by l^{\prime} the section of the half-plane λ by the plane $\alpha^{\prime}\left(l^{\prime}\right.$ is a ray by L 1.2.19.13). Using L 1.2.55.16, we see that $l^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, k^{\prime}\right)$. Since also, obviously, $\angle(h, k) \equiv \angle\left(h^{\prime}, l^{\prime}\right)$ (by definition of congruence of dihedral angles), from L 1.3.16.3 we see that $\angle(h, k)<\angle\left(h^{\prime}, k^{\prime}\right)$, as required.

Acute, Obtuse and Right Dihedral Angles

A dihedral angle which is less than (respectively, greater than) its adjacent supplementary dihedral angle is called an acute (obtuse) dihedral angle.

Obviously, any dihedral angle is either an acute, right, or obtuse dihedral angle, and each of these attributes excludes the others. Also, the dihedral angle, adjacent supplementary to an acute (obtuse) dihedral angle, is obtuse (acute).

Furthermore, any plane angle of an acute (obtuse) dihedral angle is an acute angle. Conversely, if a plane angle of a given dihedral angle is acute (obtuse), the dihedral angle itself is acute (obtuse), as the following two lemmas show.
Lemma 1.3.56.29. A dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ congruent to an acute dihedral angle $\widehat{\chi \kappa}$ is also an acute dihedral angle. Similarly, a dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ congruent to an obtuse dihedral angle $\widehat{\chi \kappa}$ is also an obtuse dihedral angle.

Proof. Follows from L 1.3.56.27, L 1.3.16.16, L 1.3.56.28.
Lemma 1.3.56.30. Any acute dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$ is less than any right dihedral angle $\widehat{\chi \kappa}$.
Proof. Follows from L 1.3.56.27, L 1.3.16.17, L 1.3.56.28.
Lemma 1.3.56.31. Any obtuse dihedral angle $\widehat{\chi^{\prime} \kappa}$ is greater than any right dihedral angle $\widehat{\chi \kappa} .^{483}$
Proof. Follows from L 1.3.56.27, L 1.3.16.18, L 1.3.56.28.
Lemma 1.3.56.32. Any acute dihedral angle is less than any obtuse dihedral angle.
Proof. Follows from L 1.3.56.27, L 1.3.16.19, L 1.3.56.28.
Lemma 1.3.56.33. A dihedral angle less than a right dihedral angle is acute. A dihedral angle greater than a right dihedral angle is obtuse.
Theorem 1.3.56. All right dihedral angles are congruent.
Proof. Follows from L 1.3.56.8, T 1.3.16.
Lemma 1.3.56.21. Suppose that half-planes χ, κ, λ have the same initial edge, as do half-planes $\chi^{\prime}, \kappa^{\prime}$, λ^{\prime}. Suppose, further, that $\chi \bar{\kappa} \lambda$ and $\chi^{\prime} \bar{\kappa}^{\prime} \lambda$ (i.e. the half-planes χ, λ and $\chi^{\prime}, \lambda^{\prime}$ lie on opposite sides of the planes $\bar{\kappa}, \bar{\kappa}^{\prime}$, respectively, that is, the dihedral angles $\widehat{\chi \kappa}, \widehat{\kappa \lambda}$ are adjacent, as are dihedral angles $\widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa^{\prime} \lambda^{\prime}}$) and $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}, \widehat{\kappa \lambda} \equiv \widehat{\kappa^{\prime}}$. Then the half-planes κ, λ lie on the same side of the plane $\bar{\chi}$ iff the half-planes κ^{\prime}, λ^{\prime} lie on the same side of the plane $c \bar{h} i^{\prime}$, and the half-planes κ, λ lie on opposite sides of the plane $\bar{\chi}$ iff the rays κ^{\prime}, λ^{\prime} lie on opposite sides of the plane $\bar{\chi}$.

Proof. Suppose that $\kappa \lambda \bar{\chi}$. Then certainly $\lambda^{\prime} \neq \chi^{\prime c}$, for otherwise in view of C 1.3.55.2 we would have $\lambda=\chi^{c}$. Suppose now $\kappa^{\prime} \bar{\chi}^{\prime} \lambda^{\prime}$. Using L 1.2.55.32 we can write $\lambda \subset$ Int $\widehat{\chi^{c} \kappa}, \chi^{\prime c} \subset$ Int $\widehat{\kappa^{\prime} \lambda^{\prime}}$. In addition, $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}} \xrightarrow{\text { T1.3.55.1 }}$ $\widehat{\chi^{c} \kappa}=\operatorname{adjsp} \widehat{\chi \kappa} \equiv a d s p \widehat{\chi^{\prime} \kappa^{\prime}}=\widehat{\chi^{\prime c} \kappa^{\prime}}$. Hence, using C 1.3.56.15, L 1.3.56.17-L 1.3.56.19, we can write $\widehat{\kappa \lambda}<\widehat{\chi^{c} \kappa} \equiv$ $\widehat{\chi^{\prime c} \kappa^{\prime}}<\widehat{\kappa^{\prime} \lambda^{\prime}} \Rightarrow \widehat{\kappa \lambda}<\widehat{\kappa^{\prime} \lambda^{\prime}}$. Since, however, we have $\widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime}}$ by T 1.3.56, we arrive at a contradiction in view of L 1.3.56.22. Thus, we have $\kappa^{\prime} \lambda^{\prime} \bar{\chi}^{\prime}$ as the only remaining option.

Suppose two planes α, β have a common line a. Suppose further that the planes α, β are separated by the line a into the half-planes χ, χ^{c} and κ, κ^{c}, respectively. Obviously, we have either $\widehat{\chi^{\kappa}} \leqq \widehat{\chi^{c} \kappa}$ or $\widehat{\chi^{c} \kappa} \leqq \widehat{\chi^{\kappa}}$. If the dihedral angle $\widehat{\chi \kappa}$ is not greater than the dihedral angle $\angle\left(\chi^{c}, \kappa\right)$ adjacent supplementary to it, the dihedral angle $\widehat{\chi \kappa}$, as well as the dihedral angle $\widehat{\chi^{c} \kappa}$ will sometimes be (loosely ${ }^{484}$) referred to as the dihedral angle between the planes α, β. 485

Proposition 1.3.56.22. Suppose α, β are two (distinct) planes drawn through a common point O and points P, Q are chosen so that $a_{O P} \perp \alpha, a_{O P} \perp \beta$. Then any plane angle of the dihedral angle between α, β is congruent either to the angle $\angle P O Q$ or to the angle adjacent supplementary to $\angle P O Q$.

Proof.
Proposition 1.3.56.23. Suppose α, β are two (distinct) planes drawn through a common point O and points P, Q are chosen so that $a_{O P} \perp \alpha, a_{O P} \perp \beta$. Then any plane angle of the dihedral angle between α, β is congruent either to the angle $\angle P O Q$ or to the angle adjacent supplementary to $\angle P O Q$.

Proof.
??

[^140]

Figure 1.168:

Theorem 1.3.58. Suppose we are given:

- A figure \mathcal{A} containing at least four non-coplanar points;
- A plane α;
- A line $a \subset \alpha$, containing a point O of \mathcal{A} and a point A (not necessarily lying in \mathcal{A});
- A point E lying in plane α not on a;
- A point P lying outside α;
- A line a^{\prime} lying in a plane α^{\prime}, two distinct points O^{\prime}, A^{\prime} on a^{\prime}, a point E^{\prime} lying in α^{\prime} not on a^{\prime}, and a point P^{\prime} lying outside α^{\prime}.

Then there exists exactly one motion $f: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ and, correspondingly, one figure \mathcal{A}^{\prime}, such that:

1. $O^{\prime}=f(O)$.
2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A^{\prime} and $B^{\prime}=f(B)$ also lie on line a^{\prime} on the same side (on opposite sides) of the point O^{\prime}.
3. If E, F lie in plane α on the same side (on opposite sides) of the line a, then the points E^{\prime} and $F^{\prime}=f(F)$ also lie (in plane α^{\prime}) on the same side (on opposite sides) of the line a^{\prime}.
4. If P, Q lie on the same side (on opposite sides) of the plane α, then the points P^{\prime} and $Q^{\prime}=f(Q)$ also lie on the same side (on opposite sides) of the plane α^{\prime}.

486

Proof.
Denote by $\mu \mathcal{A B}$ the equivalence class of congruent generalized intervals, containing a generalized interval $\mathcal{A B}$. This class consists of all generalized intervals $\mathcal{C D} \in \mathfrak{I}$ congruent to the given generalized interval $\mathcal{A B} \in \mathfrak{I}$. We define addition of classes of congruent generalized intervals as follows: Take an element $\mathcal{A B}$ of the first class $\mu \mathcal{A B}$. Suppose that we are able to lay off the generalized interval $\mathcal{B C}$ of the second class $\mu \mathcal{B C}$ into the generalized ray $\mathcal{B}_{\mathcal{A}}^{c}$, complementary to the generalized ray $\mathcal{A}_{\mathcal{B}}$. ${ }^{487}$ Then the sum of the classes $\mathcal{A B}, \mathcal{B C}$ is, by definition, the class $\mu \mathcal{A C}$, containing the generalized interval $\mathcal{A C}$. Note that this addition of classes is well defined, for $\mathcal{A B} \equiv \mathcal{A}_{1} \mathcal{B}_{1} \& \mathcal{B C} \equiv$ $\mathcal{B}_{1} \mathcal{C}_{1} \&[\mathcal{A B C}] \&\left[\mathcal{A}_{1} \mathcal{B}_{1} \mathcal{C}_{1}\right] \stackrel{\text { Pr1.3.3 }}{\Longrightarrow} \mathcal{A C} \equiv \mathcal{A}_{1} \mathcal{C}_{1}$, which implies that the result of summation does not depend on the choice of representatives in each class. Thus, put simply, we have $[\mathcal{A B C}] \Rightarrow \mu \mathcal{A C}=\mu \mathcal{A B}+\mu \mathcal{B C}$. Conversely, the notation $\mathcal{A C} \in \mu_{1}+\mu_{2}$ means that there is a geometric object \mathcal{B} such that $[\mathcal{A B C}]$ and $\mathcal{A B} \in \mu_{1}, \mathcal{B C} \in \mu_{2}$.

In the case when $\mu \mathcal{A B}+\mu \mathcal{C D}=\mu \mathcal{E} \mathcal{F}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B}, \mathcal{C}^{\prime} \mathcal{D}^{\prime} \equiv C D, \mathcal{E}^{\prime} \mathcal{F}^{\prime} \equiv \mathcal{E F}$ (that is, when $\mu \mathcal{A B}+\mu \mathcal{C D}=\mu \mathcal{E F}$ and $\left.\mathcal{A}^{\prime} \mathcal{B}^{\prime} \in \mu \mathcal{A B}, \mathcal{C}^{\prime} \mathcal{D}^{\prime} \in \mu \mathcal{C} \mathcal{D}, \mathcal{E}^{\prime} \mathcal{F}^{\prime} \in \mu \mathcal{E} \mathcal{F}\right)$, we can say, with some abuse of terminology, that the generalized interval $\mathcal{E}^{\prime} \mathcal{F}^{\prime}$ is the sum of the generalized intervals $\mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{C}^{\prime} \mathcal{D}^{\prime}$.

The addition (of classes of congruent generalized intervals) thus defined has the properties of commutativity and associativity, as the following two theorems (T 1.3.59, T 1.3.60) indicate:

[^141]Theorem 1.3.59. The addition of classes of congruent generalized intervals is commutative: For any classes μ_{1}, μ_{2}, for which the addition is defined, we have $\mu_{1}+\mu_{2}=\mu_{2}+\mu_{1}$.

Proof. Suppose $\mathcal{A}^{\prime} \mathcal{C}^{\prime} \in \mu_{1}+\mu_{2}$. According to our definition of the addition of classes of congruent generalized intervals this means that there is a generalized interval $\mathcal{A C}$ such that $[\mathcal{A B C}]$ and $\mathcal{A B} \in \mu_{1}=\mu \mathcal{A B}, \mathcal{B C} \in \mu_{2}=\mu \mathcal{B C}$. But the fact that $\mathcal{C B} \in \mu_{2}=\mu \mathcal{C B}, \mathcal{B A} \in \mu_{1}=\mu \mathcal{B} \mathcal{A},[\mathcal{C B} \mathcal{A}]$, and $\mathcal{A}^{\prime} \mathcal{C}^{\prime} \equiv \mathcal{C} \mathcal{A}$ implies $\mathcal{A}^{\prime} \mathcal{C}^{\prime} \in \mu_{2}+\mu_{1}$. Thus, we have proved that $\mu_{1}+\mu_{2} \subset \mu_{2}+\mu_{1}$ for any two classes μ_{1}, μ_{2} of congruent generalized intervals. By symmetry, we immediately have $\mu_{2}+\mu_{1} \subset \mu_{1}+\mu_{2}$. Hence $\mu_{1}+\mu_{2}=\mu_{2}+\mu_{1}$, q.e.d.

Theorem 1.3.60. The addition of classes of congruent generalized intervals is associative: For any classes μ_{1}, μ_{2}, μ_{3}, for which the addition is defined, we have $\left(\mu_{1}+\mu_{2}\right)+\mu_{3}=\mu_{1}+\left(\mu_{2}+\mu_{3}\right)$.

Proof. Suppose $\mathcal{A D} \in\left(\mu_{1}+\mu_{2}\right)+\mu_{3}$. Then there is a geometric object \mathcal{C} such that $[\mathcal{A C D}]$ and $\mathcal{A C} \in \mu_{1}+\mu_{2}$, $\mathcal{C D} \in \mu_{3}$. In its turn, $\mathcal{A C} \in \mu_{1}+\mu_{2}$ implies that $\exists \mathcal{B}[\mathcal{A B C}] \& \mathcal{A B} \in \mu_{1} \& \mathcal{B C} \in \mu_{2} .{ }^{488}$ We have $[\mathcal{A B C}] \&[\mathcal{A C D}] \xrightarrow{\text { Pr1.2.7 }}$ $[\mathcal{A B D}] \&[\mathcal{B C D}]$. Hence $[\mathcal{B C D}] \& \mathcal{B C} \in \mu_{2} \& \mathcal{C D} \in \mu_{3} \Rightarrow \mathcal{B D} \in \mu_{2}+\mu_{3}$. $[\mathcal{A B D}] \mathcal{A B} \in \mu_{1} \& \mathcal{B D} \in \mu_{2}+\mu_{3} \Rightarrow \mathcal{A D} \in$ $\mu_{1}+\left(\mu_{2}+\mu_{3}\right)$. Thus, we have proved that $\left(\mu_{1}+\mu_{2}\right)+\mu_{3} \subset \mu_{1}+\left(\mu_{2}+\mu_{3}\right)$ for any classes $\mu_{1}, \mu_{2}, \mu_{3}$ of congruent intervals.

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$ for the sum of n classes $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of congruent generalized intervals without needing to care about where we put the parentheses.

If a class $\mu \mathcal{B C}$ of congruent generalized intervals is equal to the sum $\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n} \mathcal{C}_{n}$ of classes $\mu \mathcal{B}_{1} \mathcal{C}_{1}, \mu \mathcal{B}_{2} \mathcal{C}_{2}, \ldots, \mu \mathcal{B}_{n} \mathcal{C}_{n}$ of congruent intervals, and $\mu \mathcal{B}_{1} \mathcal{C}_{1}=\mu \mathcal{B}_{2} \mathcal{C}_{2}=\cdots=\mu \mathcal{B}_{n} \mathcal{C}_{n}$ (that is, $\mathcal{B}_{1} \mathcal{C}_{1} \equiv \mathcal{B}_{2} \mathcal{C}_{2} \equiv \cdots \equiv$ $\left.\mathcal{B}_{n} \mathcal{C}_{n}\right)$, we write $\mu \mathcal{B C}=n \mu \mathcal{B}_{1} \mathcal{C}_{1}$ or $\mu \mathcal{B}_{1} \mathcal{C}_{1}=(1 / n) \mu \mathcal{B C}$.

Proposition 1.3.60.1. If $\mu \mathcal{A B}+\mu \mathcal{C D}=\mu \mathcal{E} \mathcal{F},{ }^{489} \mathcal{A}^{\prime} \mathcal{B}^{\prime} \in \mu \mathcal{A B}, \mathcal{C}^{\prime} \mathcal{D}^{\prime} \in \mu \mathcal{C D}, \mathcal{E}^{\prime} \mathcal{F}^{\prime} \in \mu \mathcal{E} \mathcal{F}$, then $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{E}^{\prime} \mathcal{F}^{\prime}$, $\mathcal{C}^{\prime} \mathcal{D}^{\prime}<\mathcal{E}^{\prime} \mathcal{F}^{\prime}$.

Proof. By the definition of addition of classes of congruent generalized intervals, there are generalized intervals $\mathcal{L} \mathcal{M} \in \mu \mathcal{A B}, \mathcal{M} \mathcal{N} \in \mathcal{C D}, \mathcal{L N} \in \mathcal{E} \mathcal{F}$ such that $[\mathcal{L} \mathcal{M} \mathcal{N}]$. By C 1.3.15.4 $\mathcal{L M}<\mathcal{L N}$. Finally, using L 1.3.14.1, L 1.3.15.6, L 1.3.15.7 we can write $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A B} \& \mathcal{L M} \equiv \mathcal{A B} \& \mathcal{E}^{\prime} \mathcal{F}^{\prime} \equiv \mathcal{E} \mathcal{F} \& \mathcal{L} \mathcal{N} \equiv \mathcal{E} \mathcal{F} \& \mathcal{L} \mathcal{M}<\mathcal{L N} \Rightarrow \mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{E}^{\prime} \mathcal{F}^{\prime}$. Similarly, $\mathcal{C}^{\prime} \mathcal{D}^{\prime}<\mathcal{E}^{\prime} \mathcal{F}^{\prime}$.

At this point we can introduce the following jargon. For classes $\mu \mathcal{A B}, \mu \mathcal{D}$ or congruent generalized intervals we write $\mu \mathcal{A B}<\mu \mathcal{C D}$ or $\mu \mathcal{C D}>\mu \mathcal{A B}$ if there are generalized intervals $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \in \mu \mathcal{A B}, \mathcal{C}^{\prime} \mathcal{D}^{\prime} \in \mathcal{C D}$ such that $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{C}^{\prime} \mathcal{D}^{\prime}$. L 1.3.14.1, L 1.3.15.6, L 1.3.15.7 then show that this notation is well defined: it does not depend on the choice of the generalized intervals $\mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{C}^{\prime} \mathcal{D}^{\prime}$. For arbitrary classes $\mu \mathcal{A B}, \mu \mathcal{C} \mathcal{D}$ of congruent generalized intervals we then have either $\mu \mathcal{A B}<\mu \mathcal{C D}$, or $\mu \mathcal{A B}=\mu \mathcal{C D}$, or $\mu \mathcal{A B}>\mu \mathcal{C D}$ (with the last inequality being equivalent to $\mu \mathcal{C D}<\mu \mathcal{A B}$). From L 1.3.15.11 we see also that any one of these options excludes the two others.
Proposition 1.3.60.2. If $\mu \mathcal{A B}+\mu \mathcal{C D}=\mu \mathcal{E F}, \mu \mathcal{A B}+\mu \mathcal{G \mathcal { H }}=\mu \mathcal{L} \mathcal{M}$, and $\mathcal{C D}<\mathcal{G H}$, then $\mathcal{E F}<\mathcal{L M}$. ${ }^{490}$
Proof. By hypothesis, there are generalized intervals $\mathcal{P Q} \in \mu \mathcal{A B}, \mathcal{Q R} \in \mu \mathcal{C D}, \mathcal{P}^{\prime} \mathcal{Q}^{\prime} \in \mu \mathcal{A B}, \mathcal{Q}^{\prime} \mathcal{R}^{\prime} \in \mu \mathcal{G H}$, such that $[\mathcal{P Q R}],\left[\mathcal{P}^{\prime} \mathcal{Q}^{\prime} \mathcal{R}^{\prime}\right], \mathcal{P} \mathcal{R} \in \mu \mathcal{E} \mathcal{F}, \mathcal{P}^{\prime} \mathcal{R}^{\prime} \in \mu \mathcal{L M}$. Obviously, $\mathcal{P} \mathcal{Q} \equiv \mathcal{A B} \& \mathcal{P}^{\prime} \mathcal{Q}^{\prime} \equiv \mathcal{A B} \xrightarrow{\mathrm{T1} 1.3 .1} \mathcal{P} \mathcal{Q} \equiv \mathcal{P}^{\prime} \mathcal{Q}^{\prime}$. Using L 1.3.15.6, L 1.3.15.7 we can also write $\mathcal{Q R} \equiv \mathcal{C D} \& \mathcal{C D}<\mathcal{G H} \& \mathcal{Q}^{\prime} \mathcal{R}^{\prime} \equiv \mathcal{G H} \Rightarrow \mathcal{Q R}<\mathcal{Q}^{\prime} \mathcal{R}^{\prime}$. We then have $[\mathcal{P} \mathcal{Q R}] \&\left[\mathcal{P}^{\prime} \mathcal{Q}^{\prime} \mathcal{R}^{\prime}\right] \& \mathcal{P} \mathcal{Q} \equiv \mathcal{P}^{\prime} \mathcal{Q}^{\prime} \& \mathcal{Q R}<\mathcal{Q}^{\prime} \mathcal{R}^{\prime} \stackrel{\text { L1.3.21.1 }}{\Longrightarrow} \mathcal{P} \mathcal{R}<\mathcal{P}^{\prime} \mathcal{R}^{\prime}$. Finally, again using L 1.3.15.6, L 1.3.15.7, we obtain $\mathcal{P} \mathcal{R} \equiv \mathcal{E} \mathcal{F} \& \mathcal{P} \mathcal{R}<\mathcal{P}^{\prime} \mathcal{R}^{\prime} \& \mathcal{P}^{\prime} \mathcal{R}^{\prime} \equiv \mathcal{L} \mathcal{M} \Rightarrow \mathcal{E} \mathcal{F}<\mathcal{L} \mathcal{M}$.

Proposition 1.3.60.3. If $\mu \mathcal{A B}+\mu \mathcal{C D}=\mu \mathcal{E F}, \mu \mathcal{A B}+\mu \mathcal{G \mathcal { H }}=\mu \mathcal{L} \mathcal{M}$, and $\mathcal{E F}<\mathcal{L M}$, then $\mathcal{C D}<\mathcal{G H}$. ${ }^{491}$
Proof. We know that either $\mu \mathcal{C D}=\mu \mathcal{G \mathcal { H }}$, or $\mu \mathcal{G \mathcal { H }}<\mu \mathcal{C D}$, or $\mu \mathcal{C D}<\mu \mathcal{G} \mathcal{H}$. But $\mu \mathcal{C D}=\mu \mathcal{G H}$ would imply $\mu \mathcal{E F}=\mu \mathcal{L} \mathcal{M}$, which contradicts $\mathcal{E F}<\mathcal{L M}$ in view of L 1.3.15.11. Suppose $\mu \mathcal{G \mathcal { H }}<\mu \mathcal{C D}$. Then, using the preceding proposition (P 1.3.60.2), we would have $\mathcal{L} \mathcal{M}<\mathcal{E} \mathcal{F}$, which contradicts $\mathcal{E F}<\mathcal{L M}$ in view of L 1.3.15.10. Thus, we have $\mathcal{C D}<\mathcal{G \mathcal { H }}$ as the only remaining possibility.

Proposition 1.3.60.4. A class $\mu \mathcal{B C}$ of congruent generalized intervals is equal to the sum $\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n} \mathcal{C}_{n}$ of classes $\mu \mathcal{B}_{1} \mathcal{C}_{1}, \mu \mathcal{B}_{2} \mathcal{C}_{2}, \ldots, \mu \mathcal{B}_{n} \mathcal{C}_{n}$ of congruent generalized intervals iff there are geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ such that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, \mathcal{A}_{i-1} \mathcal{A}_{i} \in \mu \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n}$ and $\mathcal{A}_{0} \mathcal{A}_{n} \in \mu \mathcal{B C}$. ${ }^{492}$

[^142]Proof. Suppose $\mu \mathcal{B C}=\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n} \mathcal{C}_{n}$. We need to show that there are geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ such that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, \mathcal{A}_{i-1} \mathcal{A}_{i} \equiv \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n}$, and $\mathcal{A}_{0} \mathcal{A}_{n} \equiv \mathcal{B C}$. For $n=2$ this has been established previously. ${ }^{493}$ Suppose now that for the class $\mu_{n-1} \rightleftharpoons \mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n-1} \mathcal{C}_{n-1}$ there are geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots \mathcal{A}_{n-1}$ such that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-2}, \mathcal{A}_{i-1} \mathcal{A}_{i} \in \mu \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n-1}$, and $\mathcal{A}_{0} \mathcal{A}_{n-1} \in \mu_{n-1}$. Using $\operatorname{Pr} 1.3 .1$, choose a geometric object \mathcal{A}_{n} such that $\mathcal{A}_{0} \mathcal{A}_{n} \equiv \mathcal{B C}$ and the geometric objects $\mathcal{A}_{n-1}, \mathcal{A}_{n}$ lie on the same side of the geometric object \mathcal{A}_{0}. Since, by hypothesis, $\mu \mathcal{B C}=\mu_{n-1}+\mu \mathcal{B}_{n} \mathcal{C}_{n}$, there are geometric objects $\mathcal{D}_{0}, \mathcal{D}_{n-1}, \mathcal{D}_{n}$ such that $\mathcal{D}_{0} \mathcal{D}_{n-1} \in \mu_{n-1}, \mathcal{D}_{n-1} \mathcal{D}_{n} \in \mu \mathcal{B}_{n} \mathcal{C}_{n}, \mathcal{D}_{0} \mathcal{D}_{n} \in \mu \mathcal{B C}$, and $\left[\mathcal{D}_{0} \mathcal{D}_{n-1} \mathcal{D}_{n}\right]$. Since $\mathcal{D}_{0} \mathcal{D}_{n-1} \in \mu_{n-1} \& \mathcal{A}_{0} \mathcal{A}_{n-1} \in \mu_{n-1} \Rightarrow \mathcal{D}_{0} \mathcal{D}_{n-1} \equiv \mathcal{A}_{0} \mathcal{A}_{n-1}, \mathcal{D}_{0} \mathcal{D}_{n} \in \mu \mathcal{B C} \& \mathcal{A}_{0} \mathcal{A}_{n} \in \mu \mathcal{B C} \Rightarrow \mathcal{D}_{0} \mathcal{D}_{n} \equiv \mathcal{A}_{0} \mathcal{A}_{n}$, $\left[\mathcal{D}_{0} \mathcal{D}_{n-1} \mathcal{D}_{n}\right]$, and $\mathcal{A}_{n-1}, \mathcal{A}_{n}$ lie on the same side of \mathcal{A}_{0}, by Pr ?? we have $\mathcal{D}_{n-1} \mathcal{D}_{n} \equiv \mathcal{A}_{n-1} \mathcal{A}_{n}$, $\left[\mathcal{A}_{0} \mathcal{A}_{n-1} \mathcal{A}_{n}\right]$. By L 1.2.22.11 the fact that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-2}$ implies that the geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n-1}$ are in order $\left[\mathcal{A}_{0} \mathcal{A}_{1} \ldots \mathcal{A}_{n-1}\right]$. In particular, we have $\left[\mathcal{A}_{0} \mathcal{A}_{n-2} \mathcal{A}_{n-1}\right]$. Hence, $\left[\mathcal{A}_{0} \mathcal{A}_{n-2} \mathcal{A}_{n-1}\right] \&\left[\mathcal{A}_{0} \mathcal{A}_{n-1} \mathcal{A}_{n}\right] \xrightarrow{\text { Pr1.2.7 }}$ $\left[\mathcal{A}_{n-2} \mathcal{A}_{n-1} \mathcal{A}_{n}\right]$. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots \mathcal{A}_{n}$ such that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, \mathcal{A}_{i-1} \mathcal{A}_{i} \in \mu \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n}$ and $\mathcal{A}_{0} \mathcal{A}_{n} \in \mu \mathcal{B C}$. We need to show that the class $\mu \mathcal{B C}$ of congruent generalized intervals is equal to the sum $\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n} \mathcal{C}_{n}$ of the classes $\mu \mathcal{B}_{1} \mathcal{C}_{1}, \mu \mathcal{B}_{2} \mathcal{C}_{2}, \ldots, \mu \mathcal{B}_{n} \mathcal{C}_{n}$. For $n=2$ this has been proved before. Denote μ_{n-1} the class containing the generalized interval $\mathcal{A}_{0} \mathcal{A}_{n-1}$. Now we can assume that $\mu_{n-1}=\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n-1} \mathcal{C}_{n-1}$. ${ }^{494}$ Since the points $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are in the order $\left[\mathcal{A}_{0} \mathcal{A}_{1} \ldots \mathcal{A}_{n}\right]$ (see L 1.2.22.11), we have, in particular, $\left[\mathcal{A}_{0} \mathcal{A}_{n-1} \ldots \mathcal{A}_{n}\right]$. As also $\mathcal{A}_{0} \mathcal{A}_{n-1} \in \mu_{n-1}, \mathcal{A}_{n-1} \mathcal{A}_{n} \in \mu \mathcal{B}_{n} \mathcal{C}_{n}$, $\mathcal{A}_{0} \mathcal{A}_{n} \in \mu \mathcal{B C}$, it follows that $\mu \mathcal{B C}=\mu_{n-1}+\mu \mathcal{B}_{n} \mathcal{C}_{n}=\mu \mathcal{B}_{1} \mathcal{C}_{1}+\mu \mathcal{B}_{2} \mathcal{C}_{2}+\cdots+\mu \mathcal{B}_{n-1} \mathcal{C}_{n-1}+\mu \mathcal{B}_{n} \mathcal{C}_{n}$, q.e.d.

Proposition 1.3.60.5. For classes $\mu_{1}, \mu_{2}, \mu_{3}$ of congruent generalized intervals we have: $\mu_{1}+\mu_{2}=\mu_{1}+\mu_{3}$ implies $\mu_{2}=\mu_{3}$.

Proof. We know that either $\mu_{2}<\mu_{3}$, or $\mu_{2}=\mu_{3}$, or $\mu_{2}<\mu_{3}$. But by P 1.3.60.2 $\mu_{2}<\mu_{3}$ would imply $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$, and $\mu_{2}>\mu_{3}$ would imply $\mu_{1}+\mu_{2}>\mu_{1}+\mu_{3}$. But both $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ and $\mu_{1}+\mu_{2}>\mu_{1}+\mu_{3}$ contradict $\mu_{1}+\mu_{2}=\mu_{1}+\mu_{3}$, whence the result.

Proposition 1.3.60.6. For any classes μ_{1}, μ_{3} of congruent generalized intervals such that $\mu_{1}<\mu_{3}$, there is a unique class μ_{2} of congruent generalized intervals with the property $\mu_{1}+\mu_{2}=\mu_{3}$.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that $\mu_{1}<\mu_{3}$ in view of L 1.3.15.3 implies that there are geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C}$ such that $\mathcal{A B} \in \mu_{1}, \mathcal{A C} \in \mu_{3}$, and $[\mathcal{A B C}]$. Denote $\mu_{2} \rightleftharpoons \mu \mathcal{B C} .{ }^{495}$ From the definition of sum of classes of congruent generalized intervals then follows that $\mu_{1}+\mu_{2}=\mu_{3}$.

If $\mu_{1}+\mu_{2}=\mu_{3}$ (and then, of course, $\mu_{2}+\mu_{1}=\mu_{3}$ in view of T 1.3.59), we shall refer to the class μ_{2} of congruent generalized intervals as the difference of the classes μ_{3}, μ_{1} of congruent generalized intervals and write $\mu_{2}=\mu_{3}-\mu_{1}$. That is, $\mu_{2}=\mu_{3}-\mu_{1} \stackrel{\text { def }}{\Longleftrightarrow} \mu_{1}+\mu_{2}=\mu_{3}$. The preceding proposition shows that the difference of classes of congruent generalized intervals is well defined.

Proposition 1.3.60.7. For classes $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ of congruent generalized intervals the inequalities $\mu_{1}<\mu_{2}, \mu_{3}<\mu_{4}$ imply $\mu_{1}+\mu_{3}<\mu_{2}+\mu_{4}$. ${ }^{496}$

Proof. Using P 1.3.60.2 twice, we can write: $\mu_{1}+\mu_{3}<\mu_{2}+\mu_{3}<\mu_{2}+\mu_{4}$, which, in view of transitivity of the relation $<$ gives the result.

Proposition 1.3.60.8. For classes $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ of congruent generalized intervals we have: $\mu_{1}+\mu_{2} \leq \mu_{3}+\mu_{4}$ and $\mu_{2}>\mu_{4}$ implies $\mu_{1}<\mu_{3}$.

Proof. We know that either $\mu_{1}<\mu_{3}$, or $\mu_{1}=\mu_{3}$, or $\mu_{1}>\mu_{3}$. But by P 1.3.60.2 $\mu_{1}=\mu_{3}$ would imply $\mu_{1}+\mu_{2}>\mu_{3}+\mu_{4}$, and $\mu_{1}>\mu_{3}$ would imply $\mu_{1}+\mu_{2}>\mu_{1}+\mu_{3}$ in view of the preceding proposition (P 1.3.60.7). But $\mu_{1}+\mu_{2}>\mu_{3}+\mu_{4}$ contradicts $\mu_{1}+\mu_{2} \leq \mu_{1}+\mu_{3}$, whence the result.

Denote by $\mu \angle(h, k)$ the equivalence class of congruent angles, containing an angle $\angle(h, k)$. This class consists of all angles $\angle(l, m)$ congruent to the given angle $\angle(h, k)$. We define addition of classes of congruent angles as follows: Take an angle $\angle(h, k)$ of the first class $\mu \angle(h, k)$. Suppose that we are able to lay off the angle $\angle(k, l)$ of the second

[^143]class $\mu \angle(k, l)$ into the angular ray k_{h}^{c}, complementary to the angular ray h_{k}. ${ }^{497}$ Then the sum of the classes $\angle(h, k)$, $\angle(k, l)$ is, by definition, the class $\mu \angle(h, l)$, containing the extended angle $\angle(h, l)$. Note that this addition of classes is well defined, for $\angle(h, k) \equiv \angle\left(h_{1}, k_{1}\right) \& \angle(k, l) \equiv \angle\left(k_{1}, l_{1}\right) \&[h k l] \&\left[h_{1} k_{1} l_{1}\right] \stackrel{\text { T1.3.9 }}{\Longrightarrow} \angle(h, l) \equiv \angle\left(h_{1}, l_{1}\right)$, which implies that the result of summation does not depend on the choice of representatives in each class. Thus, put simply, we have $[h k l] \Rightarrow \mu \angle(h, l)=\mu \angle(h, k)+\mu \angle(k, l)$. Conversely, the notation $\angle(h, l) \in \mu_{1}+\mu_{2}$ means that there is a ray k such that $[h k l]$ and $\angle(h, k) \in \mu_{1}, \angle(k, l) \in \mu_{2}$.

Observe that in our definition we allow the possibility that the sum of classes of congruent angles may turn out to be the class of straight angles. ${ }^{498}$ We shall find it convenient to denote this equivalence class by $\pi^{(a b s)}$, where the superscript is used to indicate that we are dealing with equivalence classes, not numerical angular measures.

Note further that $\mu \angle(h, k)+\mu \angle(l, m)=\pi^{(a b s)}$ iff the angles $\angle(h, k), \angle(l, m)$ are supplementary.
In the case when $\mu \angle(h, k)+\mu \angle(l, m)=\mu \angle(p, q)$ and $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k), \angle\left(l^{\prime}, m^{\prime}\right) \equiv \angle(l, m), \angle(p, q) \equiv \angle\left(p^{\prime}, q^{\prime}\right)$ (that is, when $\mu \angle(h, k)+\mu \angle(l, m)=\mu \angle(p, q)$ and $\left.\angle\left(h^{\prime}, k^{\prime}\right) \in \mu \angle(h, k), \angle\left(l^{\prime}, m^{\prime}\right) \in \mu \angle(l, m), \angle(p, q) \in \mu \angle\left(p^{\prime}, q^{\prime}\right)\right)$, we can say, with some abuse of terminology, that the angle $\angle\left(p^{\prime}, q^{\prime}\right)$ is the sum of the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(l^{\prime}, m^{\prime}\right)$.

The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity, as the following two theorems ($\mathrm{T} 1.3 .61, \mathrm{~T} 1.3 .62$) indicate:

Theorem 1.3.61. The addition of classes of congruent angles is commutative: For any classes μ_{1}, μ_{2}, for which the addition is defined, we have $\mu_{1}+\mu_{2}=\mu_{2}+\mu_{1}$.

Proof.
Theorem 1.3.62. The addition of classes of congruent angles is associative: For any classes $\mu_{1}, \mu_{2}, \mu_{3}$ for which the addition is defined, we have $\left(\mu_{1}+\mu_{2}\right)+\mu_{3}=\mu_{1}+\left(\mu_{2}+\mu_{3}\right)$.

Proof.

Note that we may write $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$ for the sum of n classes $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of angles without needing to care about where we put the parentheses.

If a class $\mu \angle(k, l)$ of congruent angles is equal to the sum $\mu \angle\left(k_{1}, l_{1}\right)+\mu \angle\left(k_{2}, l_{2}\right)+\cdots+\mu \angle\left(k_{n}, l_{n}\right)$ of classes $\mu \angle\left(k_{1}, l_{1}\right), \mu \angle\left(k_{2}, l_{2}\right), \ldots, \mu \angle\left(k_{n}, l_{n}\right)$ of congruent angles, and $\mu \angle\left(k_{1}, l_{1}\right)=\mu \angle\left(k_{2}, l_{2}\right)=\cdots=\mu \angle\left(k_{n}, l_{n}\right)$ (that is, $\left.\angle\left(k_{1}, l_{1}\right) \equiv \angle\left(k_{2}, l_{2}\right) \equiv \cdots \equiv \angle\left(k_{n}, l_{n}\right)\right)$, we write $\mu \angle(k, l)=n \mu \angle\left(k_{1}, l_{1}\right)$ or $\mu \angle\left(k_{1}, l_{1}\right)=(1 / n) \mu \angle(k, l)$.

Proposition 1.3.63.1. If $\mu \angle(h, k)+\mu \angle(l, m)=\mu \angle(p, q),{ }^{499} \angle\left(h^{\prime}, k^{\prime}\right) \in \mu \angle(h, k), \angle\left(l^{\prime}, m^{\prime}\right) \in \mu \angle(l, m), \angle\left(p^{\prime}, q^{\prime}\right) \in$ $\mu \angle(p, q)$, then $\angle\left(h^{\prime}, k^{\prime}\right)<\angle\left(p^{\prime}, q^{\prime}\right), \angle\left(l^{\prime}, m^{\prime}\right)<\angle\left(p^{\prime}, q^{\prime}\right)$.

Proof.
At this point we can introduce the following jargon. For classes $\mu \angle(h, k), \mu \angle(l, m)$ or congruent angles we write $\mu \angle(h, k)<\mu \angle(l, m)$ or $\mu \angle(l, m)>\mu \angle(h, k)$ if there are angles $\angle\left(h^{\prime}, k^{\prime}\right) \in \mu \angle(h, k), \angle\left(l^{\prime}, m^{\prime}\right) \in \mu \angle(l, m)$ such that $\angle\left(h^{\prime}, k^{\prime}\right)<\angle\left(l^{\prime}, m^{\prime}\right)$. T 1.3.11, L 1.3.16.6, L 1.3.56.18 then show that this notation is well defined: it does not depend on the choice of the angles $\angle\left(h^{\prime}, k^{\prime}\right), \angle\left(l^{\prime}, m^{\prime}\right)$. For arbitrary classes $\mu \angle(h, k), \mu \angle(l, m)$ of congruent angles we then have either $\mu \angle(h, k)<\mu \angle(l, m)$, or $\mu \angle(h, k)=\mu \angle(l, m)$, or $\mu \angle(h, k)>\mu \angle(l, m)$ (with the last inequality being equivalent to $\mu \angle(l, m)<\mu \angle(l, m))$. From L 1.3.16.10 - C 1.3.16.12 we see also that any one of these options excludes the two others.

Proposition 1.3.63.2. If $\mu \angle(h, k)+\mu \angle(l, m)=\mu \angle(p, q), \mu \angle(h, k)+\mu \angle(r, s)=\mu \angle(u, v)$, and $\angle(l, m)<\angle(r, s)$, then $\angle(p, q)<\angle(u, v)$. ${ }^{500}$

Proof.
Proposition 1.3.63.3. If $\mu \angle(h, k)+\mu \angle(l, m)=\mu \angle(p, q), \mu \angle(h, k)+\mu \angle(r, s)=\mu \angle(u, v)$, and $\angle(p, q)<\angle(u, v)$, then $\angle(l, m)<\angle(r, s)$. ${ }^{501}$

Proof.

[^144]Proposition 1.3.63.4. A class $\mu \angle(k, l)$ of congruent angles is equal to the sum $\mu \angle\left(k_{1}, l_{1}\right)+\mu \angle\left(k_{2}, l_{2}\right)+\cdots+$ $\mu \angle\left(k_{n}, l_{n}\right)$ of classes $\mu k_{1} l_{1}, \mu k_{2} l_{2}, \ldots, \mu k_{n} l_{n}$ of congruent angles iff there are rays $h_{0}, h_{1}, \ldots, h_{n}$ such that $\left[h_{i-1} h_{i} h_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, \angle\left(h_{i-1}, h_{i}\right) \in \mu \angle\left(k_{i}, l_{i}\right)$ for all $i \in \mathbb{N}_{n}$, and $\angle\left(h_{0}, h_{n}\right) \in \mu \angle(k, l)$. ${ }^{502}$

Proof.

Proposition 1.3.63.5. For classes μ_{1}, μ_{2}, μ_{3} of congruent angles we have: $\mu_{1}+\mu_{2}=\mu_{1}+\mu_{3}$ implies $\mu_{2}=\mu_{3}$.
Proposition 1.3.63.6. For any classes μ_{1}, μ_{3} of congruent angles such that $\mu_{1}<\mu_{3}$, there is a unique class μ_{2} of congruent angles with the property $\mu_{1}+\mu_{2}=\mu_{3}$.

If $\mu_{1}+\mu_{2}=\mu_{3}$ (and then, of course, $\mu_{2}+\mu_{1}=\mu_{3}$ in view of T 1.3 .59), we shall refer to the class μ_{2} of congruent angles as the difference of the classes μ_{3}, μ_{1} of congruent angles, and write $\mu_{2}=\mu_{3}-\mu_{1}$. That is, $\mu_{2}=\mu_{3}-\mu_{1} \stackrel{\text { def }}{\Longleftrightarrow} \mu_{1}+\mu_{2}=\mu_{3}$. The preceding proposition shows that the difference of classes of congruent angles is well defined.
Proposition 1.3.63.7. For classes $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ of congruent angles the inequalities $\mu_{1}<\mu_{2}, \mu_{3}<\mu_{4}$ imply $\mu_{1}+\mu_{3}<\mu_{2}+\mu_{4} .{ }^{503}$

Proof. See P ??.
Proposition 1.3.63.8. For classes $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ of congruent angles we have: $\mu_{1}+\mu_{2} \leq \mu_{3}+\mu_{4}$ and $\mu_{2}>\mu_{4}$ implies $\mu_{1}<\mu_{3}$.

Proof. See P ??. \square
Corollary 1.3.63.9. In a triangle $\triangle A B C$ we have $\mu \angle B A C+\mu \angle A C B<\pi^{(a b s)}$. ${ }^{504}$
Proof. In fact, $\angle B A C<\operatorname{adjsp} \angle A C B$ by T 1.3.17. Hence using P 1.3.63.2 we can write $\mu \angle A B C+\mu \angle A C B<$ μ adjsp $\angle A C B+\mu \angle A C B=\pi^{(a b s)}$, which gives the desired result.

We shall refer to an (ordered) pair $(\angle(h, k), n)$ consisting of an extended angle $\angle(h, k)$ and a positive integer $n \in \mathbb{N}_{n}$ (here $\mathbb{N}^{0} \rightleftharpoons\{0,1,2, \ldots\}$ is the set of all positive integers) as an overextended angle. Overextended angles with $n=0$ will be called improper, while those with $n \in \mathbb{N}$ will be termed proper overextended angles. Evidently, we can identify improper overextended angles with extended angles. In fact, there is a one-to-one correspondence between improper overextended angles of the form $(\angle, 0)$ and the corresponding extended angles \angle.

Overextended angles $\left(\angle\left(h_{1}, k_{1}\right), n_{1}\right),\left(\angle\left(h_{2}, k_{2}\right), n_{2}\right)$ will be called congruent iff $\angle\left(h_{1}, k_{1}\right)=\angle\left(h_{2}, k_{2}\right)$ and $n_{1}=n_{2}$. Obviously, the congruence relation thus defined is an equivalence relation.

We shall denote by $\mu(\angle(h, k), n)$ the equivalence class of overextended angles congruent to the overextended angle $(\angle(h, k), n)$. When there is no danger of confusion, we will also use a shorter notation $\mu(\angle, n)^{505}$ or simply $\mu^{(x t)}$.

Given classes $\mu\left(L_{1}, n_{1}\right), \mu\left(\angle_{2}, n_{2}\right)$ of congruent overextended angles, we define their sum as follows:
Consider first the case when both \angle_{1} and \angle_{2} are non-straight angles. In this case we take an angle $\angle(h, k) \in \mu L_{1}$ and construct, using A 1.3.4, the ray l such that $\angle(k, l) \in \angle_{2}$ and the rays h, l lie on opposite sides of the line \bar{k}. If it so happens that the ray k lies inside the extended angle $\angle(h, l)$ (which is the case when either k, l lie on the same side of the line \bar{h} or $\left.l=h^{c}\right)$, we define the sum of $\mu\left(L_{1}, n_{1}\right), \mu\left(L_{2}, n_{2}\right)$ as $\mu(\angle(h, l), n)$, where $n=n_{1}+n_{2}$. In the case when the ray k lies outside the (extended) angle $\angle(h, l)$, i.e. when the rays k, l lie on opposite sides of the line \bar{h} and the ray k^{c} lies inside the angle $\angle(h, l)$ (see L 1.2 .21 .33), we define the sum of $\mu\left(\angle_{1}, n_{1}\right), \mu\left(\angle_{2}, n_{2}\right)$ as $\mu\left(\angle\left(h^{c}, l\right), n\right)$, where $n=n_{1}+n_{2}+1$. Suppose now L_{1} (respectively, L_{2}) is a straight angle. Then we define the sum of $\mu\left(\angle_{1}, n_{1}\right)$, $\mu\left(\angle_{2}, n_{2}\right)$ as $\mu\left(\angle_{2}, n\right)\left(\mu\left(\angle_{1}, n\right)\right)$, where $n=n_{1}+n_{2}+1$.

It follows from T 1.3.9, L 1.3.16.21 that the addition of overextended angles is well defined.
The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity, as the following two theorems ($\mathrm{T} 1.3 .64, \mathrm{~T} 1.3 .65$) indicate:
Theorem 1.3.64. The addition of classes of congruent overextended angles is commutative: For any classes $\mu_{1}^{(x t)}$, $\mu_{2}^{(x t)}$, for which the addition is defined, we have $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{2}^{(x t)}+\mu_{1}^{(x t)}$.
Proof. Suppose $(\angle(h, l), n) \in \mu_{1}^{(x t)}+\mu_{2}^{(x t)}$. Then, according to our definition above, the following situations are possible:

1) The rays h, l lie on opposite sides of the line \bar{k}, where $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)},\left(\angle(k, l), n_{2}\right) \in \mu_{2}^{(x t)}$.
(a) Suppose first that the ray k lies inside the extended angle $\angle(h, l)$ and $n=n_{1}+n_{2}$. Interchanging the rays h, l and the subscripts " 1 " and " 2 " and noticing that they enter the appropriate part of the definition symmetrically, we see that $(\angle(h, l), n) \in \mu_{2}^{(x t)}+\mu_{1}^{(x t)}$. Thus, we have $\mu_{1}^{(x t)}+\mu_{2}^{(x t)} \subset \mu_{2}^{(x t)}+\mu_{1}^{(x t)}$.

Reversing our argument in an obvious way, we obtain $\mu_{2}^{(x t)}+\mu_{1}^{(x t)} \subset \mu_{1}^{(x t)}+\mu_{2}^{(x t)}$.

[^145](b) Suppose now that the ray k^{c} lies inside the extended angle $\angle(h, l)$ and $n=n_{1}+n_{2}+1$. Again, interchanging the rays h, l and the subscripts " 1 " and " 2 ", we see that $(\angle(h, l), n) \in \mu_{2}^{(x t)}+\mu_{1}^{(x t)}$ in this case, too.
2) Suppose, finally, that $\left(\angle\left(h, h^{c}\right), n_{1}\right) \in \mu_{1}^{(x t)}$. Then, according to our definition, $\left(\angle(h, l), n_{2}\right) \in \mu_{2}^{(x t)}$, where $n_{1}+n_{2}+1$. Hence $(\angle(h, l), n) \in \mu_{2}^{(x t)}+\mu_{1}^{(x t)}$. Similar considerations apply to the case when $\left(\angle\left(l, l^{c}\right), n_{1}\right) \in \mu_{2}^{(x t)}$.

Theorem 1.3.65. The addition of classes of congruent overextended angles is associative: For any classes $\mu_{1}^{(x t)}$, $\mu_{2}^{(x t)}, \mu_{3}^{(x t)}$, for which the addition is defined, we have $\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}=\mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.

Proof. 1) Suppose that $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)},\left(\angle(k, l), n_{2}\right) \in \mu_{2}^{(x t)}$, and the ray k lies inside the non-straight angle $\angle(h, l)$. Then, according to our definition of the sum of overextended angles, we have $\left(\angle(h, l), n_{1}+n_{2}\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}\right.$.

Taking a ray m such that $\left(\angle(l, m), n_{3}\right) \in \mu_{3}^{(x t)}$ and the rays h, m lie on opposite sides of the line \bar{l}, consider the following possible situations:
(a) The ray l lies inside the extended angle $\angle(h, m)$ (see Fig. 1.169, a), b)). Then $\left(\angle(h, m), n_{1}+n_{2}+n_{3}\right) \in$ $\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}$. But in this case the ray l also lies between k, m, and the ray k lies between the rays h, m (see P 1.2.21.29). Hence $\left(\angle(k, m), n_{2}+n_{3}\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$ and $\left(\angle(h, m), n_{1}+n_{2}+n_{3}\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
(b) Suppose now that the rays l, m lie on opposite sides of the line \bar{h}. Then (from the definition of addition of overextended angles) $\left(\angle\left(h^{c}, m\right), n_{1}+n_{2}+n_{3}+1\right) \in\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}$. Observe also that in this case the ray h^{c} lies inside the angle $\angle(l, m)$ by L 1.2.21.33, and $\angle\left(h, m^{c}\right) \equiv \angle\left(h^{c}, m\right)$ as vertical angles (see T 1.3.7).

In addition, using the definition of the interior of an angle, we can write $h^{c} \subset \operatorname{Int} \angle(l, m) \& k \subset \operatorname{Int} \angle(h, l) \Rightarrow$ $l h^{c} \bar{m} \& m h^{c} \bar{l} \& h k \bar{l}$. Hence $m h^{c} \bar{l} \& h^{c} \bar{l} h \& h k \bar{l} \stackrel{\text { L1.2.18.6 }}{\Longrightarrow} m \bar{l} k$

Consider first the case when k, l lie on the same side of \bar{m} (see Fig. 1.169, c)). Since both $m \bar{l} k$ and $k l \bar{m}$, we conclude that $\left(\angle(k, m), n_{2}+n_{3}\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)} . k l \bar{m} \& m \bar{l} k \xrightarrow{\text { L1.2.21.33 }} l \subset \operatorname{Int} \angle(m, k) \Rightarrow m l \bar{k}$. $m l \bar{k} \& l \bar{k} h \xrightarrow{\text { L1.2.18.6 }} m \bar{k} h$. Also, (by L 1.2.18.2, L 1.2.18.5) we have $k l \bar{m} \& l h^{c} \bar{m} \& h^{c} \bar{m} h \Rightarrow k \bar{m} h$. According to the definition of addition of overextended angles, this implies $\left(\angle\left(h, m^{c}\right), n_{1}+n_{2}+n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$. Note also that $\angle\left(h, m^{c}\right) \equiv \angle\left(h^{c}, m\right)$ as vertical angles (see T 1.3.7).

We now turn to the case when the rays l, k lie on opposite sides of the line \bar{m} (see Fig. 1.169, d)). Since both $l \bar{m} k$ and $m \bar{l} k$ (see above), in this situation we have $\left(\angle\left(k, m^{c}\right), n_{2}+n_{3}+1\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$. Also, $h^{c} l \bar{m} \& l \bar{m} k \& h^{c} \bar{m} h \Rightarrow h k \bar{m}$. $k l \bar{h} \& k \bar{h} m \& m^{c} \bar{h} m l m \bar{h} \Rightarrow m^{c} k \bar{h}$. Using the definition of interior points of an angle, we can write $h k \bar{m} \& m^{c} k \bar{h} \Rightarrow k \subset$ $\operatorname{Int} \angle\left(h, m^{c}\right)$. Taking into account the fact that $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)}$, we finally obtain $\left(\angle\left(h, m^{c}\right), n_{1}+n_{2}+n_{3}+1\right) \in$ $\mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.

There is also the case when $m^{c}=k$ (see Fig. 1.169, e)). In this case we have, evidently, $\left(\angle\left(m, m^{c}\right), n_{2}+n_{3}\right) \in$ $\mu_{2}^{(x t)}+\mu_{3}^{(x t)},\left(\angle\left(h, m^{c}\right), n_{1}+n_{2}+n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.

Consider now the situation when $\left(\angle(l, m), n_{3}\right) \in \mu_{3}^{(x t)}$ and $m=l^{c}$, i.e. when $\angle(l, m)$ is a straight angle. Then, obviously, $\left(\angle(h, l), n_{1}+n_{2}+n_{3}+1\right) \in\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)},\left(\angle(k, l), n_{2}+n_{3}+1\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)},\left(\angle(h, m), n_{1}+n_{2}+\right.$ $\left.n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
2) Suppose now that $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)},\left(\angle(k, l), n_{2}\right) \in \mu_{2}^{(x t)}$, and $h^{c}=l$, i.e. $\angle(h, l)$ is a straight angle. Then, according to our definition of the sum of overextended angles, we have $\left(\angle\left(h, h^{c}\right), n_{1}+n_{2}\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}\right.$.

Taking a ray m such that $\left(\angle\left(h^{c}, m\right), n_{3}\right) \in \mu_{3}^{(x t)}$ and the rays k, m lie on opposite sides of the line $\bar{l}=\bar{h}$, we can write $\left(\angle\left(h^{c}, m\right), n_{1}+n_{2}+n_{3}+1\right) \in\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}$ and consider the following possible situations (we have $m \bar{h} k \& m \bar{h} m^{c} \stackrel{\text { L1.2.18.6 }}{\Longrightarrow} m^{c} k \bar{h}$, whence in view of L 1.2 .21 .21 either $k \subset \operatorname{Int} \angle\left(h, m^{c}\right)$, or $m^{c} \subset \operatorname{Int} \angle(h, k)$, or $m^{c}=k$ (see Fig. 1.169, f)-h))):
(a) $k \subset \operatorname{Int} \angle\left(h, m^{c}\right)$ (see Fig. 1.169, f)). From definition of interior we have $h k \bar{m}$. Hence $h k \bar{m} \& h \bar{m} h^{c} \xrightarrow{\text { L1.2.18.5 }} k \bar{m} l$. Thus, we can write $\left(\angle\left(m^{c}, k\right), n_{2}+n_{3}+1\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$ and $\left(\angle\left(m^{c}, h\right), n_{1}+n_{2}+n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
(b) $m^{c} \subset \operatorname{Int} \angle(h, k)$ (see Fig. 1.169, g)). Hence $h \bar{m} k$ (see C 1.2.21.11). Writing $h \bar{m} k \& h \bar{m} h^{c} \xrightarrow{\text { L1.2.18.4 }} h^{c} k \bar{m}$ and taking into account that $k \bar{h} m$, we see that $\left(\angle(k, m), n_{2}+n_{3}\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$. Also, ${ }^{506} h m^{c} \bar{k} \& m^{c} \bar{k} m^{\text {L1.2.18.5 }} h \bar{k} m$. Thus, we see that $\left(\angle\left(m^{c}, h\right), n_{1}+n_{2}+n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
3) Suppose that $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)},\left(\angle(k, l), n_{2}\right) \in \mu_{2}^{(x t)}$, the rays h, l lie on opposite sides of the line \bar{k}, and the rays k, l lie on opposite sides of the line \bar{h}. Then, according to our definition of the sum of overextended angles, we have $\left(\angle\left(h^{c}, l\right), n_{1}+n_{2}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}\right.$.

Furthermore, by L 1.2.21.33 $h^{c} \subset \operatorname{Int} \angle(k, l)$.
Taking a ray m such that $\left(\angle(l, m), n_{3}\right) \in \mu_{3}^{(x t)}$ and the rays h^{c}, m lie on opposite sides of the line \bar{l}, consider the following possible situations:
(a) The rays l, m lie on the same side of the line \bar{h}. Then from L1.2.21.32 we have $l \subset \operatorname{Int} \angle\left(h^{c}, m\right)$. Hence $\left.\left(\angle\left(h^{c}, m\right), n_{1}+n_{2}+n_{3}+1\right) \in\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}\right)$.

[^146]Consider first the case when l, m lie on the same side of k (see Fig. 1.170, a)). Then, of course, $h^{c} \subset \operatorname{Int} \angle(k, l) \& l \subset$ $\operatorname{Int} \angle\left(h^{c}, m\right) \& \operatorname{lm} \bar{k} \stackrel{\text { L1.2.21.29 }}{\Longrightarrow} l \subset \operatorname{Int} \angle(k, m) \& h^{c} \subset \operatorname{Int} \angle(k, m) \Rightarrow h^{c} m \bar{k} \& k h^{c} \bar{m}$. Hence (using L 1.2.18.5) we can write $h \bar{k} h^{c} \& h^{c} m \bar{k} \Rightarrow h \bar{k} m, k h^{c} \bar{m} \& h^{c} \bar{m} h \Rightarrow k \bar{m} h$. These relations imply that $\left(\angle\left(m^{c}, h\right), n_{1}+n_{2}+n_{3}+1\right) \in$ $\mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.

We turn now to the situation when l, m lie on opposite sides of k (see Fig. 1.170, b)). Taking into account that $h^{c} \subset$ $\operatorname{Int} \angle(k, l) \Rightarrow k h^{c} \bar{l}$ (by definition of interior) and $l \subset \operatorname{Int} \angle\left(h^{c}, m\right) \xrightarrow{\mathrm{C1} .2 .21 .11} h^{c} \bar{l} m$, we can write $k h^{c} \bar{l} \& h^{c} \bar{l} m \xrightarrow{\mathrm{~L} 1.2 .18 .5}$ $k \bar{l} m$. This, together with $l \bar{k} m$, implies $\left(\angle\left(k^{c}, m\right), n_{2}+n_{3}+1\right) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$. Using L 1.2.18.4, L 1.2.18.5 we can write $k \bar{h} l \& l m \bar{h} \& k \bar{h} k^{c} \Rightarrow k^{c} m \bar{h}$. In view of L 1.2 .21 .32 this implies $m \subset \operatorname{Int} \angle\left(h^{c}, k^{c}\right)$, whence $m^{c} \subset \operatorname{Int} \angle(h, k)$ by L 1.2.21.16. Thus, again $\left(\angle\left(m^{c}, h\right), n_{1}+n_{2}+n_{3}+1\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
(b) The rays l, m lie on opposite same sides of the line \bar{h} (see Fig. 1.170, c)). In this case $\left(\angle(h, m), n_{1}+n_{2}+n_{3}+2\right) \in$ $\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}$.

Using L 1.2.18.4, L 1.2.18.5 we can write $k h^{c} \bar{l} \& h \bar{l} h^{c} \& k \bar{l} m \Rightarrow m h \bar{l} . m h \bar{l} \& l \bar{h} m \xrightarrow{\text { L1.2.21.32 }} h \subset \operatorname{Int} \angle(l, m) \xrightarrow{\text { L1.2.21.22 }}$ $m \subset \operatorname{Int} \angle\left(h, l^{c}\right) \stackrel{\text { L1.2.21.16 }}{\Longrightarrow} m^{c} \subset \operatorname{Int} \angle\left(h^{c}, l\right) . m^{c} \subset \operatorname{Int} \angle\left(h^{c}, l\right) \& h^{c} \subset \operatorname{Int} \angle(k, l) \xrightarrow{\text { L1.2.21.27 }} m^{c} \subset \operatorname{Int} \angle(k, l) \& h^{c} \subset$ Int $\angle\left(k, m^{c}\right)$. Hence $m^{c} \subset \operatorname{Int} \angle(k, l) \xrightarrow{\text { C1.2.21.11 }} k \bar{m} l$. Also, $k h^{c} \bar{l} \& h^{c} \bar{l} h \& h m \bar{l} \xrightarrow{\text { L1.2.18.5 }} k \bar{l} m$. Thus, $\left(\angle\left(k, m^{c}\right), n_{2}+n_{3}+\right.$ $1) \in \mu_{2}^{(x t)}+\mu_{3}^{(x t)}$. By definition of interior we have $h^{c} \subset \operatorname{Int} \angle\left(k, m^{c}\right) \Rightarrow h^{c} m^{c} \bar{k}$. Hence $h^{c} m^{c} \bar{k} \& h^{c} \bar{k} h \xrightarrow{\text { L1.2.18.5 }} m^{c} \bar{k} h$. Also, $k \bar{h} l \& l \bar{h} m \& m \bar{h} m^{c} \Rightarrow k \bar{h} m^{c}$. Thus, we see that $\left(\angle(h, m), n_{1}+n_{2}+n_{3}+2\right) \in \mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.
c) Suppose $m=h$ (see Fig. 1.170, d)). Then, obviously, $\left(\angle\left(h, h^{c}\right), n_{1}+n_{2}+n_{3}+1\right) \in\left(\mu_{1}^{(x t)}+\mu_{2}^{(x t)}\right)+\mu_{3}^{(x t)}$. We know that $k \bar{h} l$, and $k h^{c} \bar{l} \& h^{c} \bar{l} h \stackrel{\text { L1.2.18.5 }}{\Longrightarrow} k \bar{l} h$. Since $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)}$, it is now evident that $\left(\angle\left(h, h^{c}\right), n_{1}+n_{2}+n_{3}+1\right) \in$ $\mu_{1}^{(x t)}+\left(\mu_{2}^{(x t)}+\mu_{3}^{(x t)}\right)$.

Finally, the case when at least one of the overextended angles $\left(L_{i}, n_{i}\right) \in \mu_{i}^{(x t)}, i=1,2,3$ is straight, is almost trivial and can be safely left as an exercise to the reader.

It turns out that we can compare overextended angles just as easily as we compare extended or only conventional angles. We shall say that an overextended angle $\left(\angle\left(h_{1}, k_{1}\right), n_{1}\right)$ is less than an overextended angle $\left(\angle\left(h_{2}, k_{2}\right), n_{2}\right)$ iff:

- either $n_{1}<n_{2}$;
- or $n_{1}=n_{2}$ and $\angle\left(h_{1}, k_{1}\right)<\angle\left(h_{2}, k_{2}\right)$.

In short, $\left(\angle\left(h_{1}, k_{1}\right), n_{1}\right)<\left(\angle\left(h_{2}, k_{2}\right), n_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow}\left(n_{1}<n_{2}\right) \vee\left(\left(n_{1}=n_{2}\right) \& \angle\left(h_{1}, k_{1}\right)<\angle\left(h_{2}, k_{2}\right)\right)$.
Theorem 1.3.66. The relation "less than" for overextended angles is transitive. That is, $\left(\angle\left(h_{1}, k_{1}\right), n_{1}\right)<\left(\angle\left(h_{2}, k_{2}\right), n_{2}\right)$ and $\left(\angle\left(h_{2}, k_{2}\right), n_{2}\right)<\left(\angle\left(h_{3}, k_{3}\right), n_{3}\right)$ imply $\left(\angle\left(h_{1}, k_{1}\right), n_{1}\right)<\left(\angle\left(h_{3}, k_{3}\right), n_{3}\right)$.

Proof. See L 1.3.56.18.
Other properties of this relation are also fully analogous to those of the corresponding relation for extended angles (cf. L 1.3.16.6-L 1.3.16.14):

Proposition 1.3.66.1. If an overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is congruent to an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ and the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than an overextended angle $(\angle(h, k), n)$, the overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is less than the overextended angle $(\angle(h, k), n)$.

Proof. See L 1.3.16.6.
Proposition 1.3.66.2. If an overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is less than an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ and the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is congruent to an overextended angle $(\angle(h, k), n)$, the overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is less than the overextended angle $(\angle(h, k), n)$.

Proof. See L 1.3.56.18.
Proposition 1.3.66.3. If an overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is less than or congruent to an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ and the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than or congruent to an overextended angle $(\angle(h, k), n)$, the overextended angle $\left(\angle\left(h^{\prime \prime}, k^{\prime \prime}\right), n^{\prime \prime}\right)$ is less than or congruent to the overextended angle $(\angle(h, k), n)$.

Proof. See L 1.3.16.9.
Proposition 1.3.66.4. If an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than an overextended angle $(\angle(h, k), n)$, the overextended angle $(\angle(h, k), n)$ cannot be less than the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$.

Proof. See L 1.3.16.10.■
Proposition 1.3.66.5. If an overextended angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an overextended angle $\angle(h, k)$, it cannot be congruent to that angle.

Proof. See L 1.3.16.11.

Figure 1.169: Illustration for proof of T 1.3.65.

Figure 1.170: Illustration for proof of T 1.3.65 (continued).

Proposition 1.3.66.6. If an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is congruent to an overextended angle $(\angle(h, k), n)$, neither $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than $(\angle(h, k), n)$, nor $(\angle(h, k), n)$ is less than $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$.

Proof. See C 1.3.16.12.
Proposition 1.3.66.7. If an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than or congruent to an overextended angle $(\angle(h, k), n)$ and the overextended angle $(\angle(h, k), n)$ is less than or congruent to the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$, the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is congruent to the overextended angle $(\angle(h, k), n)$.

Proof. See L 1.3.16.13.
Proposition 1.3.66.8. If an overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is not congruent to an overextended angle $(\angle(h, k), n)$, then either the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$ is less than the overextended angle $(\angle(h, k), n)$, or the overextended angle $(\angle(h, k), n)$ is less than the overextended angle $\left(\angle\left(h^{\prime}, k^{\prime}\right), n^{\prime}\right)$.

Proof. See L 1.3.16.14.ロ
The relation "less than" for overextended angles induces in an obvious way the corresponding relation for classes of overextended angles. For classes $\mu\left(\angle(h, k), n_{1}\right), \mu\left(\angle(l, m), n_{2}\right)$ or congruent overextended angles we write $\mu\left(\angle(h, k), n_{1}\right)<\mu\left(\angle(l, m), n_{2}\right)$ or $\mu\left(\angle(l, m), n_{2}\right)>\mu\left(\angle(h, k), n_{1}\right)$ if there are overextended angles $\left(\angle\left(h^{\prime}, k^{\prime}\right), n_{1}\right) \in$ $\mu\left(\angle(h, k), n_{1}\right),\left(\angle\left(l^{\prime}, m^{\prime}\right), n_{2}\right) \in\left(\angle(l, m), n_{2}\right)$ such that $\left(\angle\left(h^{\prime}, k^{\prime}\right), n_{1}\right)<\left(\angle\left(l^{\prime}, m^{\prime}\right), n_{2}\right)$. T 1.3.11, P 1.3.66.1, P 1.3.66.2 then show that this notation is well defined: it does not depend on the choice of the overextended angles $\left(\angle\left(h^{\prime}, k^{\prime}\right), n_{1}\right)$, $\left(\angle\left(l^{\prime}, m^{\prime}\right), n_{2}\right)$. For arbitrary classes $\mu\left(\angle(h, k), n_{1}\right), \mu\left(\angle(l, m), n_{2}\right)$ of congruent overextended angles we then have either $\mu\left(\angle(h, k), n_{1}\right)<\mu\left(\angle(l, m), n_{2}\right)$, or $\mu\left(\angle(h, k), n_{1}\right)=\mu\left(\angle(l, m), n_{2}\right)$, or $\mu\left(\angle(h, k), n_{1}\right)>\mu\left(\angle(l, m), n_{2}\right)$ (with the last inequality being equivalent to $\mu \angle(l, m)<\mu \angle(l, m))$. From P 1.3.66.4-P 1.3.66.6 we see also that any one of these options excludes the two others.

Proposition 1.3.66.9. If $\mu\left(\angle(h, k), n_{1}\right)+\mu\left(\angle(l, m), n_{2}\right)=\mu\left(\angle(p, q), n_{3}\right), \mu\left(\angle(h, k), n_{1}\right)+\mu\left(\angle(r, s), n_{4}\right)=\mu\left(\angle(u, v), n_{5}\right)$, and $\left(\angle(l, m), n_{2}\right)<\left(\angle(r, s), n_{4}\right)$, then $\left(\angle(p, q), n_{3}\right)<\left(\angle(u, v), n_{5}\right)$. ${ }^{507}$

Proof.
Proposition 1.3.66.10. If $\mu\left(\angle(h, k), n_{1}\right)+\mu\left(\angle(l, m), n_{2}\right)=\mu\left(\angle(p, q), n_{3}\right), \mu\left(\angle(h, k), n_{1}\right)+\mu\left(\angle(r, s), n_{4}\right)=\mu\left(\angle(u, v), n_{5}\right)$, and $\left(\angle(p, q), n_{3}\right)<\left(\angle(u, v), n_{5}\right)$, then $\left(\angle(l, m), n_{2}\right)<\left(\angle(r, s), n_{4}\right)$. ${ }^{508}$

Proof.
Proposition 1.3.66.11. For classes $\mu_{1}^{(x t)}, \mu_{2}^{(x t)}, \mu_{3}^{(x t)}$ of congruent overextended angles we have: $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=$ $\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$ implies $\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$.

Proof. We know that either $\mu_{2}^{(x t)}<\mu_{3}^{(x t)}$, or $\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$, or $\mu_{2}^{(x t)}<\mu_{3}^{(x t)}$. But by P 1.3.66.9 $\mu_{2}^{(x t)}<\mu_{3}^{(x t)}$ would imply $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}<\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$, and $\mu_{2}^{(x t)}>\mu_{3}^{(x t)}$ would imply $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}>\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$. But both $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}<\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$ and $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}>\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$ contradict $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$, whence the result.

Proposition 1.3.66.12. For any classes $\mu_{3}^{(x t)}$ of congruent overextended angles such that $\mu_{1}^{(x t)}<\mu_{3}^{(x t)}$, there is a unique class $\mu_{2}^{(x t)}$ of congruent overextended angles with the property $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence, we take an arbitrary ray h and then construct (using A 1.3.4) rays k, l such that $\left(\angle(h, k), n_{1}\right) \in \mu_{1}^{(x t)},\left(\angle(h, l), n_{3}\right) \in \mu_{3}^{(x t)}$, where, of course, $n_{1}, n_{3} \in \mathbb{N}$. From L 1.2.21.21 we know that either the ray k lies inside the ray $\angle(h, l)$, or the ray l lies inside the angle $\angle(h, k)$, or the rays k, l coincide. In the case $k \subset \operatorname{Int} \angle(h, l)$ (see Fig. 1.171, a)) from the definition of sum of classes of congruent overextended angles immediately follows that if we denote $\mu_{2}^{(x t)} \rightleftharpoons \mu\left(\angle(k, l), n_{3}-n_{1}\right)$, we have $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$. Suppose now $l \subset \operatorname{Int} \angle(h, k)$ (see Fig. 1.171, b)). Then we have (from definition of interior) $l \subset \operatorname{Int} \angle(h, k) \Rightarrow h l \bar{k} \& k l \bar{h}$. Since $k l \bar{h} \& l \bar{h} l^{c} \stackrel{\text { L1.2.18.5 }}{\Longrightarrow} k \bar{h} l^{c}, h l \bar{k} \& l \bar{k} l^{c} \stackrel{\text { L1.2.18.5 }}{\Longrightarrow} h \bar{k} l^{c}$, we see that defining $\mu_{2}^{(x t)} \rightleftharpoons \mu\left(\angle\left(k, l^{c}\right), n_{3}-n_{1}-1\right)$, we have (from definition of interior) ${ }^{509} \mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$, as required. Finally, in the case $k=l$ we let $\mu_{2}^{(x t)} \rightleftharpoons \mu\left(\angle\left(k, k^{c}\right), n_{3}-n_{1}-1\right)$, which, obviously, again gives $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$.

[^147]

Figure 1.171: Illustration for proof of P 1.3.66.12.

If $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$ (and then, of course, $\mu_{2}^{(x t)}+\mu_{1}^{(x t)}=\mu_{3}^{(x t)}$ in view of T 1.3.64), we shall refer to the class $\mu_{2}^{(x t)}$ of congruent overextended angles as the difference of the classes $\mu_{3}^{(x t)}, \mu_{1}^{(x t)}$ of congruent overextended angles, and write $\mu_{2}^{(x t)}=\mu_{3}^{(x t)}-\mu_{1}^{(x t)}$. That is, $\mu_{2}^{(x t)}=\mu_{3}^{(x t)}-\mu_{1}^{(x t)} \stackrel{\text { def }}{\Longleftrightarrow} \mu_{1}^{(x t)}+\mu_{2}^{(x t)}=\mu_{3}^{(x t)}$. The preceding proposition shows that the difference of classes of congruent overextended angles is well defined.

Proposition 1.3.66.13. For classes $\mu_{1}^{(x t)}$, $\mu_{2}, \mu_{3}, \mu_{4}$ of congruent overextended angles the inequalities $\mu_{1}^{(x t)}<\mu_{2}^{(x t)}$, $\mu_{3}^{(x t)}<\mu_{4}^{(x t)}$ imply $\mu_{1}^{(x t)}+\mu_{3}^{(x t)}<\mu_{2}^{(x t)}+\mu_{4}^{(x t)}$. ${ }^{510}$

Proof.
Proposition 1.3.66.14. For classes $\mu_{1}^{(x t)}, \mu_{2}^{(x t)}, \mu_{3}^{(x t)}, \mu_{4}^{(x t)}$ of congruent overextended angles we have: $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}=$ $\mu_{3}^{(x t)}+\mu_{4}^{(x t)}$ and $\mu_{2}^{(x t)}>\mu_{4}$ implies $\mu_{1}<\mu_{3}$.

Proof.
The preceding results can be directly extended to any finite number of (congruence classes) of overextended angles.
Corollary 1.3.66.15. Given a natural number $n \in \mathbb{N}$, if $\mu\left(\angle\left(h_{i}, k_{i}\right), n_{i}\right) \leq \mu\left(\angle\left(l_{i}, m_{i}\right), p_{i}\right)$ for all $i \in \mathbb{N}_{n}$ then $\sum_{i=1}^{n}\left(\angle\left(h_{i}, k_{i}\right), n_{i}\right) \leq \sum_{i=1}^{n} \mu\left(\angle\left(l_{i}, m_{i}\right), p_{i}\right)$. Furthermore, if there exists an $i_{0} \in i \in \mathbb{N}_{n}$ such that $\mu\left(\angle\left(h_{i_{0}}, k_{i_{0}}\right), n_{i_{0}}\right) \leq$ $\mu\left(\angle\left(l_{i_{0}}, m_{i_{0}}\right), p_{i_{0}}\right)$ then $\sum_{i=1}^{n}\left(\angle\left(h_{i}, k_{i}\right), n_{i}\right)<\sum_{i=1}^{n} \mu\left(\angle\left(l_{i}, m_{i}\right), p_{i}\right)$. In particular, $\mu(\angle(h, k), p) \leq \mu(\angle(l, m), p)$ implies $n \mu(\angle(h, k), n) \leq n \mu(\angle(l, m, p)$ for any $n \in \mathbb{N}$.

Proof.
A similar result is obviously valid for classes of congruent overextended angles:
Corollary 1.3.66.16. Given a natural number $n \in \mathbb{N}$, if $\mu_{i}^{(x t)} \leq \mu_{i}^{\prime(x t)}$ for all $i \in \mathbb{N}_{n}$ then $\sum_{i=1}^{n} \mu_{i}^{(x t)} \leq \sum_{i=1}^{n} \mu_{i}^{\prime(x t)}$. Furthermore, if there exists an $i_{0} \in i \in \mathbb{N}_{n}$ such that $\mu_{i_{0}}^{(x t)} \leq \mu_{i_{0}}^{\prime(x t)}$ then $\sum_{i=1}^{n} \mu_{i}^{(x t)}<\sum_{i=1}^{n} \mu_{i}^{\prime(x t)}$. In particular, if $\mu^{(x t)}<\mu^{\prime(x t)}$ then $\mu^{(x t)}<\mu^{\prime(x t)}$

Proof.
Proposition 1.3.66.17. Proof.
Proposition 1.3.66.18. Proof.
Proposition 1.3.66.19. Proof.
Given a triangle $\triangle A B C$, we shall refer to the sum $\Sigma_{\triangle A B C}^{(a b s) \angle} \rightleftharpoons \mu(\angle B A C, 0)+\mu(\angle A B C, 0)+\mu(\angle A C B, 0)$ of the classes $\mu(\angle B A C, 0), \mu(\angle A B C, 0), \mu(\angle A C B, 0)$ of overextended angles as the abstract sum of the angles of the triangle $\triangle A B C$.

Evidently, congruent triangles always have equal abstract sums of angles.
We shall denote $\pi^{(a b s, x t)}$ the class of congruent overextended angles formed by all pairs ($\left.\angle\left(h, h^{c}\right), 0\right)$, where $\angle\left(h, h^{c}\right)$ is, of course, a straight angle.

[^148]

Figure 1.172: Given a triangle $\triangle A B C$, there is a triangle one of whose angles is at least two times smaller than $\angle A$.

Since $\mu\left(\angle_{1}, 0\right)+\mu\left(\angle_{2}, 0\right)+\cdots+\mu\left(\angle_{n}, 0\right)=\mu(\angle, 0) \Leftrightarrow \mu L_{1}+\mu \angle_{2}+\cdots+\mu \angle_{n}=\mu \angle$, given a triangle $\triangle A B C$, we shall sometimes refer synonymously to the sum $\mu \angle A+\mu \angle B+\mu \angle C$, whenever it makes sense and is equal to some congruence class $\mu \angle$ of extended angles, as the abstract sum of the angles of the triangle $\triangle A B C$.
Proposition 1.3.67.8. Given a triangle $\triangle A B C$, there is a triangle with the same abstract sum of angles, one of whose angles is at least two times smaller than $\angle A$.

Proof. (See Fig. 1.172.) Denote $O \rightleftharpoons \operatorname{mid} A C$ (see T 1.3.22). Take A^{\prime} so that $\left[A O A^{\prime}\right], O A \equiv O A^{\prime}$ (see A 1.3.1). Then $\left[A O A^{\prime}\right] \&[B O C] \Rightarrow \angle A^{\prime} O C=v e r t \angle A O B \stackrel{\mathrm{~T} 1.3 .7}{\Longrightarrow} \angle A^{\prime} O C \equiv \angle A O B . A O \equiv O A^{\prime} \& B O=O C \angle A^{\prime} O C \equiv \angle A O B \xrightarrow{\mathrm{~T} 1.3 .4}$ $\triangle A^{\prime} O C \equiv \triangle A O B \Rightarrow \angle O A^{\prime} C \equiv \angle O A B \& \angle O C A^{\prime} \equiv \angle O A B$. Using L 1.2.21.6, L 1.2.21.4, we can write $O \in(B C) \cap$ $\left(A A^{\prime}\right) \Rightarrow A_{O} \subset \operatorname{Int} \angle B A C \& C_{O} \subset \operatorname{Int} \angle A C A^{\prime} \Rightarrow \mu \angle B A C=\mu \angle B A O+\mu \angle C A O \& \mu \angle A C A^{\prime}=\mu \angle A C O+\mu \angle A^{\prime} C O$. Also, we shall make use of the fact that $O \in(B C) \cap\left(A A^{\prime}\right) \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle A B O=\angle A B C \& \angle O A^{\prime} C=\angle A A^{\prime} C \& \angle O A C=$ $\angle A^{\prime} A C$. We can now write $\Sigma_{\triangle A B C}^{(a b s) \angle}=\mu(\angle B A C, 0)+\mu(\angle A B C, 0)+\mu(\angle A C B, 0)=\mu(\angle B A O, 0)+\mu(\angle C A O, 0)+$ $\mu(\angle A B C, 0)+\mu(\angle A C B, 0)=\mu\left(\angle O A^{\prime} C, 0\right)+\mu\left(\angle C A A^{\prime}, 0\right)+\mu\left(\angle O C A^{\prime}, 0\right)+\mu(\angle A C O, 0)=\mu\left(\angle A A^{\prime} C, 0\right)+\mu\left(\angle C A A^{\prime}, 0\right)+$ $\mu\left(\angle A C A^{\prime}, 0\right)=\Sigma_{\triangle A A^{\prime} C}^{(a b s)}$. Furthermore, since $\mu \angle B A C=\mu \angle B A O+\mu \angle C A O=\mu \angle A A^{\prime} C+\mu \angle C A A^{\prime}$, one of the angles of $\triangle A A^{\prime} C$ is at least two times smaller than $\angle B A C .{ }^{511} \square$

Proposition 1.3.67.9. Given a cevian $B D$ in a triangle $\triangle A B C$, if the abstract sums of angles in the triangles $\triangle A B D, \triangle C B D$ are both equal to $\pi^{(a b s, x t)}$, then the abstract sum of angles in the triangle $\triangle A B C$ also equals $\pi^{(a b s, x t)}$.

Proof. By definition, $\Sigma_{\triangle A B D}^{(a b s) \angle}=\mu(\angle B A D, 0)+\mu(\angle A B D, 0)+\mu(\angle A D B, 0), \Sigma_{\triangle D B C}^{(a b s) \angle}=\mu(\angle B D C, 0)+\mu(\angle D B C, 0)+$ $\mu(\angle D C B, 0), \Sigma_{\triangle A B C}^{(a b s) \angle}=\mu(\angle B A C, 0)+\mu(\angle A B C, 0)+\mu(\angle A C B, 0)$. Taking into account that $\mu(\angle A B C, 0)=$ $\mu(\angle A B D, 0)+\mu(\angle D B C, 0), \mu(\angle A D B, 0)+\mu(\angle B D C, 0)=\pi^{(a b s, x t)}$, we have $\Sigma_{\triangle A B D}^{(a b s) \angle}+\Sigma_{\triangle D B C}^{(a b s) \angle}=\Sigma_{\triangle A B C}^{(a b s) \angle}+\pi^{(a b s, x t)}$. Since, by hypothesis, $\Sigma_{\triangle A B D}^{(a b s) \angle}=\Sigma_{\triangle D B C}^{(a b s) \angle}=\pi^{(a b s, x t)}$, from P 1.3.66.11 we have immediately $\Sigma_{\triangle A B C}^{(a b s) \angle}=\pi^{(a b s, x t)}$, as required.

Proposition 1.3.67.10. Given a triangle $\triangle A C B$ such that $\angle A C B$ is a right angle and $\Sigma_{\triangle A C B}^{(a b s) \angle}=\pi^{(a b s, x t)}$, in the triangle $\triangle C D A$ such that $[C B D], B C \equiv B D$ we also have $\Sigma_{\triangle C D A}^{(a b s) \angle B}=\pi^{(a b s, x t)}$.

Proof. (See Fig. 1.173.) Using A 1.3.4, A 1.3.1, construct a point C^{\prime} such that C, C^{\prime} lie on opposite sides of the line $a_{A B}$ and $\angle C A B \equiv \angle A B C^{\prime}, A C \equiv B C^{\prime}$. By T 1.3.4 $\triangle A C B \equiv \triangle A C^{\prime} B$. It follows that $\angle A C^{\prime} B$ is a right angle (see L 1.3.8.2) and $\angle A B C \equiv \angle B A C^{\prime}$. By C 1.3.17.4 the angles $\angle C A B, \angle A B C$ are acute, as consequently are angles $\angle C^{\prime} A B, \angle C^{\prime} B A$ (see L 1.3.16.16). Hence by C 1.3 .18 .12 the ray A_{B} lies inside the angle $\angle C A C^{\prime}$ and the ray B_{A} lies inside the angle $\angle C B C^{\prime}$. This, in turn, implies $\mu \angle C A B+\mu \angle C^{\prime} A B=\mu \angle C A C^{\prime}, \mu \angle C B A+\mu \angle C^{\prime} B A=\mu \angle C^{\prime} B C$. Since $\angle A C B, \angle A C^{\prime} B$ are right angles and $\Sigma_{\triangle A C B}^{(a b s) \angle}=\Sigma_{\triangle A C^{\prime} B}^{(a b s) \angle}=\pi^{(a b s, x t)}$, we conclude that $\mu \angle C A C^{\prime}=\mu \angle C B C^{\prime}=$ $(1 / 2) \pi^{(a b s)}$, i.e. $\angle C A C^{\prime}, \angle C B C^{\prime}$ are both right angles. Using A 1.3.1, choose D so that $[C B D]$ and $B C \equiv B D$. By L 1.2.21.6, L 1.2.21.4 we have $A_{B} \subset \operatorname{Int} \angle C A D$. Since also $A_{B} \subset \operatorname{Int} \angle C A C^{\prime}$, by definition of interior both $A_{B}, A_{C^{\prime}}$ and A_{B}, A_{D} lie on the same side of the line $a_{A C}$. Hence by L 1.2.18.2 the rays $A_{D}, A_{C^{\prime}}$ lie on the same side of $a_{A C}$. Since $\angle C A D<\angle C A C^{\prime}$ (the angle $\angle C A D$ being an acute angle, and $\angle C A C^{\prime}$ a right angle), we have $A_{D} \subset \operatorname{Int} \angle C A C^{\prime}$ (see C 1.3.16.4). Now we can write $A_{B} \subset \operatorname{Int} \angle C A D \& A_{D} \subset \operatorname{Int} \angle C A C^{\prime} \xrightarrow{\text { L1.2.21.27 }}$ $A_{D} \subset \operatorname{Int} \angle B A C^{\prime} \stackrel{\mathrm{L} 1.2 .21 .10}{\Longrightarrow} \exists O O \in A_{D} \cap\left(B C^{\prime}\right) . O \in A_{D} \stackrel{\mathrm{~L} 1.2 .11 .8}{\Longrightarrow}[A O D] \vee[A D O] \vee O=D$. Using C 1.3.18.4

[^149]

Figure 1.173: Given a triangle $\triangle A C B$ such that $\angle A C B$ is a right angle and $\Sigma_{\triangle A C B}^{(a b s) \angle}=\pi^{(a b s, x t)}$, in the triangle $\triangle C D A$ such that $[C B D], B C \equiv B D$ we also have $\Sigma_{\triangle C D A}^{(a b s) \angle}=\pi^{(a b s, x t)}$.
we see that $A O<A B<A D .{ }^{512}$ These inequalities imply that $[A O D]$. ${ }^{513}$ Thus, the angles $\angle A O C^{\prime}, \angle B O D$ are vertical. They are, consequently, congruent (T 1.3.7). Evidently, $\left[B O C^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} B_{O}=B_{C^{\prime}} \& C^{\prime}{ }_{O}=C_{B} \Rightarrow$ $\angle A C^{\prime} B=\angle A C^{\prime} O \& \angle O B D=\angle C^{\prime} B D$. Furthermore, since the right angles $\angle A C^{\prime} B=\angle A C^{\prime} O$ and $\angle O B D=$ $\angle C^{\prime} B D=\operatorname{adjsp} \angle C^{\prime} B C$ are congruent (T1.3.16) and $B C \equiv A C^{\prime} \& B C \equiv B D \Rightarrow A C^{\prime} \equiv B D$, by T 1.3 .19 we have $\triangle A O C^{\prime} \equiv \triangle B O D$, whence $\angle C^{\prime} A O \equiv \angle B D O$. Using A 1.3.1, choose a point E such that $\left[A C^{\prime} E\right]$ and $A C^{\prime} \equiv C^{\prime} E$. Since $\left[A C^{\prime} E\right],[A O D]$, and $[C B D]$, using L 1.2.11.15 we can write $\angle C^{\prime} A O=\angle E A D, \angle B D O=\angle C D A$. Hence $\angle E A D \equiv \angle C D A$. Furthermore, in view of $B C \equiv B D \equiv A C^{\prime} \equiv C^{\prime} E$ and $[C B D],\left[A C^{\prime} E\right]$, by A 1.3 .3 we have $C D \equiv A E$. Hence from T 1.3.4 we have $\triangle C D A \equiv \triangle E A D$. In particular, $\angle C A D \equiv \angle A D E, \angle A C D \equiv \angle A E D$. The latter means that $\angle A E D$ is a right angle (see L 1.3.8.2). Since $\mu \angle C A D+\mu \angle E A D=\mu \angle C A C^{\prime}=(1 / 2) \pi^{(a b s)}$, the congruences $\angle C D A \equiv \angle E A D, \angle C A D \equiv \angle A D E$ imply that also $\mu \angle C D A+\mu \angle E D A=(1 / 2) \pi^{(a b s)}$. Therefore, we have $\Sigma_{\triangle C D A}^{(a b s) \angle}+\Sigma_{\triangle E A D}^{(a b s) \angle}=\mu(\angle A C D, 0)+\mu(\angle C D A, 0)+\mu(\angle C A D, 0)+\mu(\angle A E D, 0)+\mu(\angle E A D, 0)+\mu(\angle A D E, 0)=$ $\pi^{(a b s, x t)}+\pi^{(a b s, x t)}$. Finally, since the congruence $\triangle C D A \equiv \triangle E A D$ implies $\Sigma_{\triangle C D A}^{(a b s) \angle}=\Sigma_{\triangle E A D}^{(a b s) \angle}$, we conclude that $\Sigma_{\triangle C D A}^{(a b s) \angle}=\pi^{(a b s, x t)}$, as required.

Proposition 1.3.67.11. Suppose that the (abstract) sum of the angles of a triangle $\triangle A B C$ is equal to $\pi^{(a b s, x t)}$. Then $\mu \angle A+\mu \angle B=\mu(\operatorname{adjsp} \angle C)$.

Proof. We can write $\mu \angle A+\mu \angle B+\mu \angle C=\pi^{(a b s)}=\mu \angle C+\mu(\operatorname{adjsp} \angle C)$. Hence the result follows by P 1.3.63.5. \square
In the case of triangles whose angle sums are less than $\pi^{(a b s, x t)}$ we can take our consideration of angle sums in triangles one step further with the following definitions, which have played a key role in the development of the foundations of hyperbolic geometry:

A quadrilateral $A B C D$ with right angles $\angle A B C, \angle B C D$ is called a birectangle. We shall assume that the vertices A, D lie on the same side of the line $a_{B C}$ containing the side $B C$. This guarantees that, as will be shown below in a broader context, the birectangle is convex and, in particular, simple.

An isosceles birectangle $A B C D$, i.e. a birectangle $A B C D$ whose sides $A B, C D$ are congruent, is called a Saccheri quadrilateral. The side $B C$ is called the base, and the side $A D$ the summit of the Saccheri quadrilateral. The angles $\angle B A D, \angle C D A$ are referred to as the summit angles of the quadrilateral $A B C D$. Finally, the interval $M N$ joining the midpoints M, N of the summit and the base, respectively, is referred to as the altitude of the Saccheri quadrilateral, and the line $a_{M N}$ as the altitude line of the quadrilateral $A B C D$.

Consider a triangle $\triangle A B C$ with its (abstract) sum of the angles $\Sigma_{\triangle A B C}^{(a b s) \angle}$ less than $\pi^{(a b s, x t)}$. We shall refer to the difference $\delta_{\triangle A B C}^{(a b s) \angle} \rightleftharpoons \pi^{(a b s, x t)}-\Sigma_{\triangle A B C}^{(a b s) \angle 514}$ as the angular defect of the triangle $\triangle A B C$. Evidently, congruent

[^150]triangles have equal angular defects.
Proposition 1.3.67.12. Given a cevian $B D$ in a triangle $\triangle A B C$, the sum of angular defects of the triangles $\triangle A B D, \triangle D B C$ equals the angular defect of the triangle $A B C$.

Proof. Using the definition of angular defect, we can write

$$
\begin{equation*}
\mu(\angle D A B, 0)+\mu(\angle A B D, 0)+\mu(\angle B D A, 0)+\delta_{\triangle A B D}^{(a b s) \angle}=\pi^{(a b s, x t)} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(\angle D C B, 0)+\mu(\angle C B D, 0)+\mu(\angle B D C, 0)+\delta_{\triangle C B D}^{(a b s) \angle}=\pi^{(a b s, x t)} \tag{1.5}
\end{equation*}
$$

Adding up the equations $(1.4),(1.5)$ and taking into account that $\mu(\angle A D B, 0)+\mu(\angle C D B, 0)=\pi^{(a b s, x t) 515}$, $\mu(\angle A B D, 0)+\mu(\angle C B D, 0)=\mu(\angle A B C, 0),{ }^{516}$ we obtain

$$
\mu(\angle C A B, 0)+\mu(\angle A B C, 0)+\mu(\angle B C A, 0)+\delta_{\triangle A B D}^{(a b s) \angle}+\delta_{\triangle C B D}^{(a b s) \angle}+\pi^{(a b s, x t)}=\pi^{(a b s, x t)}+\pi^{(a b s, x t)},
$$

whence (see $\operatorname{Pr} 1.3 .63 .5$)

$$
\mu(\angle C A B, 0)+\mu(\angle A B C, 0)+\mu(\angle B C A, 0)+\delta_{\triangle A B D}^{(a b s) \angle}+\delta_{\triangle C B D}^{(a b s) \angle}=\pi^{(a b s, x t)} .
$$

But from the definition of the defect of $\triangle A B C$ we have $\mu(\angle C A B, 0)+\mu(\angle A B C, 0)+\mu(\angle B C A, 0)+\delta_{\triangle A B C}^{(a b s) \angle}=$ $\pi^{(a b s, x t)}$. Hence, using $\operatorname{Pr} 1.3 .63 .5$ again, we see that $\delta_{\triangle A B D}^{(a b s) \angle}+\delta_{\triangle C B D}^{(a b s) \angle}=\delta_{\triangle A B C}^{(a b s) \angle}$, q.e.d.

Corollary 1.3.67.13. Given a cevian $B D$ in a triangle $\triangle A B C$, the angular defect of each of the triangles $\triangle A B D$, $\triangle D B C$ is less than the angular defect of the triangle $A B C$.

Proof. Follows from the preceding proposition (P 1.3.67.12) and P 1.3.63.1.
Corollary 1.3.67.14. Given a triangle $\triangle A B C$ and points $D \in(A C), E \in(A B)$, the angular defect of the triangle $\triangle A D E$ is less than the angular defect of the triangle $A B C$.

Proof. We just need to apply the preceding corollary (C 1.3.67.13) twice ${ }^{517}$ and then use T 1.3.66.
The preceding two corollaries can be reformulated in terms of the angle sums of the triangles involved as follows:
Corollary 1.3.67.15. Given a cevian $B D$ in a triangle $\triangle A B C$, the (abstract) angle sum of each of the triangles $\triangle A B D, \triangle D B C$ is less than the (abstract) angle sum of the triangle $A B C$.

Proof. Follows from C 1.3.67.13, P 1.3.66.8.
Corollary 1.3.67.16. Given a triangle $\triangle A B C$ and points $D \in(A C), E \in(A B)$, the angle sum of the triangle $\triangle A D E$ is greater than the angle sum of the triangle $A B C$.

Proof. Follows from C 1.3.67.14, P 1.3.66.9.
Theorem 1.3.67. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ equals $\pi^{(a b s, x t)}$. Then the sum of the angles of any convex polygon with $n>3$ sides is $(n-2) \pi^{(a b s, x t)}$.

Proof.
Theorem 1.3.68. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ is less than $\pi^{(a b s, x t)}$. Then the sum of the angles of any convex polygon with $n>3$ sides is less than $(n-2) \pi^{(a b s, x t)}$.

Proof.
We have saw previously that the summit of any Saccheri quadrilateral is parallel to its base (see T 1.3.28). This implies, in particular, that any Saccheri quadrilateral is convex. It can be proved that the summit angles of any Saccheri quadrilateral are congruent. We are going to do this, however, in a more general context.

Consider a quadrilateral $A B C D$ such that the vertices A, D lie on the same side of the line $a_{B C}{ }^{518}$ and $\angle A B C \equiv \angle B C D, B A \equiv C D$. We will refer any such quadrilateral as an isosceles quadrilateral.

Lemma 1.3.68.1. Any isosceles quadrilateral $A B C D{ }^{519}$ is a trapezoid.

[^151]Proof. Denote by E, F, respectively the feet of the perpendiculars drawn through the points A, D to the line $a_{B C}$. To show that E, F are distinct, suppose the contrary, i.e. that $E=F$. Then we have $A \in E_{D}$ from L 1.3.24.1. Furthermore, in this case $E \neq B$ by 1.3.8.1, and for the same reason $E \neq C$. Thus, the points A, B, E are not collinear, as are the points D, C, E. Additionally, we can claim that $[B E C]$. In fact, since $B \neq E \neq C$, in view of T 1.2 .2 we have either $[E B C]$, or $[B C E]$, or $[B E C]$. Suppose that $[E B C$. Then the angle $\angle B C D=\angle E C D$ is acute as being a non-right angle in a right-angled triangle $\triangle D E C$. Since $\angle A E B$ is, by construction, a right angle, we have $\angle B C D<\angle A E B$ (see L 1.3.16.17). Oh the other hand, by T 1.3 .17 we have $\angle A E B<\angle A B C$. Thus, we obtain $\angle B C D<\angle A B C$, in contradiction with $\angle A B C \equiv \angle B C D$ (by hypothesis). This contradiction shows that the assumption that $[E B C]$ is not valid. Similarly, it can be shown that $\neg[B C E]$. ${ }^{520}$ Thus, $[B E C]$, which implies that $\angle A B E=\angle A B C, \angle E C D=\angle B C D$. Consequently, we have $\angle A B E \equiv \angle E C D$, which together with $\angle A E B \equiv \angle D E C$ (see T 1.3.16) gives $\triangle A E B \equiv \triangle D E C$, whence $E A \equiv E D$. But $E A \equiv E D \& D \in E_{A} \xrightarrow{\text { A1.3.1 }} A=D$, in contradiction with the requirements $A \neq D$, necessary if the quadrilateral $A B C D$ is to make any sense. The contradiction shows that in reality $E \neq F$. Suppose now $E=B$. Then also $F=C$ (see L1.3.8.1, L 1.3.8.2), and $A B C D$ is a Saccheri quadrilateral, and, consequently, a trapezoid by T 1.3.28. Suppose $E \neq B$. Then also $F \neq C$. ${ }^{521}$ We are going to show that $\angle A B E \equiv \angle D C F$. Suppose that $\angle A B C$ is acute. ${ }^{522}$ Then $E \in B_{C}$ (see C 1.3.18.11), whence $\angle A B E=\angle A B C$ (see L1.2.11.3). Similarly, we have $F \in C_{B},{ }^{523}$ whence $\angle D C F=\angle D C B$. Taking into account $\angle A B C \equiv \angle B C D$, we conclude that $\angle A C E \equiv \angle D C F$. Suppose now that $\angle A B C$ is obtuse. Then $\angle D C B$ is also obtuse and, using C 1.3.18.11, L 1.2.11.3, and, additionally, T 1.3.6, we again find that $\angle A C E \equiv \angle D C F$. Now we can write ${ }^{524} B A \equiv C D \& \angle A B E \equiv \angle D C F \& \angle A E B \equiv \angle D F C \stackrel{T 1.3 .19}{\Longrightarrow} \triangle A E B \equiv \triangle D F C \Rightarrow A E \equiv D F$. Finally, applying T 1.3.28 to the Saccheri quadrilateral $A E F D$, we reach the required result.

Lemma 1.3.68.2. Consider an arbitrary isosceles quadrilateral $A B C D$, in which, by definition $A D a_{B C}, \angle A B C \equiv$ $\angle B C D$, and $B A \equiv C D$. Suppose further that its sides $(A B), C D$ do not meet. Then:

1. The diagonals $(A C),(B D)$ concur in a point O.
2. The quadrilateral $A B C D$ is convex.
3. The summit angles $\angle B A D, \angle C D A$ are congruent.
4. Furthermore, we have $B O \equiv C O, A O \equiv D O, \angle B A C \equiv \angle C D B, \angle B D A \equiv \angle C A D, \angle B C A \equiv \angle C B D$, $\angle A B D \equiv \angle D C A$.

Proof. 1. See T 1.2.42 (see also the preceding lemma, L 1.3.68.1).
2. See L 1.2.62.3.

3, 4. $A B \equiv D C \& \angle A B C \equiv \angle D C B \& B C \equiv C B \stackrel{T 1.3 .4}{\Longrightarrow} \triangle A B C \equiv \triangle D C B \Rightarrow \angle B A C \equiv \angle C D B \& \angle B C A \equiv$ $\angle C B D \& A C \equiv D B . A B \equiv D C \& A D \equiv D A \& B D \equiv C A \stackrel{\mathrm{~T} 1.3 .10}{\Longrightarrow} \triangle B A D \equiv \triangle C D A \Rightarrow \angle B A D \equiv \angle C D A \& \angle B D A \equiv$ $\angle C A D \& \angle A B D \equiv \angle C D A$. Using L 1.2.11.15 we can write $[A O C] \&[D O B] \Rightarrow \angle B C O=\angle B C A \& \angle C B O=$ $\angle C B D \& \angle D A O \equiv \angle D A C \& \angle A D O \equiv \angle A D B$. Hence $\angle B C O \equiv \angle C B O, \angle A D O \equiv \angle D A O$.

Corollary 1.3.69.1. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ equals $\pi^{(a b s, x t)}$. Then any Saccheri quadrilateral is a rectangle.

Proof.
Corollary 1.3.69.2. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ is less than $\pi^{(a b s, x t)}$. Then any Saccheri quadrilateral has two acute angles.

Proof.
A quadrilateral $A B C D$ with three right angles (say, $\angle D A B, \angle A B C$, and $\angle B C D$) is called a Lambert quadrilateral.

Corollary 1.3.69.3. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ equals $\pi^{(a b s, x t)}$. Then any Lambert quadrilateral is a rectangle.

Proof. \square
Corollary 1.3.69.4. Suppose that the (abstract) sum of the angles of any triangle $\triangle A B C$ is less than $\pi^{(a b s, x t)}$. Then any Lambert quadrilateral has an acute angle.

Proof.

[^152]In general, it is not possible to introduce plane or space vectors in absolute geometry so that all axioms of vector space concerning addition of vectors are satisfied. However, this can be successfully achieved on the line.

In all cases vectors are defined as equivalence classes of ordered abstract intervals. By definition, any zero ordered abstract interval is equivalent to any zero ordered abstract interval (including itself) and is not equivalent to any non-zero ordered abstract interval. Zero vectors will be denoted by $\overrightarrow{\mathbf{O}}$. We shall say that a non-zero ordered abstract interval $\overrightarrow{A B}$ is equivalent ${ }^{525}$ to a non-zero ordered abstract interval $\overrightarrow{C D}$ collinear to it (i.e. such that there is a line a such that $\xrightarrow{A} \in \vec{\longrightarrow}, \vec{B} \in a, C \in a, D \in a$), and write $\overrightarrow{A B} \equiv \overrightarrow{C D}$ if and only if:

Either $\overrightarrow{A B}=\overrightarrow{C D}$, i.e. $A=C$ and $B=D$;
or $A B \equiv C D$ and $A C \equiv B D$.
Evidently, the condition $\overrightarrow{A B} \equiv \overrightarrow{C D}$ is equivalent to $\overrightarrow{A C} \equiv \overrightarrow{B D}$.
Theorem 1.3.71. An ordered abstract interval $\overrightarrow{A B}$ is equivalent to an ordered abstract interval $\overrightarrow{C D}$ collinear to it if and only if:
$A B \equiv C D$ and in any order on a (direct or inverse) $A \prec B \& C \prec D$ or $B \prec A \& D \prec C$.
Also, $\overrightarrow{A B} \equiv \overrightarrow{C D}$ iff either $B=C=\operatorname{mid} A D$, or $A=D=\operatorname{mid} B C$, or $\operatorname{mid} B C=\operatorname{mid} A D$. ${ }^{526}$
Proof. Suppose $A B \equiv C D, A C \equiv B D$, and $B \neq C$. Then, obviously, $A \neq D$. In fact, the three points B, C are necessarily distinct in this case. ${ }^{527}$ Hence $[A B C] \vee[B A C] \vee[A C B]$ by T 1.2 .2 . But all these options contradict either $A B \equiv C D$ or $A C \equiv B D$ in view of $\mathrm{C} 1.3 .13 .4, \mathrm{~L} 1.3 .13 .11$. Denote $M \rightleftharpoons \operatorname{mid} B C$. By definition of midpoint, $M=\operatorname{mid} B C \Rightarrow B M \equiv M C \&[B M C]$. For distinct collinear points A, B, C, D we have one of the following six orders $[A B C D],[A B D C],[A C B D],[A C D B],[A D B C],[A D C B]$ or one of the 18 orders obtained from these 6 orders either by the simultaneous substitutions $A \leftrightarrow B, C \leftrightarrow D$, or by the simultaneous substitutions $A \leftrightarrow C, B \leftrightarrow D$ (see T 1.2.7). Due to symmetry of the conditions $A B \equiv C D, A C \equiv B D, B \neq C, A=D$ with respect to these substitutions, we can without any loss of generality restrict our consideration to the six orders mentioned above. Applying C 1.3.13.4, L 1.3.13.11 we can immediately disregard $[A B D C],[A C D B],[A D B C]$, and $[A D C B]$. For example, $[A B D C]$ is incompatible with $A C \equiv B D$. Thus, of the six cases $[A B C D],[A B D C],[A C B D],[A C D B],[A D B C],[A D C B]$ only $[A B C D],[A C B D]$ are actually possible. Observe further that $[A B C D] \stackrel{\text { ??? }}{\Longrightarrow}(A \prec B \prec C \prec D) \vee(D \prec C \prec B \prec$ $A) \Rightarrow(A \prec B) \&(C \prec D) \vee(D \prec C) \&(B \prec A)$. Similarly, $[A C B D] \Rightarrow(A \prec B) \&(C \prec D) \vee(D \prec C) \&(B \prec A)$. Conversely, if both $A B \equiv C D$ and $(A \prec B) \&(C \prec D) \vee(D \prec C) \&(B \prec A)$, of the six cases [ABCD], [ABDC], $[A C B D],[A C D B],[A D B C],[A D C B]$ only $[A B C D],[A C B D]$ survive the conditions. ${ }^{528}$ Observe also that if we have $(A \prec B) \&(C \prec D) \vee(D \prec C) \&(B \prec A)$, this remains true after the simultaneous substitutions $A \leftrightarrow B$, $C \leftrightarrow D$, as well as $A \leftrightarrow C, B \leftrightarrow D$.

Suppose $[A B C D]$. Then $[A B C] \&[B M C] \& \stackrel{\mathrm{~L} 1.2 .3 .2}{\Longrightarrow}[A B M] \&[M C D]$ and $A B \equiv C D \& B M \equiv M C \&[A B M] \&[M C D] \xrightarrow{\text { A1.3.3 }}$ $A M \equiv M D$, i.e. M is the midpoint of $A D$ as well. The case $[A C B D]$ is considered by full analogy with $[A B C D]$; we need only to substitute $B \leftrightarrow C$ and use $A C \equiv B D$ in place of $A B \equiv C D .{ }^{529}$

Conversely, suppose that either $B=C=\operatorname{mid} A D$, or $A=D=\operatorname{mid} B C$, or $\operatorname{mid} B C=\operatorname{mid} A D$. If $B=C=\operatorname{mid} A D$ or $A=D=\operatorname{mid} B C$ the congruences $A B \equiv C D$ and $A C \equiv B D$ are obtained trivially from definition of midpoint. Suppose now that $\operatorname{mid} B C=\operatorname{mid} A D$, where $A \neq B$, and the points A, B, C, D colline. ${ }^{530}$ Suppose further that A, C lie (on the single line containing the points A, B, C, D) on the same side of $M=\operatorname{mid} A D$. Then L 1.2.11.8 either A lies between M, C, or C lies between M, A, or $A=C$. Furthermore, taking into account that $M=\operatorname{mid} B C=\operatorname{mid} A D \Rightarrow[B M C] \&[A M D]$ and using L 1.2.11.9, L 1.2.11.10, we see that B, D also lie on the same side of the point M. Hence if $A=C$, then also $B=D$ and evidently $A B \equiv C D$. ${ }^{531}$ Suppose now [MCA]. Then from L 1.3.9.1 we see that $A C \equiv B D$ and $[M B D] .[A C M] \&[C M B] \xrightarrow{\text { L1.2.3.2 }}[A C B],[C M B] \&[M B D] \xrightarrow{\text { L1.2.3.2 }}[C B D]$. $[A C B] \&[C B D] \& A C \equiv B D \& C B \equiv C B \stackrel{A 1.3 .3}{\Longrightarrow} A B \equiv C D .{ }^{532} \square$

Theorem 1.3.72. The relation of equivalence of ordered abstract intervals on a given line is indeed an equivalence relation, i.e. it possesses the properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity and symmetry are obvious. In order to show transitivity, suppose $\overrightarrow{A B} \equiv \overrightarrow{C D}$ and $\overrightarrow{C D} \equiv \overrightarrow{E F}$. In view of the preceding theorem $A B \equiv C D$ and in any order on a (direct or inverse) $A \prec B \& C \prec D$ or $B \prec A \& D \prec C$.

[^153]Similarly, $C D \equiv E F$ and in any order on a (direct or inverse) $C \prec D \& E \prec F$ or $D \prec C \& F \prec E$. Suppose $A \prec B \& C \prec D$. Then necessarily $C \prec D \& E \prec F$. Thus, we have $A \prec B \& E \prec F$. Since also, obviously, $A B \equiv C D \& C D \equiv E F \stackrel{\mathrm{~T} 1.3 .1}{\Longrightarrow} A B \equiv E F$. Thus, in this case $\overrightarrow{A B} \equiv \overrightarrow{C D}$. The case $B \prec A \& D \prec C$ is considered similarly.

A line vector is a class of equivalence of ordered abstract intervals on a given line a. Denote the class of equivalence of ordered abstract intervals on a given line a^{533} containing the ordered abstract interval $\overrightarrow{A B}$ by $\overrightarrow{\mathbf{A B}}$. We shall also denote vectors by small letters as follows: $\overrightarrow{\mathbf{a}}$ (of course, the letter a used in this way has nothing to do with the letter a employed to denote lines; this coincidence merely reflects the regretful (but objective) tendency to run out of the letters of the alphabet in mathematical and scientific notation), $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}, \ldots$.
Lemma 1.3.73.1. Given an ordered abstract interval $\overrightarrow{A B}$ and a point C on the line $a_{A B}$, there is exactly one ordered abstract interval $\overrightarrow{C D}$ (having C as its initial point), equivalent to $\overrightarrow{A B}$ on $a_{A B}$.

Proof. If $A=C$, we just let $B=D$. Suppose now that B, C lie on the same side of A. In view of L 1.2 .11 .8 this implies that either $[A C B]$, or $B=C$, or $[A B C]$. Using A 1.3.1, choose a point D such that $A B \equiv C D$ and the points A, D lie on opposite sides of the point C (i.e. $D \in C_{A}^{c}$). Suppose first that $[A C B]$. Then B, D lie on the same side of the point C (see L 1.2.11.10), and using L1.2.11.8 we see that either $[C D B]$, or $B=D$, or $[C B D]$. But the first two options would give $C D<A B$ by C 1.3 .13 .4 , which contradicts $A B \equiv C D$ in view of L 1.3 .13 .11 . In the case when $[A B C]$, we can write $[A B C] \&[A C D] \xrightarrow{\text { L1.2.3.2 }}[B C D]$. We see that in all cases we have either $[A C B D]$, or $B=C$, or $[A B C D]$, which, together with $A B \equiv C D$ in view of the preceding theorem (T1.3.72) implies that $\overrightarrow{A B} \equiv \overrightarrow{C D}$. Suppose now that B, C lie on opposite sides of A, i.e. $[C A B]$. Then from C 1.3.9.2 there is a unique point $D \in(C B)$ such that $A B \equiv C D$. Obviously, in any order on $a_{A B}$ we either have both $C \prec A \prec B$ and $C \prec D \prec B$, or $B \prec A \prec C$ and $B \prec D \prec C$ from T 1.2.14. Thus, we have either both $A \prec B$ and $C \prec D$, or $B \prec A$ and $D \prec C$, and using the preceding theorem (T 1.3.72) we again conclude that $\overrightarrow{A B} \equiv \overrightarrow{C D}$. To show uniqueness suppose $\overrightarrow{A B} \equiv \overrightarrow{C D}, \overrightarrow{A B} \equiv \overrightarrow{C E}$, where $C, D, E \in a_{A B}$ and $D \neq E$, so that $\overrightarrow{C D}, \overrightarrow{C E}$ are distinct ordered abstract intervals. Since from the preceding theorem (T 1.3 .72) we have both $A B \equiv C D$ and $A B \equiv C E$, in view of T 1.3 .2 (see also T 1.3.1) the points D, E must lie on opposite sides of C if they are to be distinct. Hence in any order on $a_{A B}$ we have either $E \prec C \prec D$ or $D \prec C \prec E$. But from our assumption $\overrightarrow{A B} \equiv \overrightarrow{C D}, \overrightarrow{A B} \equiv \overrightarrow{C E}$ and the preceding theorem (T 1.3.72) it is clear that we must have either both $E \prec C, D \prec C$, or both $C \prec D$ and $C \prec E$. Thus, in view of L 1.2.13.5 we obtain a contradiction, which shows that in fact the point $D \in a_{A B}$ with the property $\overrightarrow{A B} \equiv \overrightarrow{C D}$ is unique.

Given two vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, we define their sum $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ as follows: By definition, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{O}}=\overrightarrow{\mathbf{O}}+\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}$ for any vector a including the case when $\overrightarrow{\mathbf{a}}$ is itself a zero vector. In order to define the sum of non-zero vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, take an ordered abstract interval $\overrightarrow{A B} \in \overrightarrow{\mathbf{a}}$ and construct an ordered abstract interval $\overrightarrow{B C} \in \overrightarrow{\mathbf{b}}$. This is always possible to do by the preceding lemma (L 1.3.73.1). The sum $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ of the vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is then by definition the vector $\overrightarrow{\mathbf{c}}$ (which, by the way, may happen to be a zero vector) containing the ordered abstract interval $\overrightarrow{A C}$.

To establish that the sum of $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ is well defined, consider ordered abstract intervals $\overrightarrow{A B} \in \overrightarrow{\mathbf{a}}, \overrightarrow{A^{\prime} B^{\prime}} \in \overrightarrow{\mathbf{a}}$, $\overrightarrow{B C} \in \overrightarrow{\mathbf{b}}, \overrightarrow{B^{\prime} C^{\prime}} \in \overrightarrow{\mathbf{b}}$. We need to show that $\overrightarrow{A C} \equiv \overrightarrow{A^{\prime} C^{\prime}}$. Since $A \neq B$ and $B \neq C$ (we disregard the trivial cases where either $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{O}}$ or $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{O}}$ and where the result is obvious), by T 1.2 .2 we have either $[A B C]$, or $[A C B]$, or $A=C$, or $[C A B]$. Suppose first $[A B C]$. Then by T 1.2 .14 we have either $A \prec B \prec C$ or $C \prec B \prec A$. Assuming for definiteness the first option (the other option is handled automatically by the substitutions $A \leftrightarrow C, A^{\prime} \leftrightarrow C^{\prime}$) and using T 1.3.72, we can write $\overrightarrow{A B} \equiv \overrightarrow{A^{\prime} B^{\prime}} \& \overrightarrow{B C} \equiv \overrightarrow{B^{\prime} C^{\prime}} \& A \prec B \prec C \Rightarrow A^{\prime} \prec B^{\prime} \prec C^{\prime} \stackrel{\text { L1.2.13.6 }}{\Longrightarrow} A^{\prime} \prec C^{\prime}$. Also, $\left[A^{\prime} B^{\prime} C^{\prime}\right]$ from T 1.2.14, whence $[A B C] \&\left[A^{\prime} B^{\prime} C^{\prime}\right] \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \stackrel{\text { A1.3.3 }}{\Longrightarrow} A C \equiv A^{\prime} C^{\prime}$. Thus, we have $A C \equiv A^{\prime} C^{\prime}$ and either both $A \prec C$ and $A^{\prime} \prec C^{\prime}$, or $C \prec A$ and $C^{\prime} \prec A^{\prime}$, which means that $\overrightarrow{A C} \equiv \overrightarrow{A^{\prime} C^{\prime}}$. Suppose now that $[A C B]$. Then $A \prec C \prec B$ (see T 1.2.14). Using the fact that $\overrightarrow{A B} \equiv \overrightarrow{A^{\prime} B^{\prime}}$ and $\overrightarrow{B C} \equiv \overrightarrow{B^{\prime} C^{\prime}}$ and T 1.3.72, we can write $A^{\prime} \prec B^{\prime}, C^{\prime} \prec B^{\prime}$. Hence by C 1.2 .14 .2 the points A^{\prime}, C^{\prime} are on the same side of B^{\prime}. But $[A C B] \& C^{\prime} \in B^{\prime}{ }_{A^{\prime}} \& A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \stackrel{\text { L1.3.9.1 }}{\Longrightarrow} A C \equiv A^{\prime} C^{\prime} \&\left[A^{\prime} C^{\prime} B^{\prime}\right]$. Using T 1.2.14, we see again that either both $A \prec C$ and $A^{\prime} \prec C^{\prime}$, or $C \prec A$ and $C^{\prime} \prec A^{\prime}$. Suppose $A=C$. Then $\overrightarrow{A B} \equiv \overrightarrow{A^{\prime} B^{\prime} \& \overrightarrow{B C} \equiv \overrightarrow{B^{\prime} C^{\prime}} \& C=}$ $A \prec B \stackrel{\mathrm{~T} 1.3 .72}{\Longrightarrow} A^{\prime} \prec B^{\prime} \& C^{\prime} \prec B^{\prime} \stackrel{\mathrm{C} 1.2 .14 .2}{\Longrightarrow} C^{\prime} \in B^{\prime}{ }_{A^{\prime}}$. Hence $C^{\prime}=B^{\prime}$ by T 1.3.2. Finally, for $[C A B]$ the result is obtained immediately from the already considered case $[A C B]$ by the simultaneous substitutions $A \leftrightarrow C, A^{\prime} \leftrightarrow C^{\prime}$.

Theorem 1.3.73. Addition of vectors on a line is commutative: $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}$.
Proof. Taking an ordered abstract interval $\overrightarrow{A B} \in \overrightarrow{\mathbf{a}}$ and laying off from B an ordered abstract interval $\overrightarrow{B C} \in \overrightarrow{\mathbf{b}}$, we see (from definition of addition of line vectors) that $\overrightarrow{A C} \in \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$. Now laying off $\overrightarrow{C D} \in \overrightarrow{\mathbf{a}}$, we see that $\overrightarrow{B D} \in \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}$. Since the vector $\overrightarrow{\mathbf{a}}$ is an equivalence class of ordered abstract intervals, we have $\overrightarrow{A B} \equiv \overrightarrow{C D}$. If $A=C$, then using the preceding lemma (L 1.3.73.1) we see that also $B=D$, which implies that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{O}}$. Suppose now $A \neq C$

[^154]and, consequently, $B \neq D$. Then (from definition) both $A B \equiv C D$ and $A C \equiv B D$, which implies the equivalence of the ordered abstract intervals: $\overrightarrow{A B} \equiv \overrightarrow{C D}$ if and only if $\overrightarrow{A C} \equiv \overrightarrow{B D}$. But from our construction $\overrightarrow{A C} \in \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$, $\overrightarrow{B D} \in \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}$, whence from definition of vector as a class of congruent intervals we have $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}$, as required.

Theorem 1.3.74. Addition of vectors on a line is associative: $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$.
Proof. Taking an ordered abstract interval $\overrightarrow{A B} \in \overrightarrow{\mathbf{a}}$, laying off from B an ordered abstract interval $\overrightarrow{B C} \in \overrightarrow{\mathbf{b}}$, and then laying off $\overrightarrow{C D} \in \overrightarrow{\mathbf{a}}$, we see that $\overrightarrow{A C} \in \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{B D} \in \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$. Therefore, $\overrightarrow{A D} \in(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$, whence (recall that classes of equivalence either have no common elements or coincide) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$. \square

Now observe that for any vector $\overrightarrow{\mathbf{a}}$ there is, evidently, exactly one vector $\overrightarrow{\mathbf{b}}$ such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$. We shall denote this vector $-\overrightarrow{\mathbf{a}}$ and refer to it as the vector, opposite to $\overrightarrow{\mathbf{a}}$.

Note also that, given a representative $\overrightarrow{A B}$ of a vector $\overrightarrow{\mathbf{a}}$, the vector $-\overrightarrow{\mathbf{a}}$ will be the class of ordered intervals equivalent to $\overrightarrow{B A}$.

We are now in a position to define the subtraction of arbitrary vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ as follows: $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \rightleftharpoons \overrightarrow{\mathbf{a}}+(-\overrightarrow{\mathbf{a}})$.
We see that all vectors on a given line a form an abelian additive group.
Consider a line a and a vector $\overrightarrow{\mathbf{t}}$ on this line. We define the transformation $f=\operatorname{transl} l_{(a, \overrightarrow{\mathbf{t}})}$ of translation of the line a by the vector $\overrightarrow{\mathbf{t}}$ as follows: Take a point $A \in a$ and lay off the vector $\overrightarrow{\mathbf{t}}$ from it to obtain the ordered (abstract) interval $\overrightarrow{A B} \in \overrightarrow{\mathbf{t}}$. Then by definition the point B is the image of the point A under translation $\overrightarrow{\mathbf{t}}$. We write this as $B=\operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(A)$.
Theorem 1.3.75. A translation by a vector $\overrightarrow{\mathbf{t}}$ (lying on a) is a bijective sense-preserving isometric transformation of the line a.

Proof. Consider an arbitrary point $A \in a$. To establish surjectivity we have to find a point $B \in a$ such that $A=\operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(B)$. This is achieved by laying off the vector $-\overrightarrow{\mathbf{t}}$ from A to obtain the ordered interval $\overrightarrow{A B}$ whose end B, obviously, has the property that $A=\operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(B)$.

Now consider two points $A, B \in a$. Denote $A^{\prime} \rightleftharpoons \operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(A), B^{\prime} \rightleftharpoons \operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(B)$. Since both $\overrightarrow{A A^{\prime}} \in \overrightarrow{\mathbf{t}}$, $\overrightarrow{B B^{\prime}} \in \overrightarrow{\mathbf{t}}$, we have $\overrightarrow{A A^{\prime}} \equiv \overrightarrow{B B^{\prime}}$. But this is equivalent to $\overrightarrow{A B} \equiv \overrightarrow{A^{\prime} B^{\prime}}$, which, in turn, implies that $A B \equiv A^{\prime} B^{\prime}$ and either $(A \prec B) \&\left(A^{\prime} \prec B^{\prime}\right)$, or $(B \prec A) \&\left(B^{\prime} \prec A^{\prime}\right)$. ${ }^{534}$ Thus, we see that $\operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}$ is isometric (preserves distances) and, in particular, it is injective (transforms different points into different points); furthermore, it preserves direction.

Theorem 1.3.76. Any isometry on a line is either a translation or a reflection.
Proof. We know from C 1.3.29.1 that any isometry f on a line a is either sense-preserving or sense reversing. Consider first the case where f is a sense-reversing transformation. Take an arbitrary point $A \in a$. Denote $A^{\prime} \rightleftharpoons$ $\operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(A)$. We are going to show that the transformation f is in this case the reflection of the line a in the point O, where, by definition, O is the midpoint of the interval $A A^{\prime} .{ }^{535}$ To achieve this, we need to check that for any point $B \in a$ distinct from A we have $B O \equiv O B^{\prime}$, where $B^{\prime} \rightleftharpoons \operatorname{transl}_{(a, \overrightarrow{\mathbf{t}})}(B)$. Of the two possible orders on a with O as origin we choose the one in which the ray O_{A} is the first. ${ }^{536}$

Suppose first that $B \prec A$ on a in this order. Then $A^{\prime} \prec B^{\prime}$ by assumption. Since A^{\prime} lies on the second ray (on the opposite side of O from A), so does B^{\prime} (otherwise we would have $B^{\prime} \prec A^{\prime}$). Furthermore, from the definition of order on a we have $\left[O A^{\prime} B^{\prime}\right]$. Now we can write $[O A B] \&\left[O A^{\prime} B^{\prime}\right] \& O A \equiv O A^{\prime} \& A B \equiv A^{\prime} B^{\prime} \stackrel{\mathrm{A1.3.3}}{\Longrightarrow} O B \equiv O B^{\prime}$.

Suppose now $A \prec B$. First assume that $B \in O_{A}$. Evidently, in this case the points O, B^{\prime} lie on the same side of the point A^{\prime}. (Otherwise we would have $\left[O A^{\prime} B^{\prime}\right]$, whence $A^{\prime} \prec B^{\prime}$ in view of the definition of order on a, and we arrive at a contradiction with our assumption that order is reversed.) $[A B O] \& B^{\prime} \in A^{\prime}{ }_{O} \& A O \equiv A^{\prime} O \& A B \equiv$ $A^{\prime} B^{\prime} \xrightarrow{\mathrm{L} 1.3 .9 .1} O B \equiv O B^{\prime}$.

Consider now the case $B \in O_{A}^{c}$, i.e. $[A O B]$. As above, we see that $B^{\prime} \in A^{\prime}{ }_{O}$. In view of L 1.2 .11 .8 we must have either $\left[A^{\prime} B^{\prime} O\right]$, or $B^{\prime}=O$, or $A^{\prime} O B^{\prime}$. But $\left[A^{\prime} B^{\prime} O\right] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A^{\prime} B^{\prime}<A^{\prime} O,[A O B] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A O<A B$, $A O<A B \& A B \equiv A^{\prime} B^{\prime} \& A^{\prime} B^{\prime}<A^{\prime} O^{\prime} \Rightarrow A O<A^{\prime} O^{\prime}$ (see L 1.3.13.6-L 1.3.13.8), which contradicts $A O \equiv A^{\prime} O^{\prime}$ (see L 1.3.13.11).

Thus, we see that in the case when the isometry on the line a reverses order, it is a reflection.
Finally, consider the case when the transformation is sense-preserving. Then for arbitrary points $A, B \in a$ we have $A B \equiv A^{\prime} B^{\prime}$ (isometry!) and either $(A \prec B) \&\left(A^{\prime} \prec B^{\prime}\right)$ or $(B \prec A) \&\left(B^{\prime} \prec A^{\prime}\right)$. But in view of T 1.3 .71 this

[^155]is equivalent to $\overrightarrow{A B} \equiv \overrightarrow{A^{\prime} B^{\prime}}$, which, in turn, is equivalent to $\overrightarrow{A A^{\prime}} \equiv \overrightarrow{B B^{\prime}}$. We see that our transformation in this case is the translation by the vector defined as the class of ordered intervals equivalent to $\overrightarrow{A A^{\prime}}$.

1.4 Continuity, Measurement, and Coordinates

Axioms of Continuity

The continuity axioms allow us to put into correspondence

- With every interval a positive real number called the measure or length of the interval;
- With every point of an arbitrary line a real number called the coordinate of the point on the line;
- With every point of an arbitrary plane an ordered pair of numbers called the (plane) coordinates of the point;
- With every point of space an ordered triple of real numbers called spatial coordinates the point.

These correspondences enable us to study geometric objects by powerful analytical methods. This study forms the subject of analytical geometry.

Furthermore, from the continuity axioms, combined with the axioms listed in the preceding sections, its follows that the set \mathcal{P}_{a} of all points of an arbitrary line a has essentially the same topological properties as the ordered field \mathbb{R}. Consequently, the set \mathcal{P}_{α} of all points of an arbitrary plane has essentially the same topological properties as \mathbb{R}^{2} (or \mathbb{C}, depending on the viewpoint), and the class of all points (of space) has essentially the same topological properties as \mathbb{R}^{3}.

Axiom 1.4.1 (Archimedes Axiom). Given a point P on a ray $A_{0 A_{1}}$, there is a positive integer n such that if $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$ and $A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots \equiv A_{n-1} A_{n}$ then $\left[A_{0} P A_{n}\right]$.

By definition, a sequence of closed sets $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots \mathcal{X}_{n}, \ldots$ is said to be nested if $\mathcal{X}_{1} \supset \mathcal{X}_{2} \supset \ldots \supset \mathcal{X}_{n} \supset$..., i.e. if every set of the sequence contains the next. In particular, for a nested sequence of closed intervals $\left[A_{1} B_{1}\right],\left[A_{2}, B_{2}\right], \ldots,\left[A_{n} B_{n}\right], \ldots$ we have $\left[A_{1} B_{1}\right] \supset\left[A_{2}, B_{2}\right] \supset \ldots \supset\left[A_{n} B_{n}\right] \supset \ldots$

Axiom 1.4.2 (Cantor's Axiom). Let $\left[E_{i} F_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence of closed intervals with the property that given (in advance) an arbitrary interval $B_{1} B_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the (abstract) interval $E_{n} F_{n}$ is shorter than the interval $B_{1} B_{2}$. Then there is at least one point B lying on all closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$ of the sequence.

The following lemma gives a more convenient formulation of the Archimedes axiom:
Lemma 1.4.1.1. Given any two intervals $A_{0} B, C D$, there is a positive integer n such that if $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$ and $\forall i \in \mathbb{N}_{n} C D \equiv A_{i-1} A_{i}$ then $\left[A_{0} B A_{n}\right]$. ${ }^{537}$

Proof. Using A 1.3.1, choose $A_{1} \in A_{0 B}$ such that $C D \equiv A_{0 A_{1}}$. Then by L1.2.11.3 $B \in A_{0 A_{1}}$, and $\forall i \in$ $\mathbb{N}_{n-1}\left[A_{i-1} A_{i} A_{i+1}\right]$ together with $C D \equiv A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots \equiv A_{n-1} A_{n}$ by A 1.4.1 implies $\left[A_{0} B A_{n}\right]$.

It can be further refined as follows:
Lemma 1.4.1.2. Given any two intervals $A_{0} B, C D$, there is a positive integer n such that if $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$ and $\forall i \in \mathbb{N}_{n} C D \equiv A_{i-1} A_{i}$ then $B \in\left[A_{n-1} A_{n}\right) .{ }^{538}$

Proof. Let n be a minimal element of the set of natural numbers m such that if $\left[A_{i-1} A_{i} A_{i+1}\right.$] for all $i \in \mathbb{N}_{m-1}$ and $\forall i \in \mathbb{N}_{m} C D \equiv A_{i-1} A_{i}$ then $\left[A_{0} B A_{m}\right]$. (The set is not empty by the preceding lemma L 1.4.1.1.) By L 1.2.7.7 $\exists i \in \mathbb{N}_{n} B \in\left[A_{i-1} A_{i}\right)$. But $B \in\left[A_{i-1} A_{i}\right) \stackrel{\text { L1.2.7.7 }}{\Longrightarrow} B \in\left[A_{1} A_{i}\right)$, so $i<n$ would contradict the minimality of n. Therefore, $i=n$ and $B \in\left[A_{i-1} A_{i}\right)$, q.e.d.

Lemma 1.4.1.3. Given any two intervals $A_{0} B, C D$, the interval $A_{0} B$ can be divided into congruent intervals shorter than $C D$.

Proof. Using L 1.3.21.11, L 1.4.1.1, find a positive integer n such that $\forall i \in \mathbb{N}_{n-1}\left[A_{i-1} A_{i} A_{i+1}\right], \forall i \in \mathbb{N}_{n} C D \equiv$ $A_{i-1} A_{i}$, and $\left[A_{0} B A_{n}\right]$. We have $\left[A_{0} B A_{n}\right] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A_{0} B<A_{0} A_{n}$. Hence, dividing (according to C 1.3.23.1) $A_{0} B$ into 2^{n} congruent intervals and taking into account that $\forall n \in \mathbb{N} n<2^{n}$, we obtain by C 1.3.21.10 intervals shorter than $C D$. \square

[^156]Lemma 1.4.1.4. Let $\left[E_{i} F_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence of closed intervals with the property that given (in advance) an arbitrary interval $B_{1} B_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the (abstract) interval $E_{n} F_{n}$ is shorter than the interval $B_{1} B_{2}$. Then there is at most one point B lying on all closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$ of the sequence. ${ }^{539}$

Proof. Suppose the contrary, i.e. let there be two points B_{1}, B_{2} lying on the intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$. Then, using C 1.3.13.4, we see that $\forall n \in\{0\} \cup \mathbb{N} B_{1} B_{2} \leq E_{n} F_{n}$. On the other hand, we have, by hypothesis $\exists n \in\{0\} \cup \mathbb{N} E_{n} F_{n}<B_{1} B_{2}$. Thus, we arrive at a contradiction with L 1.3.13.10, L 1.3.13.11.

In this book we shall refer to the process whereby we put into correspondence with any interval its length as the measurement construction for the given interval.

We further assume that all intervals are measured against the interval $C D$, chosen and fixed once and for all. This "etalon" interval (and, for that matter, any interval congruent to it) will be referred to as the unit interval, and its measure (length) as the unit of measurement.

Given an interval $A_{0} B$, its measurement construction consists of the following steps (countably infinite in number): 540

- Step 0: Using L 1.3.21.11, L 1.4.1.2, construct points $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, C D \equiv A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots A_{n-1} A_{n}$, and $B \in\left[A_{n-1} A_{n}\right)$. Denote $E_{0} \rightleftharpoons A_{n-1}, F_{0} \rightleftharpoons A_{n}, e_{0} \rightleftharpoons n-1$, $f_{0} \rightleftharpoons n$.

The other steps are defined inductively:

- Step 1: Denote C_{1} the midpoint of $A_{n-1} A_{n}$, i.e. the point C_{1} such that $\left[A_{n-1} C_{1} A_{n}\right]$ and $A_{n-1} C_{1} \equiv C_{1} A_{n}$. By T 1.3.22 this point exists and is unique. Worded another way, the fact that C_{1} is the midpoint of $A_{n-1} A_{n}$ means that the interval $D_{1,0} D_{1,2}$ is divided into two congruent intervals $D_{1,0} D_{1,1}, D_{1,1} D_{1,2}$, where we denote $D_{1,0} \rightleftharpoons A_{n-1}$, $D_{1,1} \rightleftharpoons C_{1}, D_{1,2} \rightleftharpoons A_{n} .{ }^{541}$ We have $B \in\left[D_{1,0} D_{1,2}\right) \stackrel{\text { L1.2.7.7 }}{\Longrightarrow} B \in\left[D_{1,0} D_{1,1}\right) \vee B \in B \in\left[D_{1,1} D_{1,2}\right)$. If $B \in\left[D_{1,0} D_{1,1}\right)$, we let, by definition $E_{1} \rightleftharpoons D_{1,0}, F_{1} \rightleftharpoons D_{1,1}, e_{1} \rightleftharpoons n-1, f_{1} \rightleftharpoons e_{1}+\frac{1}{2}=n-1+\frac{1}{2}$. For $B \in\left[D_{1,1} D_{1,2}\right.$), we denote $E_{1} \rightleftharpoons D_{1,1}, F_{1} \rightleftharpoons D_{1,2}, f_{1} \rightleftharpoons n, e_{1} \rightleftharpoons f_{1}-\frac{1}{2}=n-\frac{1}{2}$. Obviously, in both cases we have the inclusions $\left[E_{1} F_{1}\right] \subset\left[E_{0} F_{0}\right]$ and $\left[e_{1} f_{1}\right] \subset\left[e_{0} f_{0}\right]$.

Step m:

As the result of the previous $m-1$ steps the interval $A_{n-1} A_{n}$ is divided into 2^{m-1} congruent intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,1} D_{m-1,2}, \ldots, D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$, where we let $D_{m-1,0} \rightleftharpoons A_{n-1}, D_{m-1,2^{m-1}} \rightleftharpoons A_{n}$. That is, we have $D_{m-1,0} D_{m-1,1} \equiv D_{m-1,1} D_{m-1,2} \equiv \cdots \equiv D_{m-1,2^{m-1}-2} D_{m-1,2^{m-1}-1} \equiv D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ and $\left[D_{m-1, j-1} D_{m-1, j} D_{m-1, j+1}\right], j=1,2, \ldots, 2^{m-1}-1$. We also know that $B \in\left[E_{m-1} F_{m-1}\right), e_{m-1}=(n-1)+\frac{k-1}{2^{m-1}}$, $f_{m-1}=(n-1)+\frac{k}{2^{m-1}}$, where $E_{m-1}=D_{m-1, k-1}, F_{m-1}=D_{m-1, k}, k \in \mathbb{N}_{2^{m-1}}$. Dividing each of the intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,1} D_{m-1,2}, \ldots D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ into two congruent intervals ${ }^{542}$, we obtain by T 1.3.21 the division of $A_{n-1} A_{n}$ into $2^{m-1} \cdot 2=2^{m}$ congruent intervals $D_{m, 0} D_{m, 1}, D_{m, 1} D_{m, 2}, \ldots, D_{m, 2^{m}-1} D_{m, 2^{m}}$, where we let $D_{m, 0} \rightleftharpoons A_{n-1}, D_{m, 2^{m}} \rightleftharpoons A_{n}$. That is, we have $D_{m, 0} D_{m, 1} \equiv D_{m, 1} D_{m, 2} \equiv \cdots \equiv D_{m, 2^{m}-2} D_{m, 2^{m}-1} \equiv D_{m, 2^{m}-1} D_{m, 2^{m}}$ and $\left[D_{m, j-1} D_{m, j} D_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$. Furthermore, note that (see L 1.2.7.3) when $n>1$ the points $A_{0}, \ldots, A_{n-1}=D_{m, 0}, D_{m, 1}, \ldots, D_{m, 2^{m}-1}, A_{n}=D_{m, 2^{m}}$ are in order $\left[A_{0} \ldots D_{m, 0} D_{m, 1} \ldots D_{m, 2^{m}-1} D_{m, 2^{m}}\right]$. Denote $C_{m} \rightleftharpoons \operatorname{mid} E_{m-1} F_{m-1}$. By L 1.2.7.7 $B \in\left[E_{m-1} F_{m-1}\right) \Rightarrow\left[E_{m-1} C_{m}\right) \vee B \in\left[C_{m} F_{m-1}\right)$. In the former case we let, by definition, $E_{m} \rightleftharpoons E_{m-1}, F_{m} \rightleftharpoons C_{m}, e_{m} \rightleftharpoons e_{m-1}, f_{m} \rightleftharpoons e_{m}+\frac{1}{2^{m}}$; in the latter $E_{m} \rightleftharpoons C_{m}, F_{m} \rightleftharpoons F_{m-1}$, $e_{m} \rightleftharpoons e_{m-1}, f_{m} \rightleftharpoons f_{m-1}-\frac{1}{2^{m}}$. Obviously, we have in both cases $\left.\left[E_{m} F_{m}\right] \subset\left[E_{m-1} F_{m-1}\right)\right],\left[e_{m}, f_{m}\right] \subset\left[e_{m-1}, f_{m-1}\right]$, $f_{m}-e_{m}=\frac{1}{2^{m}}$. Also, note that if $E_{m}=D_{m, l-1}, F_{m}=D_{m, l}, l \in \mathbb{N}_{2^{m}}$, then $e_{m}=(n-1)+\frac{l-1}{2^{m}}, f_{m}=(n-1)+\frac{l}{2^{m}} . .^{543}$ Observe further that if $n-1>0$, concurrently with the $m^{\text {th }}$ step of the measurement construction, we can divide each of the intervals $A_{0} A_{1}, A_{1} A_{2}, \ldots, A_{n-2} A_{n-1}$ into 2^{m} intervals. Now, using T 1.3 .21 , we can conclude that the interval $A_{0} E_{m}$, whenever it is defined, ${ }^{544}$ turns out to be divided into $(n-1) 2^{m}+l-1$ congruent intervals, and the interval $A_{0} F_{m}$ into $(n-1) 2^{m}+l$ congruent intervals.

Continuing this process indefinitely (for all $m \in \mathbb{N}$), we conclude that either $\exists m_{0} E_{m_{0}}=B$, and then, obviously, $\forall m \in \mathbb{N} \backslash \mathbb{N}_{m_{0}} E_{m}=B ;$ or $\forall m \in \mathbb{N} B \in\left(E_{m} F_{m}\right)$. In the first case we also have $\forall p \in \mathbb{N} e_{m_{0}+p}=e_{m_{0}}$, and we let, by definition, $\left|A_{0} B\right| \rightleftharpoons e_{m_{0}}$. In the second case we define $\left|A_{0} B\right|$ to be the number lying on all the closed numerical

[^157]intervals $\left[e_{m}, f_{m}\right], m \in \mathbb{N}$. We can do so because the closed numerical intervals $\left[e_{m}, f_{m}\right], m \in \mathbb{N}$, as well as the closed point intervals $\left[E_{m} F_{m}\right]$, form a nested sequence, where the difference $f_{m}-e_{m}=\frac{1}{2^{m}}$ can be made less than any given positive real number $\epsilon>0$. ${ }^{545}$ Thus, we have proven
Theorem 1.4.1. The measurement construction puts into correspondence with every interval $A B$ a unique positive real number $|A B|$ called the length, or measure, of $A B$. A unit interval has length 1 .

Note than we can write

$$
\begin{equation*}
A_{0} B<\cdots \leq A_{0} F_{m} \leq A_{0} F_{m-1} \leq \cdots \leq A_{0} F_{1} \leq A_{0} F_{0} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{0} \leq e_{1} \leq \cdots \leq e_{m-1} \leq e_{m} \leq \cdots \leq\left|A_{0} B\right|<\cdots \leq f_{m} \leq f_{m-1} \leq \cdots \leq f_{1} \leq f_{0} \tag{1.7}
\end{equation*}
$$

If $n>1$, we also have

$$
\begin{equation*}
A_{0} E_{0} \leq A_{0} E_{1} \leq \cdots \leq A_{0} E_{m-1} \leq A_{0} E_{m} \leq \cdots \leq A_{0} B \tag{1.8}
\end{equation*}
$$

Some additional properties of the measurement construction are given by
Lemma 1.4.2.1. Given an arbitrary interval $G H$, in the measurement construction for any interval $A_{0} B$ there is an (appropriately defined) interval $E_{m} F_{m}$ shorter than $G H$.

Proof. By L 1.4.1.3 the interval $A_{n-1} A_{n}$ (appropriately defined for the measurement construction in question) can be divided into some number m of congruent intervals shorter than $G H$. Since $m<2^{m}$, dividing $A_{n-1} A_{n}$ into 2^{m} intervals at the $m^{t h}$ step of the measurement construction for $A_{0} B$ gives by L 1.3.21.9 still shorter intervals. Hence the result.

This lemma shows that even if $n=1$, for sufficiently large m the intervals $A_{0} E_{m}, A_{0} E_{m+1}, \ldots$ are defined, i.e. $E_{m} \neq A_{0}$, etc., and we have ${ }^{546}$

$$
\begin{equation*}
A_{0} E_{m} \leq A_{0} E_{m+1} \leq \cdots \leq A_{0} B . \tag{1.9}
\end{equation*}
$$

Lemma 1.4.2.2. In the measurement process for an interval $A_{0} B$ there can be no more than one point lying on all closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$ defined appropriately for the measurement construction in question, and this point, when its exists, coincides with the point B.

Proof. As is evident from our exposition of the measurement construction, the closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$ form a nested sequence, i.e. we have $\left[E_{1} F_{1}\right] \supset\left[E_{2}, F_{2}\right] \supset \ldots \supset\left[E_{n} F_{n}\right] \supset \ldots$ The result then follows from L 1.4.2.1, L 1.4.1.4.

Theorem 1.4.2. Congruent intervals have equal lengths. ${ }^{547}$
Proof. Follows from C 1.3.21.14, L 1.3.21.12, L 1.3.21.13 applied to the measurement constructions of these intervals. In fact, let $A_{0} B \equiv A_{0}^{\prime} B^{\prime}$. On step 0 , if $B \in\left[A_{n-1} A_{n}\right)$ then, by C 1.3 .21 .14 , also $B^{\prime} \in\left[A_{n-1}^{\prime} A_{n}^{\prime}\right)$, and therefore $e_{0}^{\prime}=e_{0}, f_{0}^{\prime}=f_{0} .{ }^{548}$ If $B \in\left[D_{1,0} D_{1,1}\right)$ then (again by C 1.3.21.14) $B^{\prime} \in\left[D_{1,0}^{\prime} D_{1,1}^{\prime}\right)$, and if $B \in\left[D_{1,1} D_{1,2}\right.$) then $B^{\prime} \in$ [$D_{1,1}^{\prime} D_{1,2}^{\prime}$). Therefore (see the exposition of measurement construction) $e_{1}^{\prime}=e_{1}, f_{1}^{\prime}=f_{1}$. Now assume inductively that after the $m-1^{\text {th }}$ step of the measurement constructions the interval $A_{n-1} A_{n}$ is divided into 2^{m-1} congruent intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,1} D_{m-1,2}, \ldots, D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ with $D_{m-1,0}=A_{n-1}, D_{m-1,2^{m-1}}=A_{n}$ and $A_{n-1}^{\prime} A_{n}^{\prime}$ is divided into 2^{m-1} congruent intervals $D_{m-1,0}^{\prime} D_{m-1,1}^{\prime}, D_{m-1,1}^{\prime} D_{m-1,2}^{\prime}, \ldots, D_{m-1,2^{m-1}-1}^{\prime} D_{m-1,2^{m-1}}^{\prime}$ with $D_{m-1,0}^{\prime}=A_{n-1}^{\prime}, D_{m-1,2^{m-1}}^{\prime}=A_{n}^{\prime}$. Then we have (induction assumption implies here that we have the same k in both cases) $B \in\left[E_{m-1} F_{m-1}\right), e_{m-1}=(n-1)+\frac{k-1}{2^{m-1}}, f_{m-1}=(n-1)+\frac{k}{2^{m-1}}$, where $E_{m-1}=D_{m-1, k-1}, F_{m-1}=D_{m-1, k}$, $k \in \mathbb{N}_{2^{m-1}}^{\prime}$ and $B^{\prime} \in\left[E_{m-1}^{\prime} F_{m-1}^{\prime}\right), e_{m-1}^{\prime}=(n-1)+\frac{k-1}{2^{m-1}}, f_{m-1}^{\prime}=(n-1)+\frac{k}{2^{m-1}}$, where $E_{m-1}^{\prime}=D_{m-1, k-1}^{\prime}$, $F_{m-1}^{\prime}=D_{m-1, k}^{\prime}, k \in \mathbb{N}_{2^{m-1}}$.

At the $m^{t h}$ step we divide each of the intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,0} D_{m-1,1}, \ldots D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ into two congruent intervals to obtain the division of $A_{n-1} A_{n}$ into 2^{m} congruent intervals $D_{m, 0} D_{m, 1}, D_{m, 1} D_{m, 2}, \ldots$, $D_{m, 2^{m}-1} D_{m, 2^{m}}$, where, by definition, $D_{m, 0} \rightleftharpoons A_{n-1}, D_{m, 2^{m}} \rightleftharpoons A_{n}$. That is, we have $D_{m, 0} D_{m, 1} \equiv D_{m, 1} D_{m, 2} \equiv$ $\cdots \equiv D_{m, 2^{m}-2} D_{m, 2^{m}-1} \equiv D_{m, 2^{m}-1} D_{m, 2^{m}}$ and $\left[D_{m, j-1} D_{m, j} D_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$.

[^158]Similarly, we divide each of the intervals $D_{m-1,0}^{\prime} D_{m-1,1}^{\prime}, D_{m-1,0}^{\prime} D_{m-1,1}^{\prime}, \ldots D_{m-1,2^{m-1}-1}^{\prime} D_{m-1,2^{m-1}}^{\prime}$ into two congruent intervals to obtain the division of $A_{n-1}^{\prime} A_{n}^{\prime}$ into 2^{m} congruent intervals $D_{m, 0}^{\prime} D_{m, 1}^{\prime}, D_{m, 1}^{\prime} D_{m, 2}^{\prime}, \ldots, D_{m, 2^{m}-1}^{\prime} D_{m, 2^{m}}^{\prime}$, where $D_{m, 0}^{\prime} \rightleftharpoons A_{n-1}^{\prime}, D_{m, 2^{m}}^{\prime} \rightleftharpoons A_{n}^{\prime}$. That is, we have $D_{m, 0}^{\prime} D_{m, 1}^{\prime} \equiv D_{m, 1}^{\prime} D_{m, 2}^{\prime} \equiv \cdots \equiv D_{m, 2^{m}-2}^{\prime} D_{m, 2^{m}-1}^{\prime} \equiv$ $D_{m, 2^{m}-1}^{\prime} D_{m, 2^{m}}^{\prime}$ and $\left[D_{m, j-1}^{\prime} D_{m, j}^{\prime} D_{m, j+1}^{\prime}\right], j=1,2, \ldots, 2^{m}-1$.

Since the points $\left(A_{0}, \ldots,\right) A_{n-1}=D_{m, 0}, D_{m, 1}, \ldots, D_{m, 2^{m}-1}, A_{n}=D_{m, 2^{m}}{ }^{549}$ are in order $\left[\left(A_{0} \ldots\right) D_{m, 0} D_{m, 1} \ldots D_{m, 2^{m}-1} D_{m, 2^{m}}\right.$ and the points $\left(A_{0}^{\prime}, \ldots,\right) A_{n-1}^{\prime}=D_{m, 0}^{\prime}, D_{m, 1}^{\prime}, \ldots, D_{m, 2^{m}-1}^{\prime}, A_{n}^{\prime}=D_{m, 2^{m}}^{\prime}$ are in order $\left[\left(A_{0}^{\prime} \ldots\right) D_{m, 0}^{\prime} D_{m, 1}^{\prime} \ldots D_{m, 2^{m}-1}^{\prime} D_{m, 2^{m}}^{\prime}\right.$, if $B \in\left[E_{m} F_{m}\right)=\left[D_{m, l-1} D_{m, l}\right)$ then by C 1.3.21.14 $B^{\prime} \in\left[E_{m}^{\prime} F_{m}^{\prime}\right)=$ $\left[D_{m, l-1}^{\prime} D_{m, l}^{\prime}\right)$, and we have $e_{m}^{\prime}=e_{m}=(n-1)+\frac{l-1}{2^{m}}, f_{m}^{\prime}=f_{m}=(n-1)+\frac{l}{2^{m}}$. Furthermore, if $B=E_{m}$ then by L 1.3.21.13 also $B^{\prime}=E_{m}^{\prime}$ and in this case $\left|A_{0} B\right|=e_{m},\left|A_{0}^{\prime} B^{\prime}\right|=e_{m}^{\prime}$, whence $\left|A_{0}^{\prime} B^{\prime}\right|=\left|A_{0} B\right|$. On the other hand, if $\forall m \in \mathbb{N} B \in\left(E_{m} F_{m}\right)$, and, therefore (see L 1.3.21.12), $\forall m \in \mathbb{N} B^{\prime} \in\left(E_{m}^{\prime} F_{m}^{\prime}\right)$, then both $\forall m \in \mathbb{N}\left|A_{0} B\right| \in\left(e_{m}, f_{m}\right)$ and $\forall m \in \mathbb{N}\left|A_{0}^{\prime} B^{\prime}\right| \in\left(e_{m}^{\prime}, f_{m}^{\prime}\right)$. But since, as we have shown, $e_{m}^{\prime}=e_{m}, f_{m}^{\prime}=f_{m}$, using the properties of real numbers, we again conclude that $\left|A_{0}^{\prime} B^{\prime}\right|=\left|A_{0} B\right|$.

Note that the theorem just proven shows that our measurement construction for intervals is completely welldefined. When applied to the identical intervals $A B, B A$, the procedure of measurement gives identical results.

Lemma 1.4.3.1. Every interval, consisting of k congruent intervals resulting from division of a unit interval into 2^{m} congruent intervals, has length $k / 2^{m}$.

Proof. Given an interval $A_{0} B$, consisting of k congruent intervals resulting from division of a unit interval into 2^{m} congruent intervals, at the $m^{t h}$ step of the measurement construction for $A_{0} B$ we obtain the interval $A_{0} E_{m}$ consisting of k intervals resulting from division of the unit interval into 2^{m} congruent intervals, and we have $A_{0} E_{m} \equiv A_{0} B$ (see L 1.2.21.6). Then by T $1.3 .2 E_{m}=B$. As explained in the text describing the measurement construction, in this case we have $k=(n-1) 2^{m}+l-1$. Hence $\left|A_{0} B\right|=\left|A_{0} E_{m}\right|=e_{m}=(n-1)+(l-1) / 2^{m}=k / 2^{m}$. \square

Theorem 1.4.3. If an interval $A^{\prime} B^{\prime}$ is shorter than the interval $A_{0} B$ then $\left|A^{\prime} B^{\prime}\right|<\left|A_{0} B\right|$.
Proof. Using L 1.3.13.3, find $B_{1} \in\left(A_{0} B\right)$ so that $A^{\prime} B^{\prime} \equiv A_{0} B_{1}$. Consider the measurement construction of $A_{0} B$, which, as will become clear in the process of the proof, induces the measurement construction for $A_{0} B_{1}$. Suppose $B \in\left[A_{n-1} A_{n}\right), n \in \mathbb{N}$. Then by L 1.2.9.4 $B_{1} \in\left[A_{k-1} A_{k}\right), k \leq n, k \in \mathbb{N}$. Agreeing to supply (whenever it is necessary to avoid confusion) the numbers (and sometimes points) related to the measurement constructions for $A_{0} B, A_{0} B_{1}$ with superscript indices $(B),\left(B_{1}\right)$, respectively, from 1.7 we can write for the case $k<n: e_{0}^{\left(B_{1}\right)} \leq\left|A_{0} B_{1}\right|<f_{0}^{\left(B_{1}\right)} \leq$ $e_{0}^{(B)} \leq\left|A_{0} B\right|<f_{0}^{(B)}$, whence $\left|A_{0} B_{1}\right|<\left|A_{0} B\right|$. Suppose now $k=n$. Let there be a step number m in the measurement process for $A_{0} B$ such that when after the $m-1^{t h}$ step of the measurement construction the interval $A_{n-1} A_{n}$ is divided into 2^{m-1} congruent intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,1} D_{m-1,2}, \ldots, D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ with $D_{m-1,0}=A_{n-1}$, $D_{m-1,2^{m-1}}=A_{n}$ and both B_{1} and B lie on the same half-open interval $\left[D_{m-1, p-1}^{\prime} D_{m-1, p}^{\prime}\right), p \in \mathbb{N}_{2^{m-1}}$, at the $m^{t h}$ step B_{1}, B lie on different half-open intervals $\left[D_{m, l-2}^{\prime} D_{m, l-1}^{\prime}\right)$, $\left[D_{m, l-1}^{\prime} D_{m, l}^{\prime}\right)$, where $l \in \mathbb{N}_{2^{m}}$, resulting from the division of the interval $D_{m-1, p-1}^{\prime} D_{m-1, p}^{\prime}$ into two congruent intervals $D_{m, l-2}^{\prime} D_{m, l-1}^{\prime}, D_{m, l-1}^{\prime} D_{m, l}^{\prime}$. ${ }^{550}$ Then, using 1.7, we have $\left|A_{0} B_{1}\right|<f_{m}^{\left(B_{1}\right)}=(n-1)+\frac{l-1}{2^{m}}=e_{m}^{(B)} \leq\left|A_{0} B\right|$, whence $\left|A_{0} B_{1}\right|<\left|A_{0} B\right|$. Finally, consider the case when for all $m \in \mathbb{N}$ the points B_{1}, B lie on the same half-open interval $\left[E_{m} F_{m}\right.$), where $E_{m}=E_{m}^{\left(B_{1}\right)}=E_{m}^{(B)}$, $F_{m}=F_{m}^{B_{1}}=F_{m}^{B}$. By L 1.4.2.2 B_{1}, B cannot lie both at once on all closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$. Therefore, by L 1.2.9.4, we are left with $B_{1}=E_{m}, B \in\left(E_{m} F_{m}\right)$ for some m as the only remaining option. In this case we have, obviously, $\left|A_{0} B_{1}\right|=e_{m}<\left|A_{0} B\right|$. \square

Corollary 1.4.3.2. If $\left|A^{\prime} B^{\prime}\right|=|A B|$ then $A^{\prime} B^{\prime} \equiv A B$.
Proof. See L 1.3.13.14, T 1.4.3.
Corollary 1.4.3.3. If $\left|A^{\prime} B^{\prime}\right|<|A B|$ then $A^{\prime} B^{\prime}<A B$.
Proof. See L 1.3.13.14, T 1.4.2, T 1.4.3.
Theorem 1.4.4. If a point B lies between A and C, then $|A B|+|B C|=|A C|$
Proof. After the $m^{\text {th }}$ step of the measurement construction for the interval $B C$ we find that the point C lies on the half-open interval $\left[E_{m}^{(C)}, F_{m}^{(C)}\right)$, where the intervals $B E_{m}^{(C)}, B F_{m}^{(C)}$ consist, respectively, of some numbers $k \in \mathbb{N}, k+1$ of congruent intervals resulting from division of a unit interval into 2^{m} congruent intervals, and, consequently, have lengths $k / 2^{m},(k+1) / 2^{m} .{ }^{551}$ Hence, using $(1.6,1.9)$ and applying the preceding theorem (T1.4.3), we can write the following inequalities:

$$
\begin{equation*}
k / 2^{m} \leq|B C|<(k+1) / 2^{m} \tag{1.10}
\end{equation*}
$$

[^159](The superscripts A, C are being employed here to signify that we are using elements of the measurement constructions for the intervals $B A$ and $B C$, respectively.) Similarly, after the $m^{t h}$ step of the measurement construction for the interval $B A$ the point A lies on $\left[E_{m}^{(A)}, F_{m}^{(A)}\right)$, where the intervals $B E_{m}^{(A)}, B F_{m}^{(A)}$ consist, respectively, of $l, l+1$ congruent intervals resulting from division of a unit interval into 2^{m} congruent intervals, and have lengths $l / 2^{m}$, $(l+1) / 2^{m} .{ }^{552}$ Again, using (1.6), (1.9) and applying the preceding theorem (T 1.4.3), we can write:
\[

$$
\begin{equation*}
l / 2^{m} \leq|B A|<(l+1) / 2^{m} . \tag{1.11}
\end{equation*}
$$

\]

Since, from the properties of the measurement constructions, the points $E_{m}^{(A)}, A, F_{m}^{(A)}$ all lie on the same side of the point B, the points $E_{m}^{(C)}, C, F_{m}^{(C)}$ lie on the same side of $B,{ }^{553}$ and, by hypothesis, the point lies between A, C, it follows that B also lies between $F_{m}^{(A)}, E_{m}^{(C)}$, as well as between $E_{m}^{(A)}, F_{m}^{(C)}$, i.e., we have $\left[F_{m}^{(A)} B E_{m}^{(C)}\right]$ and $\left[E_{m}^{(A)}\right.$, $F_{m}^{(C)}$]. Furthermore, by T 1.3.21 the interval $F_{m}^{(A)} E_{m}^{(C)}$ then consists of $l+k$ intervals resulting from division of a unit interval into 2^{m} congruent intervals, and the interval $E_{m}^{(A)} F_{m}^{(C)}$ then consists of $(l+1)+(k+1)$ of such intervals. By L 1.4.3.1 this implies $\left|F_{m}^{(A)} E_{m}^{(C)}\right|=(k+l) / 2^{m},\left|E_{m}^{(A)} F_{m}^{(C)}\right|=(k+l+2) / 2^{m}$. From the properties of the measurement constructions for the intervals $B A, B C$ and the lemmas $\mathrm{L} 1.2 .9 .5, \mathrm{~L} 1.2 .9 .6$ it follows that the points A, C both lie on the closed interval $\left[E_{m}^{(A)} F_{m}^{(C)}\right]$ and the points $F_{m}^{(A)}, E_{m}^{(C)}$ both lie on the closed interval $[A C]$. By C 1.3.13.4 these facts imply $F_{m}^{(A)} E_{m}^{(C)} \leq A C \leq E_{m}^{(A)} F_{m}^{(C)}$, whence we obtain (we can use T 1.4.3 to convince ourselves of this)

$$
\begin{equation*}
(k+l) / 2^{m}=\left|F_{m}^{(A)} E_{m}^{(C)}\right| \leq|A C|<\left|E_{m}^{(A)} F_{m}^{(C)}\right|=(k+l+2) / 2^{m} . \tag{1.12}
\end{equation*}
$$

On the other hand, adding together the inequalities (1.10), (1.11) gives

$$
\begin{equation*}
(k+l) / 2^{m}=\left|F_{m}^{(A)} E_{m}^{(C)}\right| \leq|A B|+|B C|<\left|E_{m}^{(A)} F_{m}^{(C)}\right|=(k+l+2) / 2^{m} \tag{1.13}
\end{equation*}
$$

Subtracting (1.13) from (1.12), we get

$$
\begin{equation*}
\| A B|+|B C|-|A C||<2 / 2^{m}=1 / 2^{m-1} \tag{1.14}
\end{equation*}
$$

Finally, taking the limit $m \rightarrow \infty$ in (1.14), we obtain $|A B|+|B C|-|A C|=0$, as required.
Corollary 1.4.4.1. If a class $\mu A B$ of congruent intervals is the sum of classes of congruent intervals $\mu C D, \mu E F$ (i.e. if $\mu A B=\mu C D+\mu E F$), then for any intervals $A_{1} B_{1} \in \mu A B, C_{1} D_{1} \in \mu C D, E_{1} F_{1} \in \mu E F$ we have $\left|A_{1} B_{1}\right|=$ $\left|C_{1} D_{1}\right|+\left|E_{1} F_{1}\right|$.

Proof. See T 1.4.2, T 1.4.4.
Corollary 1.4.4.2. If a class $\mu A B$ of congruent intervals is the sum of classes of congruent intervals $\mu A_{1} B_{1}, \mu A_{2} B_{2}, \ldots, \mu A_{n} B_{n}$ (i.e. if $\mu A B=\mu A_{1} B_{1}+\mu A_{2} B_{2}+\cdots+\mu A_{n} B_{n}$), then for any intervals $C D \in \mu A B$, $C_{1} D_{1} \in \mu A_{1} B_{1}, C_{2} D_{2} \in \mu A_{2} B_{2}, \ldots, C_{n} D_{n} \in \mu A_{n} B_{n}$ we have $|C D|=\left|C_{1} D_{1}\right|+\left|C_{2} D_{2}\right|+\cdots+\left|C_{n} D_{n}\right|$. In particular, if $\mu A B=n \mu A_{1} B_{1}$ and $C D \in \mu A B, C_{1} D_{1} \in \mu A_{1} B_{1}$, then $|C D|=n\left|C_{1} D_{1}\right|$. 554

Theorem 1.4.5. For any positive real number x there is an interval (and, in fact, an infinity of intervals congruent to it) whose length equals to x.

Proof. The construction of the required interval consists of the following steps (countably infinite in number): ${ }^{555}$. Step 0: By the Archimedes axiom applied to \mathbb{R} there is a number $n \in \mathbb{N}$ such that $n-1 \leq x<n$.

Starting with the point A_{0} and using L 1.3.21.11, construct points $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, C D \equiv A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots A_{n-1} A_{n}$. Denote $E_{0} \rightleftharpoons A_{n-1}, F_{0} \rightleftharpoons A_{n}, e_{0} \rightleftharpoons n-1, f_{0} \rightleftharpoons n$.

The other steps are defined inductively:

- Step 1: Denote C_{1} the midpoint of $A_{n-1} A_{n}$, i.e. the point C_{1} such that $\left[A_{n-1} C_{1} A_{n}\right]$ and $A_{n-1} C_{1} \equiv C_{1} A_{n}$. By T 1.3.22 this point exists and is unique. Worded another way, the fact that C_{1} is the midpoint of $A_{n-1} A_{n}$ means that the interval $D_{1,0} D_{1,2}$ is divided into two congruent intervals $D_{1,0} D_{1,1}, D_{1,1} D_{1,2}$, where we denote $D_{1,0} \rightleftharpoons A_{n-1}$, $D_{1,1} \rightleftharpoons C_{1}, D_{1,2} \rightleftharpoons A_{n} .{ }^{556}$ If $x \in\left[n-1, n-\frac{1}{2}\right.$), i.e. for $n-1 \leq x<n-\frac{1}{2}$, we let, by definition $E_{1} \rightleftharpoons D_{1,0}$, $F_{1} \rightleftharpoons D_{1,1}, e_{1} \rightleftharpoons n-1, f_{1} \rightleftharpoons e_{1}+\frac{1}{2}=n-1+\frac{1}{2}$. For $x \in\left[n-\frac{1}{2}, n\right)$, we denote $E_{1} \rightleftharpoons D_{1,1}, F_{1} \rightleftharpoons D_{1,2}, f_{1} \rightleftharpoons n$, $e_{1} \rightleftharpoons f_{1}-\frac{1}{2}=n-\frac{1}{2}$. Obviously, in both cases we have the inclusions $\left[E_{1} F_{1}\right] \subset\left[E_{0} F_{0}\right]$ and $\left[e_{1}, f_{1}\right] \subset\left[e_{0}, f_{0}\right]$.

Step m:

[^160]As the result of the previous $m-1$ steps the interval $A_{n-1} A_{n}$ is divided into 2^{m-1} congruent intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,1} D_{m-1,2}, \ldots, D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$, where we let $D_{m-1,0} \rightleftharpoons A_{n-1}, D_{m-1,2^{m-1}} \rightleftharpoons A_{n}$. That is, we have $D_{m-1,0} D_{m-1,1} \equiv D_{m-1,1} D_{m-1,2} \equiv \cdots \equiv D_{m-1,2^{m-1}-2} D_{m-1,2^{m-1}-1} \equiv D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ and $\left[D_{m-1, j-1} D_{m-1, j} D_{m-1, j+1}\right], j=1,2, \ldots, 2^{m-1}-1$. We also know that $x \in\left[e_{m-1}, f_{m-1}\right), e_{m-1}=(n-1)+\frac{k-1}{2^{m-1}}$, $f_{m-1}=(n-1)+\frac{k}{2^{m-1}}$, where $E_{m-1}=D_{m-1, k-1}, F_{m-1}=D_{m-1, k}, k \in \mathbb{N}_{2^{m-1}}$. Dividing each of the intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,0} D_{m-1,1}, \ldots D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ into two congruent intervals ${ }^{557}$, we obtain by T 1.3.21 the division of $A_{n-1} A_{n}$ into $2^{m-1} \cdot 2=2^{m}$ congruent intervals $D_{m, 0} D_{m, 1}, D_{m, 1} D_{m, 2}, \ldots, D_{m, 2^{m}-1} D_{m, 2^{m}}$, where we let $D_{m, 0} \rightleftharpoons A_{n-1}, D_{m, 2^{m}} \rightleftharpoons A_{n}$. That is, we have $D_{m, 0} D_{m, 1} \equiv D_{m, 1} D_{m, 2} \equiv \cdots \equiv D_{m, 2^{m}-2} D_{m, 2^{m}-1} \equiv D_{m, 2^{m}-1} D_{m, 2^{m}}$ and $\left[D_{m, j-1} D_{m, j} D_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$. Furthermore, note that (see L 1.2.7.3) when $n>1$ the points $A_{0}, \ldots, A_{n-1}=D_{m, 0}, D_{m, 1}, \ldots, D_{m, 2^{m}-1}, A_{n}=D_{m, 2^{m}}$ are in order $\left[A_{0} \ldots D_{m, 0} D_{m, 1} \ldots D_{m, 2^{m}-1} D_{m, 2^{m}}\right.$. From the properties of real numbers it follows that either $x \in\left[e_{m-1},\left(e_{m-1}+f_{m-1}\right) / 2\right)$ or $x \in\left[\left(e_{m-1}+f_{m-1}\right) / 2, f_{m-1}\right)$. In the former case we let, by definition, $E_{m} \rightleftharpoons E_{m-1}, F_{m} \rightleftharpoons C_{m}, e_{m} \rightleftharpoons e_{m-1}, f_{m} \rightleftharpoons e_{m}+\frac{1}{2^{m}}$; in the latter $E_{m} \rightleftharpoons C_{m}, F_{m} \rightleftharpoons F_{m-1}, e_{m} \rightleftharpoons e_{m-1}, f_{m} \rightleftharpoons f_{m-1}-\frac{1}{2^{m}}$. Obviously, we have in both cases $\left(E_{m} F_{m}\right) \subset\left(E_{m-1} F_{m-1}\right)$, $\left(e_{m} f_{m}\right) \subset\left(e_{m-1} f_{m-1}\right), f_{m}-e_{m}=\frac{1}{2^{m}}$.

Continuing this process indefinitely (for all $m \in \mathbb{N}$), we conclude that either $\exists m_{0} e_{m_{0}}=x$, and then, obviously, $\forall m \in \mathbb{N} \backslash \mathbb{N}_{m_{0}} e_{m}=x ;$ or $\forall m \in \mathbb{N} x \in\left(e_{m}, f_{m}\right)$. In the first case we let, by definition, $B \rightleftharpoons E_{m_{0}}$.

In the second case we define B to be the (unique) point lying on all the closed intervals $\left[E_{m} F_{m}\right], m \in \mathbb{N}$. We can do this by the Cantor's axiom A 1.4 .2 because the closed point intervals $\left[E_{m} F_{m}\right]$ form a nested sequence, where by L 1.4.2.1 the interval $E_{m} F_{m}$ can be made shorter than any given interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to the interval $A_{0} B$, we can write $\left|A_{0} B\right|=x$, as required.

Having established that any interval can be measured, we can proceed to associate with every point on any given line a unique real number called the coordinate of the point on that line.

Toward this end, consider an arbitrary line a. Let $O \in a, P \in a,[P O Q]$. We refer to the point O as the origin, and the rays O_{P}, O_{Q} as the first and the second rays, respectively. The line coordinate x_{M} of an arbitrary point $M \in a$ is then defined as follows. If $M=O$, we let, by definition, $x_{m} \rightleftharpoons 0$. If the point M lies on the first ray O_{P}, we define $x_{M} \rightleftharpoons-|O M|$. Finally, in the case $M \in O_{Q}$, we let $x_{M} \rightleftharpoons|O M| .{ }^{558}$ The number x_{M} is called the coordinate of the point M on the line a. From our construction its follows that for any point on any given line this number exists and is unique.

We can state the following:
Theorem 1.4.6. If a point A precedes a point B in the direct order defined on a line a, the coordinate x_{A} of the point A is less than the coordinate x_{B} of the point B.

Proof. If A precedes B in the direct order on a then ${ }^{559}$

- Both A and B lie on the first ray and B precedes A on it; or
- A lies on the first ray, and B lies on the second ray or coincides with O; or
- $A=O$ and B lies on the second ray; or
- Both A and B lie on the second ray, and A precedes B on it.

If $(B \prec A)_{O_{P}}$ then by the definition of order on the ray O_{P} (see p. 21) the point B lies between points O and A, and we can write $[O B A] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} O B<O A \stackrel{\text { T1.4.3 }}{\Longrightarrow}|O B|<|O A| \Rightarrow-x_{B}<-x_{A} \Rightarrow x_{A}<x_{B}$.

For the other three cases we have:
$A \in O_{P} \&\left(B=O \vee B \in O_{Q}\right) \Rightarrow x_{A}=-|O A| \&\left(x_{B}=0 \vee x_{B}=|O B|\right) \Rightarrow x_{A}<0 \leq x_{B} ;$
$A=O \& B \in O_{Q} \Rightarrow x_{A}=0<|O B|=x_{B}$;
$(A \prec B)_{O_{Q}} \Rightarrow[O A B] \stackrel{\mathrm{C} 1.3 .13 .4}{\Longrightarrow} O A<O B \stackrel{\mathrm{T1.4.3}}{\Longrightarrow}|O A|<|O B| \Rightarrow x_{A}<x_{B}$.
Theorem 1.4.7. There is a bijective correspondence between the set \mathcal{P}_{a} of (all) points of an arbitrary line a and the set \mathbb{R} of (all) real numbers.

Proof. The correspondence is injective. In fact, suppose $A, B \in a, A \neq B$. We have $A \in a \& B \in a \& A \neq B \xrightarrow{\text { L1.2.13.5 }}$ $(A \prec B)_{a} \vee(B \prec A)_{a} \stackrel{\mathrm{T1.4.6}}{\Longrightarrow} x_{A}<x_{B} \vee x_{B}<x_{A} \Rightarrow x_{A} \neq x_{B}$.

The surjectivity follows from T 1.4.5.
We are now in a position to introduce plane coordinates, i.e. associate with every point on a given plane an ordered pair of real numbers.

Let α be a given plane. Taking a line a_{1} lying in this plane, construct another line $a_{2} \subset \alpha$ such that $a_{2} \perp a_{1}$. Denote $O \rightleftharpoons a_{1} \cap a_{2}$ (that is, O is the point where the lines a_{1}, a_{2} concur) and call the point O the origin of the coordinate system. We shall refer to the line a_{1} as the horizontal axis, the x - axis, or the abscissa line of the coordinate system, and the line a_{2} as the vertical axis, the y - axis, or the ordinate line.

[^161]Theorem 1.4.8. There is a bijective correspondence between the set \mathcal{P}_{α} of (all) points of an arbitrary plane α and the set \mathbb{R}^{2} of (all) ordered pairs of real numbers.

Proof.

Theorem 1.4.9. Proof.

Theorem 1.4.10. Proof. \square

Angles and even dihedral angles have continuity properties partly analogous to those of intervals. Before we demonstrate this, however, it is convenient to put our concept of continuity into a broader perspective.

Consider a set \mathfrak{I}, equipped with a relation of generalized congruence (see p. 46). By definition, the elements of \mathfrak{I} possess the properties $\operatorname{Pr} 1.3 .1-\operatorname{Pr} 1.3 .5$. Recall that the elements of \mathfrak{I} are pairs $\mathcal{A B} \rightleftharpoons\{\mathcal{A}, \mathcal{B}\}$ (called generalized abstract intervals) of geometric objects. Each such pair $\mathcal{A B}$ lies in (i.e. is a subset in at least) one of the sets \mathfrak{J} equipped with a generalized betweenness relation. The sets \mathfrak{J} are, in their turn, elements of some special class $\mathcal{C}^{g b r}$ of sets with generalized betweenness relation, such as the class of all lines, the class of all pencils of rays lying on the same side of a given line, the class of all pencils of half-planes lying on the same side of a given plane, etc.

We are now in a position to define a measurement construction for elements of such a set \mathfrak{I} whose class $\mathcal{C}^{g b r}$ consists of specially chosen sets \mathfrak{J} with generalized angular betweenness relation. ${ }^{560}$

We shall assume that the sets \mathfrak{J} with generalized angular betweenness relation in $\mathcal{C}^{g b r}$ are chosen in such a way that the generalized abstract intervals formed by their ends are congruent: if $\mathfrak{J}=[\mathcal{A B}] \in \mathcal{C}^{g b r}, \mathfrak{J}^{\prime}=\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right] \in \mathcal{C}^{g b r}$ then $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

We shall further assume that the generalized abstract intervals involved (elements of the set \mathfrak{I}) have the following property:
Property 1.4.1. Given any two generalized intervals $\mathcal{A B}, \mathcal{C D}$, the generalized interval $\mathcal{A B}$ can be divided into congruent generalized intervals shorter than $\mathcal{C D}$.
as well as the following generalized Cantor property:
Property 1.4.2 (Generalized Cantor's Axiom). Let $\left[\mathcal{E}_{i} \mathcal{F}_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence ${ }^{561}$ of generalized closed intervals with the property that given (in advance) an arbitrary generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the (abstract) generalized interval $\mathcal{E}_{n} \mathcal{F}_{n}$ is shorter than the generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$. Then there is at least one geometric object \mathcal{B} lying on all closed intervals $\left[\mathcal{E}_{0} \mathcal{F}_{0}\right],\left[\mathcal{E}_{1} \mathcal{F}_{1}\right], \ldots,\left[\mathcal{E}_{n} \mathcal{F}_{n}\right], \ldots$ of the sequence.
which we can reformulate in the following stronger form:
Lemma 1.4.11.1. Let $\left[\mathcal{E}_{i} \mathcal{F}_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence of generalized closed intervals with the property that given (in advance) an arbitrary generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the generalized (abstract) interval $\mathcal{E}_{n} \mathcal{F}_{n}$ is less than the generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$. Then there is at most one geometric object \mathcal{B} lying on all generalized closed intervals $\left[\mathcal{E}_{0} \mathcal{F}_{0}\right],\left[\mathcal{E}_{1} \mathcal{F}_{1}\right], \ldots,\left[\mathcal{E}_{n} \mathcal{F}_{n}\right], \ldots$ of the sequence. ${ }^{562}$

Proof. Suppose the contrary, i.e. let there be two geometric objects $\mathcal{B}_{1}, \mathcal{B}_{2}$ lying on the generalized closed intervals $\left[\mathcal{E}_{0} \mathcal{F}_{0}\right],\left[\mathcal{E}_{1} \mathcal{F}_{1}\right], \ldots,\left[\mathcal{E}_{n} \mathcal{F}_{n}\right], \ldots$. Then by $\mathrm{C} 1.3 .15 .4 \forall n \in\{0\} \cup \mathbb{N} \mathcal{B}_{1} \mathcal{B}_{2}<\mathcal{E}_{n} \mathcal{F}_{n}$. On the other hand, we have, by hypothesis $\exists n \in\{0\} \cup \mathbb{N} \mathcal{E}_{n} \mathcal{F}_{n}<\mathcal{B}_{1} \mathcal{B}_{2}$. Thus, we arrive at a contradiction with L 1.3.15.10.

Now, given a set $\mathfrak{J}=[\mathcal{A B}]$ with angular generalized betweenness relation, of the kind just defined, we can construct the measurement construction for any interval of the form $\mathcal{A P},{ }^{563}$ where $\mathcal{P} \in \mathfrak{J}$, as follows:

We set, by definition, the measure of the generalized interval $\mathcal{A B} \in \mathfrak{J}$, as well as of all generalized intervals $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ congruent to it, ${ }^{564}$ equal to a positive real number b. For example, in practice of angle measurement b can be equal to π (radian) or 180 (degrees). We denote the measure of $\mathcal{A B}$ by mes $\mathcal{A B}$ or $|\mathcal{A B}|$.

- Step 0: Denote $\mathcal{A}_{0} \rightleftharpoons \mathcal{A}, \mathcal{B}_{0} \rightleftharpoons \mathcal{B}, a_{0} \rightleftharpoons 0, b_{0} \rightleftharpoons b$.

The other steps are defined inductively:
 this point exists and is unique. Worded another way, the fact that \mathcal{C}_{1} is the middle of $\mathcal{A B}$ means that the generalized interval $\mathcal{D}_{1,0} \mathcal{D}_{1,2}$ is divided into two congruent intervals $\mathcal{D}_{1,0} \mathcal{D}_{1,1}, \mathcal{D}_{1,1} \mathcal{D}_{1,2}$, where we denote $\mathcal{D}_{1,0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{1,1} \rightleftharpoons \mathcal{C}_{1}$,

[^162]$\mathcal{D}_{1,2} \rightleftharpoons \mathcal{B}$. ${ }^{565}$ We have $\mathcal{P} \in\left[\mathcal{D}_{1,0} \mathcal{D}_{1,2}\right) \stackrel{\text { L1.2.22.15 }}{\Longrightarrow} \mathcal{P} \in\left[\mathcal{D}_{1,0} \mathcal{D}_{1,1}\right) \vee \mathcal{P} \in\left[D_{1,1} D_{1,2}\right)$. If $B \in\left[\mathcal{D}_{1,0} \mathcal{D}_{1,1}\right)$, we let, by definition $\mathcal{A}_{1} \rightleftharpoons \mathcal{D}_{1,0}, \mathcal{B}_{1} \rightleftharpoons \mathcal{D}_{1,1}, a_{1} \rightleftharpoons a_{0}=0, b_{1} \rightleftharpoons a_{0}+b / 2=b / 2$. For $\mathcal{P} \in\left[\mathcal{D}_{1,1} \mathcal{D}_{1,2}\right)$, we denote $\mathcal{A}_{1} \rightleftharpoons \mathcal{D}_{1,1}$, $\mathcal{B}_{1} \rightleftharpoons \mathcal{D}_{1,2}, b_{1} \rightleftharpoons a, a_{1} \rightleftharpoons b_{1}-b / 2=b / 2$. Obviously, in both cases we have the inclusions $\left[\mathcal{A}_{1} \mathcal{B}_{1}\right] \subset\left[\mathcal{A}_{0} \mathcal{B}_{0}\right]$ and $\left[a_{1}, b_{1}\right] \subset\left[a_{0}, b_{0}\right]$.

Step m:

As the result of the previous $m-1$ steps the generalized interval $\mathcal{A B}$ is divided into 2^{m-1} congruent generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2}, \ldots, \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$, where we let $\mathcal{D}_{m-1,0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m-1,2^{m-1}} \rightleftharpoons \mathcal{B}$. That is, we have $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1} \equiv \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2} \equiv \cdots \equiv \mathcal{D}_{m-1,2^{m-1}-2} \mathcal{D}_{m-1,2^{m-1}-1} \equiv \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ and $\left[\mathcal{D}_{m-1, j-1} \mathcal{D}_{m-1, j} \mathcal{D}_{m-1, j+1}\right], j=1,2, \ldots, 2^{m-1}-1$. We also know that $\mathcal{P} \in\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right), a_{m-1}=\frac{k-1}{2^{m-1}} \cdot b$, $b_{m-1}=\frac{k}{2^{m-1}} \cdot b$, where $\mathcal{A}_{m-1}=\mathcal{D}_{m-1, k-1}, \mathcal{B}_{m-1}=\mathcal{D}_{m-1, k}, k \in \mathbb{N}_{2^{m-1}}$. Dividing each of the generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2}, \ldots \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ into two congruent generalized intervals ${ }^{566}$, we obtain by T 1.3 .51 the division of $\mathcal{A B}$ into $2^{m-1} \cdot 2=2^{m}$ congruent generalized intervals $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}, \mathcal{D}_{m, 1} \mathcal{D}_{m, 2}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$, where we let $\mathcal{D}_{m, 0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m, 2^{m}} \rightleftharpoons \mathcal{B}$. That is, we have $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1} \equiv \mathcal{D}_{m, 1} \mathcal{D}_{m, 2} \equiv \cdots \equiv \mathcal{D}_{m, 2^{m}-2} \mathcal{D}_{m, 2^{m}-1} \equiv$ $\mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$ and $\left[\mathcal{D}_{m, j-1} \mathcal{D}_{m, j} \mathcal{D}_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$.

Denote $\mathcal{C}_{m} \rightleftharpoons \operatorname{mid} \mathcal{A}_{m-1} \mathcal{B}_{m-1}$. By L $1.2 .22 .15 \mathcal{P} \in\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right) \Rightarrow \mathcal{P} \in\left[\mathcal{A}_{m-1} \mathcal{C}_{m}\right) \vee \mathcal{P} \in\left[\mathcal{C}_{m} \mathcal{B}_{m-1}\right)$. In the former case we let, by definition, $\mathcal{A}_{m} \rightleftharpoons \mathcal{A}_{m-1}, \mathcal{B}_{m} \rightleftharpoons \mathcal{C}_{m}, a_{m} \rightleftharpoons a_{m-1}, b_{m} \rightleftharpoons a_{m}+\frac{1}{2^{m}}$; in the latter $\mathcal{A}_{m} \rightleftharpoons \mathcal{C}_{m}, \mathcal{B}_{m} \rightleftharpoons B_{m-1}, a_{m} \rightleftharpoons a_{m-1}, b_{m} \rightleftharpoons b_{m-1}-\frac{1}{2^{m}}$. Obviously, we have in both cases $\left[\mathcal{A}_{m} \mathcal{B}_{m}\right] \subset\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right]$, $\left[a_{m}, b_{m}\right] \subset\left[a_{m-1}, b_{m-1}\right], b_{m}-a_{m}=\frac{1}{2^{m}}$. Also, note that if $\mathcal{A}_{m}=\mathcal{D}_{m, l-1}, \mathcal{B}_{m}=\mathcal{D}_{m, l}, l \in \mathbb{N}_{2^{m}}$, then $a_{m}=\frac{l-1}{2^{m}}$, $b_{m}=(n-1)+\frac{l}{2^{m}} .{ }^{567}$

Continuing this process indefinitely (for all $m \in \mathbb{N}$), we conclude that either $\exists m_{0} \mathcal{A}_{m_{0}}=\mathcal{P}$, and then, obviously, $\forall m \in \mathbb{N} \backslash \mathbb{N}_{m_{0}} \mathcal{A}_{m}=\mathcal{P}$; or $\forall m \in \mathbb{N} \mathcal{P} \in\left[\mathcal{A}_{m} \mathcal{B}_{m}\right]$. In the first case we also have $\forall p \in \mathbb{N} a_{m_{0}+p}=a_{m_{0}}$, and we let, by definition, $|\mathcal{A P}| \rightleftharpoons e_{m_{0}}$. In the second case we define $|\mathcal{A P}|$ to be the number lying on all the closed numerical intervals $\left[a_{m}, b_{m}\right], m \in \mathbb{N}$. We can do so because the closed numerical intervals $\left[a_{m}, b_{m}\right], m \in \mathbb{N}$, as well as the generalized closed intervals $\left(\mathcal{A}_{m} \mathcal{B}_{m}\right)$, form a nested sequence, where the difference $b_{m}-a_{m}=\frac{1}{2^{m}}$ can be made less than any given positive real number $\epsilon>0 .{ }^{568}$ Thus, we have proved

Theorem 1.4.11. The measurement construction puts into correspondence with every generalized interval $\mathcal{A P}$, where $\mathcal{P} \in(\mathcal{A B})$ and $[\mathcal{A B}]=\mathfrak{J} \in \mathcal{C}^{g b r}$, a unique positive real number $|\mathcal{A P}|$ called the measure, of $\mathcal{A P}$. The reference generalized interval, as well as any generalized interval congruent to it, has length b.

Note than we can write

$$
\begin{equation*}
\mathcal{A P}<\cdots \leq \mathcal{A B}_{m} \leq \mathcal{A B}_{m-1} \leq \cdots \leq \mathcal{A B}_{1} \leq \mathcal{A B}_{0} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0} \leq a_{1} \leq \cdots \leq a_{m-1} \leq a_{m} \leq \cdots \leq\left|A_{0} B\right|<\cdots \leq f_{m} \leq f_{m-1} \leq \cdots \leq f_{1} \leq f_{0} \tag{1.16}
\end{equation*}
$$

Some additional properties of the measurement construction are given by
Lemma 1.4.12.1. Given an arbitrary generalized interval $\mathcal{G} \mathcal{H}$, in the measurement construction for any generalized interval $\mathcal{A P}$ there is an (appropriately defined) generalized interval $\mathcal{A}_{m} \mathcal{B}_{m}$ shorter than $\mathcal{G H}$.

Proof. By Pr 1.4.1 the generalized interval $\mathcal{A B}$ (appropriately defined for the measurement construction in question) can be divided into some number m of congruent generalized intervals shorter than $\mathcal{G H}$. Since $m<2^{m}$, dividing $\mathcal{A B}$ into 2^{m} generalized intervals at the $m^{t h}$ step of the measurement construction for $\mathcal{A} \mathcal{P}$ gives by L 1.3.51.9 still shorter generalized intervals. Hence the result.

This lemma shows that for sufficiently large m the generalized intervals $\mathcal{A} \mathcal{A}_{m}, \mathcal{A} \mathcal{A}_{m+1}, \ldots$ are defined, i.e. $\mathcal{A}_{m} \neq$ \mathcal{A}, etc., and we have ${ }^{569}$

$$
\begin{equation*}
\mathcal{A} \mathcal{A}_{m} \leq \mathcal{A} \mathcal{A}_{m+1} \leq \cdots \leq \mathcal{A P} \tag{1.17}
\end{equation*}
$$

[^163]Lemma 1.4.12.2. In the measurement process for a generalized interval $\mathcal{A P}$ there can be no more than one geometric object lying on all generalized closed intervals $\left[\mathcal{A}_{0} \mathcal{B}_{0}\right],\left[\mathcal{A}_{1} \mathcal{B}_{1}\right], \ldots,\left[\mathcal{A}_{n} \mathcal{B}_{n}\right], \ldots$ defined appropriately for the measurement construction in question, and this geometric object, when its exists, coincides with the geometric object \mathcal{P}.

Proof. As is evident from our exposition of the measurement construction, the closed generalized intervals $\left[\mathcal{A}_{0} \mathcal{B}_{0}\right],\left[\mathcal{A}_{1} \mathcal{B}_{1}\right], \ldots,[\mathcal{L}$ form a nested sequence, i.e. we have $\left[\mathcal{A}_{1} \mathcal{B}_{1}\right] \supset\left[\mathcal{A}_{2}, \mathcal{B}_{2}\right] \supset \ldots \supset\left[\mathcal{A}_{n} \mathcal{B}_{n}\right] \supset \ldots$ The result then follows from L 1.4.12.1,

L 1.4.11.1.

Theorem 1.4.12. Congruent generalized intervals have equal measures.
Proof. Suppose $\mathcal{A P} \equiv \mathcal{A}^{\prime} \mathcal{P}^{\prime}$. On step 0 , if $\mathcal{P} \in[\mathcal{A B})$ then also $\mathcal{P}^{\prime} \in\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right)$, and therefore $a_{0}^{\prime}=a_{0}, b_{0}^{\prime}=b_{0}$. ${ }^{570}$ If $\mathcal{P} \in\left[\mathcal{D}_{1,0} \mathcal{D}_{1,1}\right.$) then (by C 1.3 .51 .14$) \mathcal{P}^{\prime} \in\left[\mathcal{D}_{1,0}^{\prime} \mathcal{D}_{1,1}^{\prime}\right)$, and if $\mathcal{B} \in\left[\mathcal{D}_{1,1} \mathcal{D}_{1,2}\right.$) then $\mathcal{P}^{\prime} \in\left[\mathcal{D}_{1,1}^{\prime} \mathcal{D}_{1,2}^{\prime}\right.$). Therefore (see the exposition of measurement construction) $a_{1}^{\prime}=a_{1}, b_{1}^{\prime}=b_{1}$. Now assume inductively that after the $m-1^{\text {th }}$ step of the measurement constructions the generalized interval $\mathcal{A B}$ is divided into 2^{m-1} congruent generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2}, \ldots, \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ with $\mathcal{D}_{m-1,0}=\mathcal{A}, \mathcal{D}_{m-1,2^{m-1}}=\mathcal{B}$ and $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is divided into 2^{m-1} congruent generalized intervals $\mathcal{D}_{m-1,0}^{\prime} \mathcal{D}_{m-1,1}^{\prime}, \mathcal{D}_{m-1,1}^{\prime} \mathcal{D}_{m-1,2}^{\prime}, \ldots, \mathcal{D}_{m-1,2^{m-1}-1}^{\prime} \mathcal{D}_{m-1,2^{m-1}}^{\prime}$ with $\mathcal{D}_{m-1,0}^{\prime}=$ $\mathcal{A}^{\prime}, \mathcal{D}_{m-1,2^{m-1}}^{\prime}=\mathcal{B}^{\prime}$. Then we have (induction assumption implies here that we have the same k in both cases) $\mathcal{P} \in\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right), a_{m-1}=\frac{k-1}{2^{m-1}} \cdot b, b_{m-1}=\frac{k}{2^{m-1}} \cdot b$, where $\mathcal{A}_{m-1}=\mathcal{D}_{m-1, k-1}, \mathcal{B}_{m-1}=\mathcal{D}_{m-1, k}, k \in \mathbb{N}_{2^{m-1}}$ and $\mathcal{P}^{\prime} \in\left[\mathcal{A}_{m-1}^{\prime} \mathcal{B}_{m-1}^{\prime}\right), a_{m-1}^{\prime}=\frac{k-1}{2^{m-1}} \cdot b, b_{m-1}^{\prime}=\frac{k}{2^{m-1}} \cdot b$, where $\mathcal{A}_{m-1}^{\prime}=\mathcal{D}_{m-1, k-1}^{\prime}, \mathcal{B}_{m-1}^{\prime}=\mathcal{D}_{m-1, k}^{\prime}, k \in \mathbb{N}_{2^{m-1}}$.

At the $m^{t h}$ step we divide each of the generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \ldots \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ into two congruent generalized intervals to obtain the division of $\mathcal{A B}$ into 2^{m} congruent generalized intervals $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}, \mathcal{D}_{m, 1} \mathcal{D}_{m, 2}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$, where, by definition, $\mathcal{D}_{m, 0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m, 2^{m}} \rightleftharpoons \mathcal{B}$. That is, we have $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1} \equiv$ $\mathcal{D}_{m, 1} \mathcal{D}_{m, 2} \equiv \cdots \equiv \mathcal{D}_{m, 2^{m}-2} \mathcal{D}_{m, 2^{m}-1} \equiv \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$ and $\left[\mathcal{D}_{m, j-1} \mathcal{D}_{m, j} \mathcal{D}_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$.

Similarly, we divide each of the generalized intervals $\mathcal{D}_{m-1,0}^{\prime} \mathcal{D}_{m-1,1}^{\prime}, \mathcal{D}_{m-1,0}^{\prime} \mathcal{D}_{m-1,1}^{\prime}, \ldots \mathcal{D}_{m-1,2^{m-1}-1}^{\prime} \mathcal{D}_{m-1,2^{m-1}}^{\prime}$ into two congruent generalized intervals to obtain the division of $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ into 2^{m} congruent generalized intervals $\mathcal{D}_{m, 0}^{\prime} \mathcal{D}_{m, 1}^{\prime}, \mathcal{D}_{m, 1}^{\prime} \mathcal{D}_{m, 2}^{\prime}, \ldots, \mathcal{D}_{m, 2^{m}-1}^{\prime} \mathcal{D}_{m, 2^{m}}^{\prime}$, where $\mathcal{D}_{m, 0}^{\prime} \rightleftharpoons \mathcal{A}^{\prime}, \mathcal{D}_{m, 2^{m}}^{\prime} \rightleftharpoons \mathcal{B}^{\prime}$. That is, we have $\mathcal{D}_{m, 0}^{\prime} \mathcal{D}_{m, 1}^{\prime} \equiv \mathcal{D}_{m, 1}^{\prime} \mathcal{D}_{m, 2}^{\prime} \equiv$ $\cdots \equiv \mathcal{D}_{m, 2^{m}-2}^{\prime} \mathcal{D}_{m, 2^{m}-1}^{\prime} \equiv \mathcal{D}_{m, 2^{m}-1}^{\prime} \mathcal{D}_{m, 2^{m}}^{\prime}$ and $\left[\mathcal{D}_{m, j-1}^{\prime} \mathcal{D}_{m, j}^{\prime} \mathcal{D}_{m, j+1}^{\prime}\right], j=1,2, \ldots, 2^{m}-1$.

Since the geometric objects $\mathcal{A}=\mathcal{D}_{m, 0}, \mathcal{D}_{m, 1}, \ldots, \mathcal{D}_{m, 2^{m}-1}, \mathcal{B}=\mathcal{D}_{m, 2^{m}}$ are in order $\left[\mathcal{D}_{m, 0} \mathcal{D}_{m, 1} \ldots \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}\right.$ and the geometric objects $\mathcal{A}^{\prime}=\mathcal{D}_{m, 0}^{\prime}, \mathcal{D}_{m, 1}^{\prime}, \ldots, \mathcal{D}_{m, 2^{m}-1}^{\prime}, B^{\prime}=\mathcal{D}_{m, 2^{m}}^{\prime}$ are in order $\left[\mathcal{D}_{m, 0}^{\prime} \mathcal{D}_{m, 1}^{\prime} \ldots \mathcal{D}_{m, 2^{m}-1}^{\prime} \mathcal{D}_{m, 2^{m}}^{\prime}\right.$, if $\mathcal{P} \in\left[A_{m} B_{m}\right)=\left[\mathcal{D}_{m, l-1} \mathcal{D}_{m, l}\right)$ then by C 1.3.51.14 $\mathcal{P}^{\prime} \in\left[\mathcal{A}_{m}^{\prime} \mathcal{B}_{m}^{\prime}\right)=\left[\mathcal{D}_{m, l-1}^{\prime} \mathcal{D}_{m, l}^{\prime}\right)$, and we have $a_{m}^{\prime}=a_{m}=\frac{l-1}{2^{m}} \cdot b$, $b_{m}^{\prime}=b_{m}=\frac{l}{2^{m}} \cdot b$. Furthermore, if $\mathcal{P}=\mathcal{A}_{m}$ then by L 1.3 .51 .13 also $\mathcal{P}^{\prime}=\mathcal{A}_{m}^{\prime}$ and in this case $|\mathcal{A P}|=a_{m}$, $\left|\mathcal{A}^{\prime} \mathcal{P}^{\prime}\right|=a_{m}^{\prime}$, whence $\left|\mathcal{A}^{\prime} \mathcal{P}^{\prime}\right|=|\mathcal{A} \mathcal{P}|$. On the other hand, if $\forall m \in \mathbb{N} P \in\left[\mathcal{A}_{m} \mathcal{B}_{m}\right]$, and, therefore (see L 1.3.51.12), $\forall m \in \mathbb{N} \mathcal{P}^{\prime} \in\left[\mathcal{A}_{m}^{\prime} \mathcal{B}_{m}^{\prime}\right]$, then both $\forall m \in \mathbb{N}|\mathcal{A} \mathcal{P}| \in\left[a_{m}, b_{m}\right]$ and $\forall m \in \mathbb{N}\left|\mathcal{A}^{\prime} \mathcal{P}^{\prime}\right| \in\left[a_{m}^{\prime}, b_{m}^{\prime}\right]$. But since, as we have shown, $a_{m}^{\prime}=a_{m}, b_{m}^{\prime}=b_{m}$, using the properties of real numbers, we again conclude that $\left|\mathcal{A}^{\prime} \mathcal{P}^{\prime}\right|=|\mathcal{A P}|$. \square

Note that the theorem just proven shows that our measurement construction for generalized intervals is completely well-defined. When applied to the identical generalized intervals $\mathcal{A B}, \mathcal{B} \mathcal{A}$, the procedure of measurement gives identical results.

Lemma 1.4.13.1. Every generalized interval, consisting of k congruent generalized intervals resulting from division of a reference generalized interval into 2^{m} congruent intervals, has measure $\left(k / 2^{m}\right) \cdot b$.

Proof. Given a generalized interval $\mathcal{A P}$, consisting of k congruent generalized intervals resulting from the division of a reference generalized interval into 2^{m} congruent generalized intervals, at the $m^{t h}$ step of the measurement construction for $\mathcal{A P}$ we obtain the generalized interval $\mathcal{A} \mathcal{A}_{m}$ consisting of k generalized intervals resulting from division of the reference generalized interval into 2^{m} congruent generalized intervals, and we have $\mathcal{A} \mathcal{A}_{m} \equiv \mathcal{A} \mathcal{P}$ (see L 1.2 .51 .6$)$. Then by Pr 1.3.1 $\mathcal{A}_{m}=\mathcal{P}$. As explained in the text describing the measurement construction, in this case we have $k=l-1$. Hence $|\mathcal{A P}|=\left|\mathcal{A} \mathcal{A}_{m}\right|=a_{m}=\left((l-1) / 2^{m}\right) \cdot b=\left(k / 2^{m}\right) \cdot b$.

Theorem 1.4.13. If a generalized interval $\mathcal{A}^{\prime} \mathcal{P}^{\prime}$ is shorter than the generalized interval $\mathcal{A P}$ then $\left|\mathcal{A}^{\prime} \mathcal{P}^{\prime}\right|<|\mathcal{A} \mathcal{P}|$.
Proof. Using L 1.3.15.3, find $\mathcal{P}_{1} \in(\mathcal{A P})$ so that $\mathcal{A}^{\prime} \mathcal{P}^{\prime} \equiv \mathcal{A} \mathcal{P}_{1}$. Consider the measurement construction of $\mathcal{A} \mathcal{P}$, which, as will become clear in the process of the proof, induces the measurement construction for $\mathcal{A} \mathcal{P}_{1}$. Suppose $\mathcal{P} \in[\mathcal{A B})$, where \mathcal{A}, \mathcal{B} are the ends of an appropriate ${ }^{571}$ set \mathfrak{J} with generalized betweenness relation. Let there be a step number m in the measurement process for $\mathcal{A P}$ such that when after the $m-1^{\text {th }}$ step of the measurement construction the generalized interval $\mathcal{A B}$ is divided into 2^{m-1} congruent generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2}, \ldots, \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ with $\mathcal{D}_{m-1,0}=\mathcal{A}, \mathcal{D}_{m-1,2^{m-1}}=\mathcal{B}$ and both \mathcal{P}_{1} and \mathcal{P} lie on the same generalized half-open interval $\left[\mathcal{D}_{m-1, p-1}^{\prime} \mathcal{D}_{m-1, p}^{\prime}\right), p \in \mathbb{N}_{2^{m-1}}$, at the $m^{t h}$ step $\mathcal{P}_{1}, \mathcal{P}$ lie on different

[^164]generalized half-open intervals $\left[\mathcal{D}_{m, l-2}^{\prime} \mathcal{D}_{m, l-1}^{\prime}\right),\left[\mathcal{D}_{m, l-1}^{\prime} \mathcal{D}_{m, l}^{\prime}\right.$, where $l \in \mathbb{N}_{2^{m}}$, resulting from the division of the generalized interval $\mathcal{D}_{m-1, p-1}^{\prime} \mathcal{D}_{m-1, p}^{\prime}$ into two congruent generalized intervals $\mathcal{D}_{m, l-2}^{\prime} \mathcal{D}_{m, l-1}^{\prime}, \mathcal{D}_{m, l-1}^{\prime} \mathcal{D}_{m, l}^{\prime}$. ${ }^{572}$ Then, using 1.16, we have $\left|\mathcal{A} \mathcal{P}_{1}\right|<f_{m}^{\left(\mathcal{P}_{1}\right)}=\frac{l-1}{2^{m}} \cdots b=a_{m}^{(\mathcal{P})} \leq|\mathcal{A} \mathcal{P}|$, whence $\left|\mathcal{A} \mathcal{P}_{1}\right|<|\mathcal{A P}|$. Finally, consider the case when for all $m \in \mathbb{N}$ the geometric objects $\mathcal{P}_{1}, \mathcal{P}$ lie on the same generalized half-open interval $\left[A_{m} B_{m}\right)$, where $\mathcal{A}_{m}=\mathcal{A}_{m}^{\mathcal{P}_{1}}=\mathcal{A}_{m}^{\mathcal{P}}, \mathcal{B}_{m}=\mathcal{B}_{m}^{\mathcal{P}_{1}}=\mathcal{B}_{m}^{\mathcal{P}}$. By L 1.4.12.2 $\mathcal{P}_{1}, \mathcal{P}$ cannot lie both at once on all closed generalized intervals $\left[\mathcal{A}_{0} \mathcal{B}_{0}\right],\left[\mathcal{A}_{1} \mathcal{B}_{1}\right], \ldots,\left[\mathcal{A}_{n} \mathcal{B}_{n}\right], \ldots$.. Therefore, by L 1.2 .24 .6 , we are left with $\mathcal{P}_{1}=\mathcal{A}_{m}, \mathcal{P} \in\left(\mathcal{A}_{m} \mathcal{B}_{m}\right)$ as the only remaining option. In this case we have, obviously, $\left|\mathcal{A} \mathcal{P}_{1}\right|=a_{m}<|\mathcal{A} \mathcal{P}|$.

Corollary 1.4.13.2. If $\left|\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right|=|\mathcal{A B}|$ then $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{A}$.
Proof. See L 1.3.15.14, T 1.4.13.
Corollary 1.4.13.3. If $\left|\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right|<|\mathcal{A B}|$ then $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$.
Proof. See L 1.3.15.14, T 1.4.12, T 1.4.13.
Theorem 1.4.14. If a geometric object \mathcal{P} lies between \mathcal{A} and \mathcal{Q}, then $|\mathcal{A P}|+|\mathcal{P} \mathcal{Q}|=|\mathcal{A} \mathcal{Q}|$.
Proof. After the $m^{\text {th }}$ step of the measurement construction for the generalized interval $\mathcal{A P}$ we find that the geometric object \mathcal{P} lies on the generalized half-open interval $\left[\mathcal{A}_{m}, \mathcal{B}_{m}\right)$, where the generalized intervals $\mathcal{A} \mathcal{A}_{m}, \mathcal{A} \mathcal{B}_{m}$ consist, respectively, of some numbers $k \in \mathbb{N}, k+1$ of congruent generalized intervals resulting from division of a reference generalized interval into 2^{m} congruent generalized intervals, and, consequently, have measures equal to $\frac{k}{2^{m}} \cdot b$ and $\frac{k+1}{2^{m}} \cdot b$, respectively.
${ }^{573}$ Hence, using $(1.15,1.17)$ and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

$$
\begin{equation*}
\frac{k}{2^{m}} \cdot b \leq|\mathcal{A P}|<\frac{k+1}{2^{m}} \cdot b \tag{1.18}
\end{equation*}
$$

Consider first the case $\mathcal{Q}=\mathcal{B}$.
We know that after the $m^{t h}$ step of the measurement construction for $\mathcal{A P}$ we obtain the division of $\mathcal{A B}$ into 2^{m} congruent generalized intervals $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}, \mathcal{D}_{m, 1} \mathcal{D}_{m, 2}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$, where $\mathcal{D}_{m, 0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m, 2^{m}} \rightleftharpoons \mathcal{B}$. We know also that \mathcal{P} lies on the generalized half-open interval $\left[\mathcal{D}_{m, k} \mathcal{D}_{m, k+1}\right)$, where $\mathcal{D}_{m, k}=\mathcal{A}_{m}, \mathcal{D}_{m, k+1}=$ \mathcal{B}_{m}. Observe now that the interval $\mathcal{B} \mathcal{D}_{m, k+1}=\mathcal{B}_{m} \mathcal{B}^{574}$ consists of $2^{m}-k-1$ congruent generalized intervals $\mathcal{D}_{m, k+1} \mathcal{D}_{m, k+2}, \mathcal{D}_{m, k+2} \mathcal{D}_{m, k+3}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$. Similarly, the interval $\mathcal{B} \mathcal{D}_{m, k}=\mathcal{A}_{m} \mathcal{B}^{575}$ consists of $2^{m}-k$ congruent generalized intervals $\mathcal{D}_{m, k} \mathcal{D}_{m, k+1}, \mathcal{D}_{m, k+1} \mathcal{D}_{m, k+2}, \mathcal{D}_{m, k+2} \mathcal{D}_{m, k+3}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$. Hence by L 1.4.13.1 the generalized intervals $\mathcal{B} \mathcal{B}_{m}, \mathcal{B} \mathcal{A}_{m}$ have measures equal to $1-\frac{k}{2^{m}} \cdot b$ and $1-\frac{k+1}{2^{m}} \cdot b$, respectively. Hence, using $(1.15,1.17)$ and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

$$
\begin{equation*}
1-\frac{k+1}{2^{m}} \cdot b<|\mathcal{B P}| \leq 1-\frac{k}{2^{m}} \cdot b \tag{1.19}
\end{equation*}
$$

Adding together 1.18 and 1.19, we can write

$$
\begin{equation*}
\left(1-\frac{1}{2^{m}}\right) \cdot b<|\mathcal{A P}|+|\mathcal{B P}| \leq\left(1+\frac{k}{2^{m}}\right) \cdot b . \tag{1.20}
\end{equation*}
$$

Finally, taking in 1.20 the limit $m \rightarrow \infty$, we have $|\mathcal{A P}|+|\mathcal{B P}|=b$, q.e.d.
Suppose now \mathcal{Q} lies on $\mathcal{A B}$. Since $[\mathcal{A P} \mathcal{Q}]$ and $\mathcal{Q} \in(\mathcal{A B})$, after the $m^{t} h$ step of the measurement construction for $\mathcal{A Q}$ by L 1.2.24.6 we have $\mathcal{P} \in\left[\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}\right), \mathcal{Q} \in\left[\mathcal{D}_{m, l-1} \mathcal{D}_{m, l}\right)$, where $0<k \leq l \leq 2^{m}$. Observe that, making use of L 1.2.12.2, we can take m so large that $k<l-1 .{ }^{576}$ Furthermore, our previous discussion shows that m can also be taken so large that $k>1$. With these assumptions concerning the choice of m, we see that the interval

[^165]$\mathcal{D}_{m, k} \mathcal{D}_{m, l-1}$ consists of $l-1-k$ congruent intervals obtained by division of the reference interval $\mathcal{A B}$ into 2^{m} congruent intervals and by L 1.4.13.1 has measure $\frac{l-1-k}{2^{m}} \cdot b$. Similarly, the interval $\mathcal{D}_{m, k-1} \mathcal{D}_{m, l}$ consists of $l+1-k$ congruent intervals of the type described above and has measure $\frac{l-1-k}{2^{m}} \cdot b$. In this way we also obtain $\left|\mathcal{A D} \mathcal{D}_{m, k-1}\right|=\frac{k-1}{2^{m}} \cdot b$, $\left|\mathcal{A D} \mathcal{D}_{m, k}\right|=\frac{k}{2^{m}} \cdot b,\left|\mathcal{A D} \mathcal{D}_{m, l-1}\right|=\frac{l-1}{2^{m}} \cdot b,\left|\mathcal{A D}_{m, l}\right|=\frac{l}{2^{m}} \cdot b$. Since $\mathcal{A} \mathcal{D}_{m, k-1} \leqq \mathcal{A} \mathcal{P}<\mathcal{A D}_{m, k}, \mathcal{A D}_{m, l-1} \leqq \mathcal{A} \mathcal{Q}<\mathcal{A D}_{m, l}$, $\mathcal{D}_{m, k} \mathcal{D}_{m, l-1}<\mathcal{P} \mathcal{Q}<\mathcal{D}_{m, k-1} \mathcal{D}_{m, l}$, we have
\[

$$
\begin{gather*}
\frac{k-1}{2^{m}} \cdot b<|\mathcal{A P}|<\frac{k}{2^{m}} \cdot b, \tag{1.21}\\
\frac{l-k-1}{2^{m}} \cdot b<|\mathcal{P Q}|<\frac{l+1-k}{2^{m}} \cdot b, \tag{1.22}\\
\frac{l-1}{2^{m}} \cdot b<|\mathcal{A Q}|<\frac{l}{2^{m}} \cdot b . \tag{1.23}
\end{gather*}
$$
\]

Adding together the inequalities (1.21), (1.22) gives

$$
\begin{equation*}
\frac{l-2}{2^{m}} \cdot b<|\mathcal{A P}|+|\mathcal{P Q}|<\frac{l+1}{2^{m}} \cdot b . \tag{1.24}
\end{equation*}
$$

Subtracting (1.24) from (1.23), we get
Finally, taking the limit $m \rightarrow \infty$ in (??), we obtain $|\mathcal{A P}|+|\mathcal{P Q}|-|\mathcal{A Q}|=0$, as required.
Corollary 1.4.14.1. If a class $\mu \mathcal{A B}$ of congruent generalized intervals is the sum of classes of congruent generalized intervals $\mu \mathcal{C D}, \mu \mathcal{E} \mathcal{F}$ (i.e. if $\mu \mathcal{A B}=\mu \mathcal{C D}+\mu \mathcal{E} \mathcal{F}$), then for any generalized intervals $\mathcal{A}_{1} \mathcal{B}_{1} \in \mu \mathcal{A B}, \mathcal{C}_{1} \mathcal{D}_{1} \in \mu \mathcal{C} \mathcal{D}$, $\mathcal{E}_{1} \mathcal{F}_{1} \in \mu \mathcal{E F}$ we have $\left|\mathcal{A}_{1} \mathcal{B}_{1}\right|=\left|\mathcal{C}_{1} \mathcal{D}_{1}\right|+\left|\mathcal{E}_{1} \mathcal{F}_{1}\right|$.

Proof. See T 1.4.12, T 1.4.14.
Corollary 1.4.14.2. If a class $\mu \mathcal{A B}$ of congruent generalized intervals is the sum of classes of congruent generalized intervals $\mu \mathcal{A}_{1} \mathcal{B}_{1}, \mu \mathcal{A}_{2} \mathcal{B}_{2}, \ldots, \mu \mathcal{A}_{n} \mathcal{B}_{n}$ (i.e. if $\mu \mathcal{A B}=\mu \mathcal{A}_{1} \mathcal{B}_{1}+\mu \mathcal{A}_{2} \mathcal{B}_{2}+\cdots+\mu \mathcal{A}_{n} \mathcal{B}_{n}$), then for any generalized intervals $\mathcal{C D} \in \mu \mathcal{A B}, \mathcal{C}_{1} \mathcal{D}_{1} \in \mu \mathcal{A}_{1} \mathcal{B}_{1}, \mathcal{C}_{2} \mathcal{D}_{2} \in \mu \mathcal{A}_{2} \mathcal{B}_{2}, \ldots, \mathcal{C}_{n} \mathcal{D}_{n} \in \mu \mathcal{A}_{n} \mathcal{B}_{n}$ we have $|\mathcal{C D}|=\left|\mathcal{C}_{1} \mathcal{D}_{1}\right|+\left|\mathcal{C}_{2} \mathcal{D}_{2}\right|+\cdots+\left|\mathcal{C}_{n} \mathcal{D}_{n}\right|$. In particular, if $\mu \mathcal{A B}=n \mu \mathcal{A}_{1} \mathcal{B}_{1}$ and $\mathcal{C D} \in \mu \mathcal{A B}, \mathcal{C}_{1} \mathcal{D}_{1} \in \mu \mathcal{A}_{1} \mathcal{B}_{1}$, then $|\mathcal{C D}|=n\left|\mathcal{C}_{1} \mathcal{D}_{1}\right|$. ${ }^{577}$

Theorem 1.4.15. For any positive real number $0<x \leq b$ there is a generalized interval $\mathcal{A P}$ (and, in fact, an infinity of generalized intervals congruent to it) whose measure is equal to x.

Proof. The construction of the required generalized interval consists of the following steps (countably infinite in number): ${ }^{578}$.

- Step 0: Denote $\mathcal{A}_{0} \rightleftharpoons \mathcal{A}, \mathcal{B}_{0} \rightleftharpoons \mathcal{B}, a_{0} \rightleftharpoons 0, b_{0} \rightleftharpoons b$.

The other steps are defined inductively:

- Step 1: Denote \mathcal{C}_{1} the middle of $\mathcal{A B}$, i.e. the geometric object \mathcal{C}_{1} such that $\left[\mathcal{A} \mathcal{C}_{1} \mathcal{B}\right]$ and $\mathcal{A C}_{1} \equiv \mathcal{C}_{1} \mathcal{B}$. By Pr 1.3 .5 this geometric object exists and is unique. Worded another way, the fact that \mathcal{C}_{1} is the middle of $\mathcal{A B}$ means that the generalized interval $\mathcal{D}_{1,0} \mathcal{D}_{1,2}$ is divided into two congruent generalized intervals $\mathcal{D}_{1,0} \mathcal{D}_{1,1}, \mathcal{D}_{1,1} \mathcal{D}_{1,2}$, where we denote $\mathcal{D}_{1,0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{1,1} \rightleftharpoons \mathcal{C}_{1}, \mathcal{D}_{1,2} \rightleftharpoons \mathcal{B} .{ }^{579}$ If $x \in\left(0, \frac{1}{2} \cdot b\right)$, i.e. for $0<x<\frac{1}{2} \cdot b$, we let, by definition $\mathcal{A}_{1} \rightleftharpoons \mathcal{D}_{1,0}, \mathcal{B}_{1} \rightleftharpoons \mathcal{D}_{1,1}$, $a_{1} \rightleftharpoons 0, b_{1} \rightleftharpoons a_{1}+\frac{1}{2} \cdot b=\frac{1}{2} \cdot b$. For $x \in\left[\frac{1}{2} \cdot b, b\right)$, we denote $\mathcal{A}_{1} \rightleftharpoons \mathcal{D}_{1,1}, \mathcal{B}_{1} \rightleftharpoons \mathcal{D}_{1,2}, b_{1} \rightleftharpoons b, a_{1} \rightleftharpoons b_{1}-\frac{1}{2} \cdot b=\frac{1}{2} \cdot b$. Obviously, in both cases we have the inclusions $\left[\mathcal{A}_{1} \mathcal{B}_{1}\right] \subset\left[\mathcal{A}_{0} \mathcal{B}_{0}\right]$ and $\left[a_{1}, b_{1}\right] \subset\left[a_{0} b_{0}\right]$.

Step m:
As the result of the previous $m-1$ steps the generalized interval $\mathcal{A B}$ is divided into 2^{m-1} congruent generalized intervals $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1}, \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2}, \ldots, \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$, where we let $\mathcal{D}_{m-1,0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m-1,2^{m-1}} \rightleftharpoons \mathcal{B}$. That is, we have $\mathcal{D}_{m-1,0} \mathcal{D}_{m-1,1} \equiv \mathcal{D}_{m-1,1} \mathcal{D}_{m-1,2} \equiv \cdots \equiv \mathcal{D}_{m-1,2^{m-1}-2} \mathcal{D}_{m-1,2^{m-1}-1} \equiv \mathcal{D}_{m-1,2^{m-1}-1} \mathcal{D}_{m-1,2^{m-1}}$ and $\left[\mathcal{D}_{m-1, j-1} \mathcal{D}_{m-1, j} \mathcal{D}_{m-1, j+1}\right], j=1,2, \ldots, 2^{m-1}-1$. We also know that $x \in\left[a_{m-1} b_{m-1}\right), a_{m-1}=\frac{k-1}{2^{m-1}} \cdot b$, $b_{m-1}=\frac{k}{2^{m-1}} \cdot b$, where $\mathcal{A}_{m-1}=\mathcal{D}_{m-1, k-1}, \mathcal{B}_{m-1}=\mathcal{D}_{m-1, k}, k \in \mathbb{N}_{2^{m-1}}$. Dividing each of the generalized intervals $D_{m-1,0} D_{m-1,1}, D_{m-1,0} D_{m-1,1}, \ldots D_{m-1,2^{m-1}-1} D_{m-1,2^{m-1}}$ into two congruent intervals ${ }^{580}$, we obtain by T 1.3 .21 the division of $\mathcal{A B}$ into $2^{m-1} \cdot 2=2^{m}$ congruent generalized intervals $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}, \mathcal{D}_{m, 1} \mathcal{D}_{m, 2}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$, where we let $\mathcal{D}_{m, 0} \rightleftharpoons \mathcal{A}, \mathcal{D}_{m, 2^{m}} \rightleftharpoons \mathcal{B}$. That is, we have $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1} \equiv \mathcal{D}_{m, 1} \mathcal{D}_{m, 2} \equiv \cdots \equiv \mathcal{D}_{m, 2^{m}-2} \mathcal{D}_{m, 2^{m}-1} \equiv \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$ and $\left[\mathcal{D}_{m, j-1} \mathcal{D}_{m, j} \mathcal{D}_{m, j+1}\right], j=1,2, \ldots, 2^{m}-1$.

From the properties of real numbers it follows that either $x \in\left[a_{m-1},\left(a_{m-1}+b_{m-1}\right) / 2\right)$ or $x \in\left[\left(a_{m-1}+\right.\right.$ $\left.\left.b_{m-1}\right) / 2, b_{m-1}\right)$. In the former case we let, by definition, $\mathcal{A}_{m} \rightleftharpoons \mathcal{A}_{m-1}, \mathcal{B}_{m} \rightleftharpoons \mathcal{C}_{m}, a_{m} \rightleftharpoons a_{m-1}, b_{m} \rightleftharpoons a_{m}+\frac{1}{2^{m}} \cdot b$; in the latter $\mathcal{A}_{m} \rightleftharpoons \mathcal{C}_{m}, \mathcal{B}_{m} \rightleftharpoons B_{m-1}, a_{m} \rightleftharpoons a_{m-1}, b_{m} \rightleftharpoons b_{m-1}-\frac{1}{2^{m}} \cdot b$. Obviously, we have in both cases $\left[\mathcal{A}_{m} \mathcal{B}_{m}\right] \subset\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right],\left[a_{m}, b_{m}\right] \subset\left[a_{m-1} b_{m-1}\right], b_{m}-a_{m}=\frac{1}{2^{m}}$.

[^166]Continuing this process indefinitely (for all $m \in \mathbb{N}$), we conclude that either $\exists m_{0} a_{m_{0}}=x$, and then, obviously, $\forall m \in \mathbb{N} \backslash \mathbb{N}_{m_{0}} a_{m}=x ;$ or $\forall m \in \mathbb{N} x \in\left(a_{m} b_{m}\right)$. In the first case we let, by definition, $\mathcal{P} \rightleftharpoons \mathcal{A}_{m_{0}}$.

In the second case we define \mathcal{P} to be the (unique) geometric object lying on all the generalized closed intervals $\left[\mathcal{A}_{m} \mathcal{B}_{m}\right], m \in \mathbb{N}$. We can do this by the Cantor's axiom $\operatorname{Pr} 1.4 .2$ because the closed generalized intervals $\left[\mathcal{A}_{m} \mathcal{B}_{m}\right]$ form a nested sequence, where by L 1.4.2.1 the generalized interval $\mathcal{A}_{m} \mathcal{B}_{m}$ can be made shorter than any given generalized interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to the generalized interval $\mathcal{A P}$, we can write $|\mathcal{A P}|=x$, as required.

In the forthcoming treatment we shall assume that whenever we are given a line a, one of the two possible opposite orders is chosen on it (see p. 22 ff .). Given such a line a with order \prec and a (non-empty) set $\mathcal{A} \subset \mathcal{P}_{a}$ of points on a, we call a point $B \in a$ an upper bound (respectively, lower bound) of \mathcal{A} iff $A \preceq B(B \preceq A)$ for all $A \in \mathcal{A}$. An upper bound B_{0} is called a least upper bound, or supremum, written $\sup \mathcal{A}$ (greatest lower bound, or infimum, written $\inf \mathcal{A})$ of \mathcal{A} iff $B_{0} \preceq B$ for any upper bound B of \mathcal{A}. Thus, $\sup \mathcal{A}$ is the least element in the set of upper bounds of \mathcal{A}, and $\inf \mathcal{A}$ is the greatest element in the set of lower bounds of A. Obviously, the second requirement in the definition of least upper bound (namely, that $B_{0} \preceq B$ for any upper bound B of \mathcal{A}) can be reformulated as follows: For whatever point $B^{\prime} \in a$ preceding B_{0} (i.e. such that $B^{\prime} \prec B_{0}$) there is a point X succeeding B^{\prime} (i.e. with the property that $X \succ B^{\prime}$).

It is also convenient to assume, unless explicitly stated otherwise, that for an interval $A B$ we have $A \prec B$. ${ }^{581}$ With this convention in mind, we can view the open interval $(A B)$ as the set $\{X \mid A \prec X \prec B\}$ (see T 1.2.14). Also, obviously, we have $[A B)=\{X \mid A \preceq X \prec B\},(A B]=\{X \mid A \prec X \preceq B\},[A B]=\{X \mid A \preceq X \preceq B\}$. A ray O_{A} may be viewed as the set of all such points X that $O \prec X$ (or $X \succ O$, which is the same) if $O \prec A$, and as the set of all such points X that $X \prec O$ if $A \prec O$. Moreover, if $X \in O_{A}$ then either $O \prec X \preceq A$ or $A \prec X$. ${ }^{582}$ These facts will be extensively used in the succeeding exposition. ${ }^{583}$

Theorem 1.4.16. If a non-empty set of points \mathcal{A} on a line a has an upper bound (respectively, a lower bound), it has a least upper bound (greatest lower bound). ${ }^{584}$

Proof. ${ }^{585}$ By hypothesis, there is a point $B_{1} \in a$ such that $A \preceq B_{1}$ for all $A \in \mathcal{A}$. Without loss of generality we can assume that $A \prec B_{1}$ for all $A \in \mathcal{A}$. ${ }^{586}$

We shall refer to an interval $X Y$ as normal iff:
a) there is $A \in \mathcal{A}$ such that $A \in[X Y]$; and b) for all $B \in a$ the relation $B \succ Y$ implies $B \notin \mathcal{A}$. Observe that at least one of the halves ${ }^{587}$ of a normal interval is normal. ${ }^{588}$

Take an arbitrary point $A_{1} \in \mathcal{A}$. Then, evidently, the interval $A_{1} B_{1}$ is normal. Denote by $A_{2} B_{2}$ its normal half. Continuing inductively this process of division of intervals into halves, we denote $A_{n+1} B_{n+1}$ a normal half of the interval $A_{n} B_{n}$.

With the sequence of intervals thus constructed, there is a unique point C lying on all the closed intervals $\left[A_{i} B_{i}\right]$, $i \in \mathbb{N}$ (see L 1.4.1.4, T 1.4.1). This can be written as $\{C\}=\bigcap_{i=0}^{\infty}\left[A_{i} B_{i}\right]$.

We will show that $C=\sup \mathcal{A}$. First, we need to show that C is an upper bound of \mathcal{A}. If C were not an upper bound of \mathcal{A}, there would exist a point $A_{0} \in \mathcal{A}$ such that $C<A_{0}$. But then $A_{0} \notin \bigcap_{i=0}^{\infty}\left[A_{i} B_{i}\right]=\{C\}$, whence we would have $\exists n_{0} \in \mathbb{N}\left(A_{n_{0}} \leq C \leq B_{n_{0}}<A_{0}\right)$, i.e. the closed interval $\left[A_{n_{0}} B_{n_{0}}\right]$ cannot be normal - a contradiction. Thus, we have $\forall A \in \mathcal{A}(A \preceq C)$. In order to establish that $C=\sup \mathcal{A}$, we also need to prove that given any $X_{1} \in \mathcal{P}_{a}$ with the property $X_{1} \prec C$, there is a point $A \in \mathcal{A}$ such that $X_{1} \prec A$ (see the discussion accompanying the definition of least upper bound).

Observe that for any $X_{1} \in \mathcal{P}_{a}$ with the property $X_{1} \prec C$ there is a number $n_{1} \in \mathbb{N}$ such that $X_{1} \prec A_{n_{1}} \preceq C \preceq B_{n_{1}}$. Otherwise (if $A_{n} \preceq X_{1}$ for all $n \in \mathbf{N}$) we would have $X_{1} \in \bigcap_{i=0}^{\infty}\left[A_{i} B_{i}\right]=\{C\} \Rightarrow X_{1}=C$, which contradicts $X_{1} \prec C$. But then in view of normality of $\left[A_{n_{1}} B_{n_{1}}\right]$ there is $A \in \mathcal{A}$ such that $A \in\left[A_{n_{1}} B_{n_{1}}\right]$, i.e. $A_{n_{1}} \preceq A \preceq B_{n_{1}}$. Together with $X_{1} \prec A_{n_{1}}$, this gives $X_{1} \prec A$, whence the result.

[^167]Theorem 1.4.17 (Dedekind). Let \mathcal{A}, \mathcal{B} be two non-empty sets on a line a such that $\mathcal{A} \cup \mathcal{B}=\mathcal{P}_{a}$. Suppose, further, that any element of the set \mathcal{A} (strictly) precedes any element of the set \mathcal{B}, i.e. $(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \prec B)$. Then either there is a point C such that all points of \mathcal{A} precede C, or there is a point C such that C precedes all points of \mathcal{B}.

In this case we say that the point C makes a Dedekind cut in \mathcal{P}_{a}. We can also say that \mathcal{A}, \mathcal{B} define a Dedekind cut in \mathcal{P}_{a}.

Proof. Since \mathcal{A} is not empty and has an upper bound, by the preceding theorem (T1.4.16) it has the least upper bound $C \rightleftharpoons \sup \mathcal{A}$.

Observe that $\mathcal{A} \cap \mathcal{B}=\emptyset$. Otherwise we would have (by hypothesis) $A_{0} \in \mathcal{A} \cap \mathcal{B} \Rightarrow\left(A_{0} \in \mathcal{A}\right) \& \mathcal{B} \Rightarrow A_{0} \prec A_{0}$, which is impossible.

Since $\mathcal{A} \cap \mathcal{B}=\emptyset$, we have either $C \in \mathcal{A}$, or $C \in \mathcal{B}$, but not both. If $C \in \mathcal{A}$ then $(\forall A \in \mathcal{A})(A \preceq C)$ because $C=\sup \mathcal{A}$. Suppose now $C \in \mathcal{B}$. To show that $(\forall B \in \mathcal{B})(C \prec B)$ suppose the contrary, i.e. that there is $B_{0} \in \mathcal{B}$ such that $B_{0} \prec C$. Since $C=\sup \mathcal{A}$, from the properties of least upper bound (see discussion following its definition) it would then follow that there exists $A_{0} \in \mathcal{A}$ such that $B_{0} \prec A_{0}$. But this would contradict the assumption that any point of \mathcal{A} precedes any point of \mathcal{B} (see L1.2.13.5). Thus, in the case $C \in \mathcal{B}$ we have $C \prec B$ for all $B \in \mathcal{B}$, which completes the proof.

Theorem 1.4.18. Let \mathcal{A}, \mathcal{B} be two non-empty sets on a line a with the property that any element of the set \mathcal{A} (strictly) precedes any element of the set \mathcal{B}, i.e. $(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \prec B)$. Then there is a point C such that $A \preceq C \preceq B$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Proof. Construct a Dedekind cut in \mathcal{P}_{a} defined by sets $\mathcal{A}_{1}, \mathcal{B}_{1}$ such that $\mathcal{A}_{1} \neq \emptyset, \mathcal{B}_{1} \neq \emptyset, \mathcal{A}_{1}$ cup $\mathcal{B}_{1}=\mathcal{P}_{a}, \mathcal{A} \subset \mathcal{A}_{1}$, $\mathcal{B} \subset \mathcal{B}_{1}$. To achieve this, we define $\mathcal{B}_{1} \rightleftharpoons\left\{B_{1} \in a \mid(\exists B \in \mathcal{B})\left(B \preceq B_{1}\right)\right\}$ and $\mathcal{A}_{1}=\mathcal{P}_{a} \backslash \mathcal{B}_{1}$. To show that $\mathcal{B} \subset \mathcal{B}_{1}$ observe that for any point $B_{1} \in \mathcal{B}_{1}$ there is $B=B_{1} \in \mathcal{B}$, i.e. $B_{1} \in \mathcal{B}_{1}$. To show that $\mathcal{A} \cap \mathcal{B}_{1}=\emptyset$ suppose the contrary, i.e. that there is a point $A_{0} \in \mathcal{A} \cap \mathcal{B}_{1}$. Then from the definition of \mathcal{B}_{1} we would have $\left(\exists B_{0} \in \mathcal{B}\right)\left(B_{0} \preceq A_{0}\right)$. But this contradicts the assumption $(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \prec B)$. Thus, we have $\mathcal{A} \cap \mathcal{B}_{1}=\emptyset$, whence $\mathcal{A} \subset \mathcal{P}_{a} \backslash \mathcal{A}_{1}=\mathcal{A}_{1}$.

To demonstrate that any point of the set \mathcal{A}_{1} precedes any point of the set \mathcal{B}_{1} suppose the contrary, i.e. that there are $A_{0} \in \mathcal{A}_{1}, B_{0} \in \mathcal{B}_{1}$ such that $B_{0} \prec A_{0}$. Then using the definition of the set \mathcal{B}_{1} we can write $B \preceq B_{0} \preceq A_{0}$, whence by the same definition $A_{0} \in \mathcal{B}_{1}=\mathcal{P}_{a} \backslash \mathcal{A}_{1}$ - a contradiction. Thus, we have $\mathcal{P}_{a}=\mathcal{A}_{1} \cup \mathcal{B}_{1}$, where $\mathcal{A}_{1} \supset \mathcal{A} \neq \emptyset$, $\mathcal{B}_{1} \supset \mathcal{B} \neq \emptyset$, and $\left(\forall A_{1} \in \mathcal{A}_{1}\right)\left(\forall B_{1} \in \mathcal{B}_{1}\right)\left(A_{1} \prec B_{1}\right)$, which implies that the sets define a Dedekind cut in \mathcal{P}_{a}. Now by the preceding theorem (T 1.4.17) we can find a point $C \in a$ such that $\left(\forall A_{1} \in \mathcal{A}_{1}\right)\left(\forall B_{1} \in \mathcal{B}_{1}\right)\left(A_{1} \preceq C \preceq B_{1}\right)$. But then from the inclusions $\mathcal{A} \subset \mathcal{A}_{1}, \mathcal{B} \subset \mathcal{B}_{1}$ we conclude that $(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \preceq C \preceq B)$, as required.

Lemma 1.4.18.1. Given an arbitrary angle $\angle(h, k)$, a straight angle can be divided into congruent angles less than $\angle(h, k)$.

Proof. (See Fig. 1.174.) Consider a right angle $\angle B O C$, whose side O_{C} is also one of the sides of a given straight angle. Using L 1.2.21.1, A 1.3.1, we can choose points B, C so that $O B \equiv O C$. Using C 1.3.25.1 (or T 1.3.22), choose the point A_{0} such that the (abstract) interval $O A_{0}$ is a median of $\triangle B O C$. That is, we have $\left[B A_{0} C\right]$ and $B A_{0} \equiv A_{0} C$. Then by T 1.3.24 $O A_{0}$ is also a bisector and an altitude. That is, we have $\angle B O A_{0} \equiv \angle C O A_{0}$ and $\angle B A_{0} O, \angle C A_{0} O$ are right angles. We can assume that $\angle(h, k)<\angle B O A_{0}$. ${ }^{589}$ Then we can find $A_{1} \in$ $\left(A_{0} B\right)$ such that $\angle(h, k) \equiv \angle A_{0} O A_{1} .{ }^{590}$ Using L 1.3.21.11 and the Archimedes' axiom (A 1.4.1), construct points $A_{2}, A_{3}, \ldots A_{n-1}, A_{n}$ such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots \equiv A_{n-1} A_{n}$, and $\left[A_{0} B A_{n}\right]$. Using L 1.2.21.6, L 1.2.21.4, L 1.3.16.4, we obtain $\angle A_{O} O B<\angle A_{O} O A_{n}$. We construct further a sequence of rays $h_{0}, h_{1}, h_{2}, \ldots, h_{m}, \ldots$ with origin at O inductively as follows: Denote $h_{0} \rightleftharpoons O A_{0}, h_{1} \rightleftharpoons O A_{1}$. With $h_{0}, h_{1}, h_{2}, \ldots, h_{m}$ already constructed, we choose (using A 1.3.4) h_{m+1} such that the rays h_{m-1}, h_{m+1} lie on opposite sides of the ray h_{m} and $\angle\left(h_{m-1}, h_{m}\right) \equiv \angle\left(h_{m}, h_{m+1}\right)$. Then there is a number $k \in \mathbb{N}$ such that $h_{k-1} \subset \operatorname{Int} \angle A_{0} O B$, but the ray h_{k} either coincides with O_{B} or lies inside the angle $\angle B O D$, adjacent supplementary to the angle $\angle B O C$. We will take k to be the least number with this property, ${ }^{591}$ should there be more than one such number. We need to prove that there is at least such number. Suppose there are none and the rays h_{i} lie inside the angle $\angle A_{0} O B$ for all $i \in \mathbb{N}$. By construction (and T 1.3.1) the angles $\angle\left(h_{i} h_{i+1}\right), i \in \mathbb{N}$, are all congruent to the angle $\angle(h, k)$ and thus are all acute. Since the rays h_{i-1}, h_{i+1} lie on opposite sides of the line \bar{h}_{i} and the angles $\angle\left(h_{i-1}, h_{i}\right), \angle\left(h_{i}, h_{i+1}\right)$ are congruent, using C 1.3.18.12 we conclude that the ray h_{i} lies inside the angle $\angle\left(h_{i-1}, h_{i+1}\right)$ for all $i \in \mathbb{N}$. By construction, $\angle O A_{0} A_{1}$ is a right angle. This, together with the fact that $A_{0} A_{1} \equiv A_{1} A_{2} \equiv \cdots \equiv A_{n-1} A_{n}$ and $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$, gives the following inequalities: $\angle A_{n} O A_{n-1}<\angle A_{n-1} O A_{n-2}<\ldots<\angle A_{3} O A_{2}<\angle A_{2} O A_{1}<\angle A_{1} O A_{0}$.

[^168]

Figure 1.174: Given an arbitrary angle $\angle(h, k)$, a straight angle can be divided into congruent angles less than $\angle(h, k)$.

592 Note also that by L 1.2 .21 .6 , L 1.2 .21 .4 the ray $O_{A_{i}}$ lies inside the angle $\angle A_{i-1} O A_{i+1}$ for all $i \in \mathbb{N}$. Hence by L 1.3.52.4 we have $\angle A_{0} O A_{n}<\angle\left(h_{0}, h_{n}\right)$. On the other hand, by our assumption the rays h_{i} lie inside the angle $\angle A_{0} O B$ for all $i \in \mathbb{N}$. In view of C 1.3 .16 .4 this implies $\angle\left(h_{0}, h_{n}\right)<\angle A_{0} O B$, which, together with the inequality $\angle A_{0} O B<A_{0} O A_{n}$ gives $\angle\left(h_{0}, h_{n}\right)<\angle A_{0} O A_{n}$, which contradicts $\angle A_{0} O A_{n}<\angle\left(h_{0}, h_{n}\right)$ (see L 1.3.16.10). Thus, we have shown that there is a positive integer k such that the ray h_{k} does not lie inside the angle $\angle A_{0} O B$. As we have already pointed out, we shall take as k the least number with this property. Then all the rays in the sequence $h_{1}, h_{2}, \ldots, h_{k-1}$ lie inside the angle $\angle A_{0} O B$, but h_{k} does not. Obviously, the rays $h_{0}, h_{1}, \ldots, h_{k-1}$ lie on one side of the line $a_{O C}$. ${ }^{593}$ Furthermore, by L 1.2 .22 .11 these rays are in order $\left[h_{0} h_{1} h_{2} \ldots h_{k-1}\right]$. ${ }^{594}$ This implies, in particular, that $\left[h_{0} h_{k-2} h_{k-1}\right]$, or, equivalently, $h_{k-2} \subset \operatorname{Int} \angle\left(h_{0}, h_{k-1}\right)$, which means, by definition, that the rays h_{0}, h_{k-2} lie on the same side of the ray h_{k-1}. On the other hand, by hypothesis, the rays h_{n-2}, h_{n} lie on opposite sides of the line \bar{h}_{n-1}. Hence $h_{0} h_{n-2} \bar{h}_{n-1} \& h_{n-2} \bar{h}_{n-1} h_{n} \stackrel{\text { L1.2.18.5 }}{\Longrightarrow} h_{0} \bar{h}_{n-1} h_{n}$. Since the angles $\angle\left(h_{0}, h_{n-1}\right), \angle\left(h_{n-1}, h_{n}\right)$ are both acute, ${ }^{595}$ by C 1.3.18.12 we can write $h_{n-1} \subset \operatorname{Int} \angle\left(h_{0}, h_{n}\right)$, or, in different notation, $\left[h_{0} h_{n-1} h_{n}\right]$. Taking into account that $\left[h_{0} h_{n-1} O_{B}\right] \stackrel{\text { L1.2.21.11 }}{\Longrightarrow} h_{0} \bar{h}_{n-1} O_{B}$, we have $h_{0} \bar{h}_{n-1} h_{n} \& h_{0} \bar{h}_{n-1} \xrightarrow{\text { L1.2.18.4 }}$ $O_{B} h_{n} \bar{h}_{n-1} \xrightarrow{\text { L1.2.21.21 }}\left[h_{n-1} h_{n} O_{B}\right] \vee\left[h_{n-1} O_{B} h_{n}\right]$. We have to exclude the first of these alternatives, for choosing it would give: $\left[h_{0} h_{n-1} O_{B}\right] \&\left[h_{n-1} h_{n} O_{B}\right] \stackrel{\text { L1.2.21.27 }}{\Longrightarrow}\left[h_{0} h_{n} O_{B}\right]$, contrary to our assumption. Thus, we have $\left[h_{n-1} O_{B} h_{n}\right]$, whence $\left[h_{0} h_{n-1} h_{n}\right] \&\left[h_{n-1} O_{B} h_{n}\right] \stackrel{\text { L1.2.21.27 }}{\Longrightarrow}\left[h_{0} O_{B} h_{n}\right] \stackrel{\text { L?? }}{\Longrightarrow} \angle A_{0} O B<\angle\left(h_{0} h_{n}\right)$. Divide the angle $\angle A_{0} O B$ into 2^{n} congruent angles. The straight angle $\angle C O D$ then turns out to be divided into 2^{n+2} congruent angles. Since $2^{n+2}>n$ and $\angle\left(h_{0}, n_{n}\right)<\angle C O D$, using C 1.3.52.10 we see that these angles are less than $\angle(h, k)$.

Corollary 1.4.18.2. Given an arbitrary angle $\angle(h, k)$, any other angle can be divided into congruent angles less than $\angle(h, k)$.

Corollary 1.4.18.3. Given two (arbitrary) overextended angles $\left(\angle(h, k), p_{1}\right),\left(\angle(l, m), p_{2}\right)$, there is a natural number $n \in \mathbb{N}$ such that $n\left(\angle(h, k), p_{1}\right)>n\left(\angle(l, m), p_{2}\right)$.

Theorem 1.4.19. Suppose $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$ is a nested sequence of angles with common vertex. That is, the angles $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$ of the sequence all share the same vertex O and we have

[^169]$\operatorname{Int} \angle\left(h_{1}, k_{1}\right) \cup \mathcal{P} \angle\left(h_{1}, k_{1}\right) \supset \operatorname{Int} \angle\left(h_{2}, k_{2}\right) \cup \mathcal{P}_{\angle\left(h_{2}, k_{2}\right)} \supset \ldots \supset \operatorname{Int} \angle\left(h_{n}, k_{n}\right) \cup \mathcal{P}_{\angle\left(h_{n}, k_{n}\right)} \supset \ldots .{ }^{596}$ Suppose, further, that for whatever angle $\angle(h, k)$ (given in advance) there is a lesser angle in the sequence $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$. That is, given any $\angle(h, k)$ there is $n \in \mathbb{N}$ such that $\angle\left(h_{n}, k_{n}\right)<\angle(h, k)$. Then there is a ray l with origin O such that for all the angles of the sequence $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$ the ray l either lies inside or coincides with the side, i.e. $\forall n \in \mathbb{N} l \subset \operatorname{Int} \angle\left(h_{n}, k_{n}\right)$.

Proof. (See Fig. 1.175.) Take points $A_{1} \in h_{1}, B_{1} \in k_{1}$. Consider the rays h_{2}, k_{2}. ${ }^{597}$ It is easy to show that they necessarily meet the closed interval $\left[A_{1} B_{1}\right]$ in the points which we will denote A_{2}, B_{2}, respectively (see L 1.2 .37 .12 , L 1.2.21.10).

Of the two orders of points possible on the line a (see T 1.2.14) containing the points A_{1}, B_{1}, we shall choose the one where the point A_{1} precedes the point B_{1}. It is easy to show that the notation for the points $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ and $B_{1}, B_{2}, \ldots, B_{n}, \ldots$, as well as, ultimately, for the rays $h_{1}, h_{2}, \ldots, h_{n}, \ldots$ and $k_{1}, k_{2}, \ldots, k_{n}, \ldots$, can then be chosen in such a way that $A_{1} \preceq A_{2} \preceq A_{n} \prec B_{n} \preceq B_{2} \preceq B_{1}$ for any $n \in \mathbb{N}$. Denote $\mathcal{A} \rightleftharpoons\left\{A_{i} \mid i \in \mathbb{N}\right\}, A \rightleftharpoons \sup \mathcal{A}$; $\mathcal{B} \underset{598}{\rightleftharpoons}\left\{B_{i} \mid i \in \mathbb{N}\right\}, B \rightleftharpoons \inf \mathcal{B}$.

Since $\mathcal{A} \neq \emptyset, \mathcal{B} \neq \emptyset$, and $(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \prec B)$, from T 1.4.18 there is a point P such that $(\forall A \in \mathcal{A})(\forall B \in$ $\mathcal{B})(A \preceq P \preceq B)$. Then from the properties of the precedence relation (see T 1.2.14) it follows that the point P lies on all the closed intervals $\left[A_{i} B_{i}\right], i \in \mathbb{N}$. This, in view of $\mathrm{L} 1.2 .21 .6, \mathrm{~L} 1.2 .21 .4, \mathrm{~L}$ 1.2.11.3 implies that for all $i \in \mathbb{N}$ the ray O_{P} lies on all the closed angular intervals $\left[h_{i}, k_{i}\right]$. In other words, for all $i \in \mathbb{N}$ the ray O_{P} either lies completely inside the angle $\angle\left(h_{i}, k_{i}\right)$, or coincides with one of the rays h_{i}, k_{i}. ${ }^{599} \square$

Theorem 1.4.20. We can put into correspondence with every extended angle $\angle(h, k)$ a unique real number $|\angle(h, k)|$, $0<|\angle(h, k)| \geq \pi$, referred to as its (numerical ${ }^{600}$) measure. Furthermore, for a straight angle $\angle\left(h, h^{c}\right)$ we have $\left|\angle\left(h, h^{c}\right)\right|=\pi$, and for any angle $\angle(h, k)$ which is not straight, we have $0<|\angle(h, k)|<\pi$.

Proof. We let $b \rightleftharpoons \pi$ in the generalized treatment of measurement construction. The theorem then follows from L 1.4.18.1, T 1.4.19, Pr 1.4.1, Pr 1.4.2.

Theorem 1.4.21. Congruent angles have equal measures.

Proof.

Theorem 1.4.22. If an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ is less than an extended angle $\angle(h, k)$ then $\left|\angle\left(h^{\prime}, k^{\prime}\right)\right|<\angle(h, k)$.

Proof.

Corollary 1.4.22.1. If $\left|\angle\left(h^{\prime}, k^{\prime}\right)\right|=|\angle(h, k)|$ then $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(h, k)$.
Corollary 1.4.22.2. If $\left|\angle\left(h^{\prime}, k^{\prime}\right)\right|<|\angle(h, k)|$ then $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k)$.
Theorem 1.4.23. If a ray lies inside an extended angle $\angle(h, k)$, the measure of $\angle(h, k)$ is the sum of the measures of the angles $\angle(h, l), \angle(h, k)$, i.e. $|\angle(h, k)|=|\angle(h, l)|+|\angle(l, k)|$.

Proof.

Corollary 1.4.23.1. If a class $\mu \angle(h, k)$ of extended angles is the sum of classes of congruent angles $\mu \angle(l, m)$, $\mu \angle(p, q)$ (i.e. if $\mu \angle(h, k)=\mu \angle(l, m)+\mu \angle(p, q))$, then for any angles $\angle\left(h_{1}, k_{1}\right) \in \mu \angle(h, k), \angle\left(l_{1}, m_{1}\right) \in \mu \angle(l, m)$, $\angle\left(p_{1}, q_{1}\right) \in \mu \angle(p, q)$ we have $\left|\angle\left(h_{1}, k_{1}\right)\right|=\left|\angle\left(l_{1}, m_{1}\right)\right|+\left|\angle\left(p_{1}, q_{1}\right)\right|$.

[^170]

Figure 1.175:

Corollary 1.4.23.2. If a class $\mu \angle(h, k)$ of congruent extended is the sum of classes of congruent angles $\mu \angle\left(h_{1}, k_{1}\right), \mu \angle\left(h_{2}, k_{2}\right), \ldots, \mu \angle\left(h_{n} k_{n}\right)$ (i.e. if $\left.\mu \angle(h, k)=\mu \angle\left(h_{1} k_{1}\right)+\mu \angle\left(h_{2} k_{2}\right)+\cdots+\mu \angle\left(h_{n} k_{n}\right)\right)$, then for any angles $\angle(l, m) \in \mu \angle(h, k), \angle\left(l_{1}, m_{1}\right) \in \mu \angle\left(h_{1}, k_{1}\right), \angle\left(l_{2}, m_{2}\right) \in \mu \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(l_{n}, m_{n}\right) \in \mu \angle\left(h_{n} k_{n}\right)$ we have $|\angle(l, m)|=\left|\angle\left(l_{1}, m_{1}\right)\right|+\left|\angle\left(l_{2} m_{2}\right)\right|+\cdots+\left|\angle\left(l_{n}, m_{n}\right)\right|$. In particular, if $\mu \angle(h, k)=n \mu \angle\left(h_{1}, k_{1}\right)$ and $\angle(l, m) \in \mu \angle(h, k)$, $\angle\left(l_{1}, m_{1}\right) \in \mu \angle\left(h_{1}, k_{1}\right)$, then $|\angle(l, m)|=n\left|\angle\left(l_{1}, m_{1}\right)\right| .{ }^{601}$
Theorem 1.4.24. For any real number x such that $0<x \geq \pi$ there is an angle $\angle(h, k)$ (and, in fact, an infinity of angles congruent to it) whose measure equals x, i.e. $|\angle(h, k)|=x$.

The concept of angular measure can be extended to overextended ${ }^{602}$ angles. Denote $|(\angle(h, k), n)| \rightleftharpoons|\angle(h, k)|+\pi n$. We see that

Theorem 1.4.25. We can put into correspondence with every overextended angle $(\angle(h, k), n)$, $n \in \mathbb{N}^{0}$, a unique real number $\mid\left(\angle(h, k) \mid>0\right.$, referred to as its (numerical $\left.{ }^{603}\right)$ measure.

Theorem 1.4.26. The abstract sum of angles of a triangle never exceeds a straight angle. That is, for any triangle $\triangle A B C$ we have $\Sigma_{\triangle A B C}^{(a b s) \angle} \rightleftharpoons \mu(\angle B A C, 0)+\mu(\angle A B C, 0)+\mu(\angle A C B, 0) \leq \pi^{(a b s, x t)}$.

Proof. Suppose the contrary, i.e. that there is a triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ such that $\Sigma_{\triangle A^{\prime} B^{\prime} C^{\prime}}^{(a b s)}>\pi^{(a b s, x t)}$. Without any loss of generality we can assume that $\Sigma_{\triangle A^{\prime} B^{\prime} C^{\prime}}^{(a b s)}=\left(\angle\left(h^{\prime}, k^{\prime}\right), 1\right)$, where $\angle\left(h^{\prime}, k^{\prime}\right)$ is some non-straight angle. (See C 1.3.63.9.) Using P 1.3.67.8 repeatedly, we can construct a triangle $\triangle A B C$ with $\Sigma_{\triangle A B C}^{(a b s) \angle}=\Sigma_{\triangle A^{\prime} B^{\prime} C^{\prime}}^{(a b s)}=\left(\angle\left(h^{\prime}, k^{\prime}\right), 1\right)$, one of whose angles $\angle A$ is less than $\angle\left(h^{\prime}, k^{\prime}\right)$. In view of C 1.3 .63 .9 the (abstract) sum of the remaining two angles $\angle B, \angle C$ of the triangle $\triangle A B C$ is less than $\pi^{(a b s, x t)}$. Hence $\Sigma_{\triangle A B C}^{(a b s) \angle}=(\angle A, 0)+(\angle B, 0)+(\angle C, 0)<\left(\angle\left(h^{\prime}, k^{\prime}\right), 0\right)+\pi^{(a b s, x t)}=$ $\left(\angle\left(h^{\prime}, k^{\prime}\right), 1\right)=\Sigma_{\triangle A^{\prime} B^{\prime} C^{\prime}}^{(a b s)}=\Sigma_{\triangle A B C}^{(a b s) \angle}$ - a contradiction which shows that in fact we always have $\Sigma_{\triangle A B C}^{(a b s)<} \leq \pi^{(a b s, x t)}$ for any triangle $\triangle A B C$.

Corollary 1.4.26.1. The (abstract) sum of any two angles of a triangle is no greater than the angle, adjacent complementary to the third angle of the same triangle. That is, in any $\triangle A B C$ we have $\mu \angle A+\mu \angle B \leq \mu(\operatorname{adjsp} \angle C)$.

Proof. Using the preceding theorem (T 1.4.26), we can write $\mu \angle A+\mu \angle B+\mu \angle C \leq \pi^{(a b s)}=\mu \angle C+\mu(\operatorname{adjsp} \angle C)$. Hence the result follows by P 1.3.63.3, P 1.3.63.5.

Proposition 1.4.26.2. Given a cevian $B D$ in a triangle $\triangle A B C$ such that $D \in(A C)$, if the abstract sum of angles in the triangle $\triangle A B C$ equals $\pi^{(a b s, x t)}$, the abstract sums of angles in the triangles $\triangle A B D, \triangle C B D$ are also both equal to $\pi^{(a b s, x t)}$.

Proof. We know that $\Sigma_{\triangle A B D}^{(a b s) \angle}+\Sigma_{\triangle D B C}^{(a b s) \angle}=\Sigma_{\triangle A B C}^{(a b s) \angle}+\pi^{(a b s, x t)}$ (see proof of P 1.3.67.9). Also, by hypothesis, $\Sigma_{\triangle A B C}^{(a b s) \angle}=$ $\pi^{(a b s, x t)}$. Since, from T 1.4.26, we also have $\Sigma_{\triangle A B D}^{(a b s) \angle} \leq \pi^{(a b s, x t)}, \Sigma_{\triangle D B C}^{(a b s) \angle} \leq \pi^{(a b s, x t)}$, we conclude that $\Sigma_{\triangle A B D}^{(a b s) \angle}=$ $\pi^{(a b s, x t)}, \Sigma_{\triangle D B C}^{(a b s) \angle}=\pi^{(a b s, x t)}$, for otherwise we would have $\Sigma_{\triangle A B D}^{(a b s) \angle}+\Sigma_{\triangle D B C}^{(a b s) \angle}<\Sigma_{\triangle A B C}^{(a b s) \angle}+\pi^{(a b s, x t)}$.

Corollary 1.4.26.3. Given a $\triangle A B C$ with the abstract sum of angles equal to $\pi^{(a b s, x t)}$, for any points $X \in(A B]$, $Y \in(A C]$, the abstract sum of angles of the triangle $\triangle A X Y$ also equals $\pi^{(a b s, x t)}$.

Proof. Follows immediately from the preceding proposition (P 1.4.26.2).
Lemma 1.4.26.4. Suppose that there is a right triangle $\triangle A B C$ whose abstract sum of angles equals $\pi^{(a b s, x t)}$. Then every right triangle has abstract sum of angles equal to $\pi^{(a b s, x t)}$.

Proof. Consider an arbitrary right triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$. Using A 1.3 .1 choose points $B^{\prime \prime} \in A_{B}, C^{\prime \prime} \in A_{C}$ such that $A^{\prime} B^{\prime} \equiv A B^{\prime \prime}, A^{\prime} C^{\prime} \equiv A C^{\prime \prime}$. Now choose B_{1} such that $\left[A B B_{1}\right]$ and $A B \equiv B B_{1}$. Continuing this process, we can construct inductively a sequence of points $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ on the ray A_{B} as follows: choose B_{n} such that $\left[A B_{n-1} B_{n}\right]$ and $A B_{n-1} \equiv B_{n-1} B_{n}$. Evidently, for the construction formed in this way we have $\mu A B_{n+1}=2 \mu A B_{n}$ for all $n \in \mathbb{N}$, where the points $A, B, B_{1}, B_{2}, \ldots, B_{n}, \ldots$ are in order $\left[A B B_{1} B_{2} \ldots B_{n} \ldots\right]$ (see also L 1.3.21.11). Since $\mu A B_{n}=2^{n} \mu A B$ for all $n \in \mathbb{N}$, Archimedes' axiom (A 1.4.1) guarantees that there is $l \in \mathbb{N}$ such that $\left[A B^{\prime \prime} B_{l}\right]$. ${ }^{604}$ Similarly, we can choose C_{1} such that $\left[A C C_{1}\right]$ and $A C \equiv C C_{1}$. Then we go on to construct inductively a sequence of points $C_{1}, C_{2}, \ldots, C_{n}, \ldots$ on the ray A_{C} as follows: choose C_{n} such that $\left[A C_{n-1} C_{n}\right]$ and $A C_{n-1} \equiv C_{n-1} C_{n}$. Again, we have $\mu A C_{n+1}=2 \mu A C_{n}$ for all $n \in \mathbb{N}$, where the points $A, C, C_{1}, C_{2}, \ldots, C_{n}, \ldots$ are in order $\left[A C C_{1} C_{2} \ldots C_{n} \ldots\right]$ (see also L 1.3.21.11). Since $\mu A C_{n}=2^{n} \mu A C$ for all $n \in \mathbb{N}$, Archimedes' axiom (A 1.4.1) again ensures that there is $m \in \mathbb{N}$ such that $\left[A C^{\prime \prime} C_{m}\right]$. Consider the triangle $\triangle A B_{l} C_{m}$. From the way its sides $A B_{l}, A C_{m}$ were constructed

[^171]using P 1.3.67.10 we have $\Sigma_{\triangle A B_{l} C_{m}}^{(a b s) \angle}=\pi^{(a b s, x t)}$. Since $B_{l} \in\left(A B^{\prime \prime}\right], C_{m} \in\left(A C^{\prime \prime}\right]$, in view of the preceding corollary (C 1.4.26.3) we conclude that the abstract sum of angles of the triangle $\triangle A B^{\prime \prime} C^{\prime \prime}$, as well as the abstract sum of the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B^{\prime \prime} C^{\prime \prime}$ by T 1.3 .4 , is equal to $\pi^{(a b s, x t)}$.

Corollary 1.4.26.5. Any birectangle has at least one acute angle.
Proof. See T 1.4.26, T 1.3.67, T 1.3.68.
Theorem 1.4.27. Suppose that there is a triangle $\triangle A B C$ whose abstract sum of angles equals $\pi^{(a b s, x t)}$. Then every triangle has abstract sum of angles equal to $\pi^{(a b s, x t)}$.

Proof. We can assume without loss of generality that the angle $\angle A$ is acute. ${ }^{605}$ Then by P 1.3.24.2 the foot D of the altitude $B D$ in $\triangle A B C$ lies between A, C. Consider also an arbitrary triangle $A^{\prime} B^{\prime} C^{\prime}$ with the altitude $B^{\prime} D^{\prime}$ such that $D^{\prime} \in(A C)$. From P 1.4.26.2 the abstract sum of angles of the right triangle $\triangle A B D$ is $\pi^{(a b s, x t)}$. But then, by the preceding lemma (L 1.4.26.4) every right triangle has the same abstract sum of angles, and this applies, in particular, to the right triangles $\triangle A^{\prime} B^{\prime} D^{\prime}, \triangle C^{\prime} B^{\prime} D^{\prime}$. Hence from P 1.3.67.9 $\Sigma_{\triangle A^{\prime} B^{\prime} C^{\prime}}^{(a b s) \angle}=\pi^{(a b s, x t)}$, as required.

Theorem 1.4.28. Suppose every triangle has abstract sum of angles equal to $\pi^{(a b s, x t)}$. Then for any line a and any point A not on it, in the plane $\alpha_{a A}$ there is exactly one line a^{\prime} through A parallel to a.

Proof. Consider a line a and a point A not on it. Denote by B the foot of the perpendicular to a drawn through A (see L 1.3.8.1). Draw through A the line a^{\prime} perpendicular to $a_{A B}$ (see L 1.3.8.3). By C 1.3.26.2 the lines a, a^{\prime} are parallel. We need to show that any line other than a^{\prime}, drawn through A, meets a in some point. Denote by h the ray with initial point A lying on such a line $b \neq a^{\prime}$. We can assume without loss of generality that the ray h lies inside the angle $\angle B A A_{1}$, where $A_{1} \in a^{\prime}$. ${ }^{606}$ Construct now a sequence of points $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ as follows: Choose a point B_{1} so that A_{1}, B_{1} lie on the same side of the line $a_{A B}$ and $A B \equiv B B_{1}$. Then choose a point B_{2} so that [$B B_{1} B_{2}$] and $B B_{1} \equiv B_{1} B_{2}$. At the $n^{t h}$, where $n \in \mathbb{N}$, step of the construction we choose B_{n} so that $\left[B_{n-2} B_{n-1} B_{n}\right]$, and $A B_{n-1} \equiv B_{n-1} B_{n}$. Hence from T 1.3 .3 we have $\angle B A B_{1} \equiv \angle B B_{1} A, \angle B_{1} A B_{2} \equiv \angle B_{1} B_{2} A$, ldots, $\angle B_{n-1} A B_{n} \equiv$ $\angle B_{n-1} B_{n} A$, ldots. According to hypothesis, all the triangles involved have the same abstract sum of angles equal to $\pi^{(a b s, x t)}$. This fact will be used throughout the proof. Since, from construction, $\angle A B B_{1}$ is a right angle, in view of $\angle B A B_{1} \equiv \angle B B_{1} A$ we have $\mu \angle B A B_{1}=\mu \angle B B_{1} A=(1 / 4) \pi^{(a b s)}$. Observe also the following interesting fact: since $A_{B_{1}} \subset \operatorname{Int} \angle B A A_{1},{ }^{607}$ we have $\mu \angle B A B_{1}+\mu \angle B_{1} A A_{1}=\mu \angle B A A_{1}$. In view of $\mu \angle B A A_{1}=(1 / 2) \pi^{(a b s)}$, we obtain $\mu \angle B_{1} A A_{1}=(1 / 4) \pi^{(a b s)}$. Since $\mu \angle A B_{1} B=\mu \angle B_{1} A B_{2}+\mu \angle A B_{2} B_{1}$ (in view of P 1.3.67.11) and $\mu \angle A B_{1} B=(1 / 4) \pi^{(a b s)}$, we have $\mu \angle B_{1} A B_{2}=\mu \angle A B_{2} B_{1}=(1 / 8) \pi^{(a b s)}$. It is easy to see that $A_{B_{2}} \subset B_{1} A A_{1}$ (see below), and thus $\mu \angle B_{1} A A_{1}=\mu \angle B_{1} A B_{2}+\mu \angle A_{1} A B_{2}$. Since $\mu \angle B_{1} A A_{1}=(1 / 4) \pi^{(a b s)}$ and $\mu \angle B_{1} A B_{2}=(1 / 8) \pi^{(a b s)}$, this implies $\mu \angle B_{2} A A_{1}=(1 / 8) \pi^{(a b s)}$. Continuing inductively, suppose that $\mu \angle B_{n-2} A B_{n-1}=\mu \angle B_{n-1} A A_{1}=$ $\left(1 / 2^{n}\right) \pi^{(a b s)}$. Observe that by L 1.2 .21 .31 the rays $A_{B}, A_{B_{1}}, A_{B_{2}}, \ldots, A_{B_{n}} A_{A_{1}}$ are in order $\left[A_{B} A_{B_{1}} A_{B_{2}} \ldots A_{B_{n}} A_{A_{1}}\right]$. Since $\angle B_{n-2} A B_{n-1} \equiv \angle A B_{n-1} B_{n-2}, \angle B_{n-1} A B_{n} \equiv \angle A B_{n} B_{n-1}, \mu \angle B_{n-2} B_{n-1} A=\mu \angle B_{n-1} A B_{n}+\mu \angle A B_{n} B_{n-1}$, $\angle B_{n-1} A A_{1}=\mu \angle B_{n-1} A B_{n}+\mu \angle B_{n} A A_{1}$, we find that $\mu \angle B_{n} A A_{1}=\mu \angle B_{n-1} A B_{n}=\left(1 / 2^{n+1}\right) \pi^{(a b s)}$. We see that with increasing number n the angle $\angle B_{n} A A_{1}$ can be made smaller than any given angle. In particular, it can be made smaller than the angle $\angle D A A_{1}$. Hence the ray $A_{B_{n}}$ lies inside the angle $\angle D A A_{1}$ (see C 1.3 .16 .4). In view of L 1.2 .21 .27 this amounts to the ray A_{D} lying inside the angle $\angle B A B_{n}$. Hence by L 1.2 .21 .27 the ray A_{D} meets the open interval $\left(B B_{n}\right)$ and thus the line a containing it.

Theorem 1.4.29. Given an interval EF and a non-acute (that is, either right or obtuse) angle $\angle(h, k)$ with a point $A \in k$, there is a unique point $B \in h$ on its other side, such that $A B \equiv E F$.

Proof. Of the two possible orders on \bar{h} we take the one in which the vertex O of $\angle(h, k)$ precedes any point of the ray h. It is easy to see that the sets $\mathcal{A} \rightleftharpoons h^{c} \cup\{O\} \cup\{P \mid P \in h \&(A P<E F \vee A P \equiv E F)\}$ and $\mathcal{B} \rightleftharpoons\{P \mid A P>F\}$ define a Dedekind cut in the set of points of the line \bar{h} (use C 1.3.18.4). Denote by B the point which makes this cut (see T 1.3.17). We have either $A B<E F$, or $A B>E F$, or $A B \equiv E F$. Suppose first $A B<E F$. Taking a point C such that $[O B C]$ (or, equivalently, $B \prec C$), $B C \in \mu E F-\mu A B$, and using the triangle inequality (P 1.3.40.9) we can write $\mu A C<\mu A B+\mu B C=\mu A B+(\mu E F-\mu A B)=\mu E F$ (see also P 1.3.40.7), whence $C \in \mathcal{A}$ and $C \preceq B$ (for B makes the cut), in contradiction to our choice of the point C. Suppose now $A B>E F$. Taking a point D such that $[O D B]$ and $B D \in \mu A B-\mu E F$, we can write $\mu A D>\mu A B-\mu B D=\mu A B-(\mu A B-\mu E F)=\mu E F$ (see P 1.3.40.8, P 1.3.40.9)), whence $D \in \mathcal{B}$ and $B \preceq D$, in contradiction to our choice of the point D. Thus, the contradictions we have arrived to show that $A B \equiv E F$, as required.

[^172]We are now ready to extend our knowledge of continuity properties on a line to sets with generalized betweenness relation.

Consider a class $\mathcal{C}^{g b r}$ of sets \mathfrak{J} with generalized betweenness relation. We assume that the sets \mathfrak{I}, whose elements are pairs $\mathcal{A B} \rightleftharpoons\{\mathcal{A}, \mathcal{B}\}$ of geometric objects satisfying $\operatorname{Pr} 1.3 .1-\operatorname{Pr} 1.3 .5$, are equipped with a relation of generalized congruence (see p. 46). We assume further that the generalized abstract intervals involved (elements of the set \mathfrak{I}) have the properties $\operatorname{Pr} 1.4 .1$, Pr 1.4.2.

It is also understood that on every set $\mathfrak{J} \in \mathcal{C}^{g b r}$ one of the two possible opposite orders is chosen (see p. 54 ff .). Given such a set \mathfrak{J} with order \prec and a (non-empty) set $\mathfrak{A} \subset \mathfrak{J}$, we call a geometric object $\mathcal{B} \in \mathfrak{J}$ an upper bound (respectively, lower bound) of \mathfrak{A} iff $\mathcal{A} \preceq \mathcal{B}(\mathcal{B} \preceq \mathcal{A})$ for all $\mathcal{A} \in \mathfrak{A}$. An upper bound \mathcal{B}_{0} is called a least upper bound, or supremum, written $\sup \mathfrak{A}$ (greatest lower bound, or infimum, written inf \mathfrak{A}) of \mathfrak{A} iff $\mathcal{B}_{0} \preceq \mathcal{B}$ for any upper bound \mathcal{B} of \mathfrak{A}. Thus, $\sup \mathfrak{A}$ is the least element in the set of upper bounds of \mathfrak{A}, and $\inf \mathfrak{A}$ is the greatest element in the set of lower bounds of \mathcal{A}. Obviously, the second requirement in the definition of least upper bound (namely, that $\mathcal{B}_{0} \preceq \mathcal{B}$ for any upper bound \mathcal{B} of \mathfrak{A}) can be reformulated as follows: For whatever geometric object $\mathcal{B}^{\prime} \in \mathfrak{J}$ preceding \mathcal{B}_{0} (i.e. such that $\mathcal{B}^{\prime} \prec \mathcal{B}_{0}$) there is a geometric object \mathcal{X} succeeding \mathcal{B}^{\prime} (i.e. with the property that $\mathcal{X} \succ \mathcal{B}^{\prime}$).

It is also convenient to assume, unless explicitly stated otherwise, that for a generalized interval $\mathcal{A B}$ we have $\mathcal{A} \prec \mathcal{B}$. ${ }^{608}$ With this convention in mind, we can view the open generalized interval $(\mathcal{A B})$ as the set $\{\mathcal{X} \mid \mathcal{A} \prec \mathcal{X} \prec \mathcal{B}\}$ (see T 1.2.28). Also, obviously, we have $[\mathcal{A B})=\{\mathcal{X} \mid \mathcal{A} \preceq \mathcal{X} \prec \mathcal{B}\},(\mathcal{A B}]=\{\mathcal{X} \mid \mathcal{A} \prec \mathcal{X} \preceq \mathcal{B}\},[\mathcal{A B}]=\{\mathcal{X} \mid \mathcal{A} \preceq \mathcal{X} \preceq \mathcal{B}\}$. A generalized ray $\mathcal{O}_{\mathcal{A}}$ may be viewed as the set of all such geometric objects \mathcal{X} that $\mathcal{O} \prec \mathcal{X}$ (or $\mathcal{X} \succ \mathcal{O}$, which is the same) if $\mathcal{O} \prec \mathcal{A}$, and as the set of all such geometric objects \mathcal{X} that $\mathcal{X} \prec \mathcal{O}$ if $\mathcal{A} \prec \mathcal{O}$. Moreover, if $\mathcal{X} \in \mathcal{O}_{\mathcal{A}}$ then either $\mathcal{O} \prec \mathcal{X} \preceq \mathcal{A}$ or $\mathcal{A} \prec \mathcal{X}$. ${ }^{609}$ These facts will be extensively used in the succeeding exposition. ${ }^{610}$

Theorem 1.4.30. If a non-empty set of geometric objects \mathfrak{A} on a set \mathfrak{J} has an upper bound (respectively, a lower bound), it has a least upper bound (greatest lower bound). ${ }^{611}$

Proof. ${ }^{612}$
By hypothesis, there is a geometric object $\mathcal{B}_{1} \in \mathfrak{J}$ such that $\mathcal{A} \preceq \mathcal{B}_{1}$ for all $\mathcal{A} \in \mathfrak{A}$. Without loss of generality we can assume that $\mathcal{A} \prec \mathcal{B}_{1}$ for all $\mathcal{A} \in \mathfrak{A}$. ${ }^{613}$

We shall refer to a generalized interval $\mathcal{X} \mathcal{Y}$ as normal iff:
a) there is $\mathcal{A} \in \mathfrak{A}$ such that $\mathcal{A} \in[\mathcal{X} \mathcal{Y}]$; and b) for all $\mathcal{B} \in \mathfrak{J}$ the relation $\mathcal{B} \succ \mathcal{Y}$ implies $B \notin \mathfrak{A}$. Observe that at least one of the halves ${ }^{614}$ of a normal generalized interval is normal. ${ }^{615}$

Take an arbitrary geometric object $\mathcal{A}_{1} \in \mathfrak{A}$. Then, evidently, the generalized interval mathcal $A_{1} \mathcal{B}_{1}$ is normal. Denote by $\mathcal{A}_{2} \mathcal{B}_{2}$ its normal half. Continuing inductively this process of division of generalized intervals into halves, we denote $\mathcal{A}_{n+1} \mathcal{B}_{n+1}$ a normal half of the generalized interval $\mathcal{A}_{n} \mathcal{B}_{n}$. With the sequence of generalized intervals thus constructed, there is a unique geometric object \mathcal{C} lying on all the generalized closed intervals $\left[\mathcal{A}_{i} \mathcal{B}_{i}\right], i \in \mathbb{N}$ (see L 1.4.11.1, T 1.4.11). This can be written as $\{\mathcal{C}\}=\bigcap_{i=0}^{\infty}\left[\mathcal{A}_{i} \mathcal{B}_{i}\right]$.

We will show that $\mathcal{C}=\sup \mathfrak{A}$. First, we need to show that \mathcal{C} is an upper bound of \mathfrak{A}. If \mathcal{C} were not an upper bound of \mathfrak{A}, there would exist a geometric object $\mathcal{A}_{0} \in \mathfrak{A}$ such that $\mathcal{C}<\mathcal{A}_{0}$. But then $\mathcal{A}_{0} \notin \bigcap_{i=0}^{\infty}\left[\mathcal{A}_{i} \mathcal{B}_{i}\right]=\{\mathcal{C}\}$, whence we would have $\exists n_{0} \in \mathbb{N}\left(\mathcal{A}_{n_{0}} \leq \mathcal{C} \leq \mathcal{B}_{n_{0}}<\mathcal{A}_{0}\right)$, i.e. the closed generalized interval $\left[\mathcal{A}_{n_{0}} \mathcal{B}_{n_{0}}{ }^{i=0}\right.$ cannot be normal - a contradiction. Thus, we have $\forall \mathcal{A} \in \mathfrak{A}(\mathcal{A} \preceq \mathcal{C})$. In order to establish that $\mathcal{C}=\sup \mathfrak{A}$, we also need to prove that given any $\mathcal{X}_{1} \in \mathfrak{J}$ with the property $\mathcal{X}_{1} \prec \mathcal{C}$, there is a geometric object $\mathcal{A} \in \mathfrak{A}$ such that $\mathcal{X}_{1} \prec \mathcal{A}$ (see the discussion accompanying the definition of least upper bound).

Observe that for any $\mathcal{X}_{1} \in \mathfrak{J}$ with the property $\mathcal{X}_{1} \prec \mathcal{C}$ there is a number $n_{1} \in \mathbb{N}$ such that $\mathcal{X}_{1} \prec \mathcal{A}_{n_{1}} \preceq \mathcal{C} \preceq \mathcal{B}_{n_{1}}$. Otherwise (if $A_{n} \preceq X_{1}$ for all $n \in \mathbf{N}$) we would have $\mathcal{X}_{1} \in \bigcap_{i=0}^{\infty}\left[\mathcal{A}_{i} \mathcal{B}_{i}\right]=\{\mathcal{C}\} \Rightarrow \mathcal{X}_{1}=\mathcal{C}$, which contradicts $\mathcal{X}_{1} \prec \mathcal{C}$. But then in view of normality of $\left[\mathcal{A}_{n_{1}} \mathcal{B}_{n_{1}}\right]$ there is $\mathcal{A} \in \mathfrak{A}$ such that $\mathcal{A} \in\left[\mathcal{A}_{n_{1}} \mathcal{B}_{n_{1}}\right]$, i.e. $\mathcal{A}_{n_{1}} \preceq \mathcal{A} \preceq \mathcal{B}_{n_{1}}$. Together with $\mathcal{X}_{1} \prec \mathcal{A}_{n_{1}}$, this gives $\mathcal{X}_{1} \prec \mathcal{A}$, whence the result.

Theorem 1.4.31 (Dedekind). Let $\mathfrak{A}, \mathfrak{B}$ be two non-empty subsets of \mathfrak{J} such that $\mathcal{A} \cup \mathcal{B}=\mathfrak{J}$. Suppose, further, that any element of the set \mathfrak{J} (strictly) precedes any element of the set \mathfrak{B}, i.e. $(\forall \mathcal{A} \in \mathfrak{A})(\forall \mathcal{B} \in \mathfrak{B})(\mathcal{A} \prec \mathcal{B})$. Then either

[^173]there is a geometric object \mathcal{C} such that all geometric objects in \mathfrak{A} precede \mathcal{C}, or there is a geometric object \mathcal{C} such that \mathcal{C} precedes all geometric objects in \mathfrak{B}.

In this case we say that the geometric object \mathcal{C} makes a Dedekind cut in \mathfrak{J}. We can also say that $\mathfrak{A}, \mathfrak{B}$ define a Dedekind cut in \mathfrak{J}.

Proof. Since \mathfrak{A} is not empty and has an upper bound, by the preceding theorem (T ??) it has the least upper bound $\mathcal{C} \rightleftharpoons \sup \mathfrak{A}$.

Observe that $\mathfrak{A} \cap \mathfrak{B}=\emptyset$. Otherwise we would have (by hypothesis) $\mathcal{A}_{0} \in \mathfrak{A} \cap \mathfrak{B} \Rightarrow\left(\mathcal{A}_{0} \in \mathfrak{A}\right) \& \mathfrak{B} \Rightarrow \mathcal{A}_{0} \prec \mathcal{A}_{0}$, which is impossible.

Since $\mathfrak{A} \cap \mathfrak{B}=\emptyset$, we have either $\mathcal{C} \in \mathfrak{A}$, or $\mathcal{C} \in \mathfrak{B}$, but not both. If $\mathcal{C} \in \mathfrak{A}$ then $(\forall \mathcal{A} \in \mathfrak{A})(\mathcal{A} \preceq \mathcal{C})$ because $\mathcal{C}=\sup \mathfrak{A}$. Suppose now $\mathcal{C} \in \mathfrak{B}$. To show that $(\forall \mathcal{B} \in \mathfrak{B})(\mathcal{C} \prec \mathcal{B})$ suppose the contrary, i.e. that there is $\mathcal{B}_{0} \in \mathfrak{B}$ such that $\mathcal{B}_{0} \prec \mathcal{C}$. Since $\mathcal{C}=\sup \mathfrak{A}$, from the properties of least upper bound (see discussion following its definition) it would then follow that there exists $\mathcal{A}_{0} \in \mathfrak{A}$ such that $\mathcal{B}_{0} \prec \mathcal{A}_{0}$. But this would contradict the assumption that any geometric object of \mathfrak{A} precedes any geometric object of \mathfrak{B} (see L 1.2.27.5). Thus, in the case $\mathcal{C} \in \mathfrak{B}$ we have $\mathcal{C} \prec \mathcal{B}$ for all $\mathcal{B} \in \mathfrak{B}$, which completes the proof.

Theorem 1.4.32. Let $\mathfrak{A}, \mathfrak{B}$ be two non-empty sets in the set \mathfrak{J} with the property that any element of the set \mathfrak{A} (strictly) precedes any element of the set \mathfrak{B}, i.e. $(\forall \mathcal{A} \in \mathfrak{A})(\forall \mathcal{B} \in \mathfrak{B})(\mathcal{A} \prec \mathcal{B})$. Then there is a geometric object \mathcal{C} such that $\mathcal{A} \preceq \mathcal{C} \preceq \mathcal{B}$ for all $\mathcal{A} \in \mathfrak{A}, \mathcal{B} \in \mathfrak{B}$.

Proof. Construct a Dedekind cut in \mathfrak{J} defined by sets $\mathfrak{A}_{1}, \mathfrak{B}_{1}$ such that $\mathfrak{A}_{1} \neq \emptyset, \mathfrak{B}_{1} \neq \emptyset, \mathfrak{A}_{1}$ cup $\mathfrak{B}_{1}=\mathfrak{J}, \mathfrak{A} \subset \mathfrak{A}_{1}$, $\mathfrak{B} \subset \mathfrak{B}_{1}$. To achieve this, we define $\mathfrak{B}_{1} \rightleftharpoons\left\{\mathcal{B}_{1} \in \mathfrak{J} \mid(\exists \mathcal{B} \in \mathfrak{B})\left(\mathcal{B} \preceq \mathcal{B}_{1}\right)\right\}$ and $\mathfrak{A}_{1}=\mathfrak{J} \backslash \mathfrak{B}_{1}$. To show that $\mathfrak{B} \subset \mathfrak{B}_{1}$ observe that for any geometric object $\mathcal{B}_{1} \in \mathfrak{B}_{1}$ there is $\mathcal{B}=\mathcal{B}_{1} \in \mathfrak{B}$, i.e. $\mathcal{B}_{1} \in \mathfrak{B}_{1}$. To show that $\mathfrak{A} \cap \mathfrak{B}_{1}=\emptyset$ suppose the contrary, i.e. that there is a geometric object $\mathcal{A}_{0} \in \mathfrak{A} \cap \mathfrak{B}_{1}$. Then from the definition of \mathfrak{B}_{1} we would have $\left(\exists \mathcal{B}_{0} \in \mathfrak{B}\right)\left(\mathcal{B}_{0} \preceq \mathcal{A}_{0}\right)$. But this contradicts the assumption $(\forall \mathcal{A} \in \mathfrak{A})(\forall \mathcal{B} \in \mathfrak{B})(\mathcal{A} \prec \mathcal{B})$. Thus, we have $\mathfrak{A} \cap \mathfrak{B}_{1}=\emptyset$, whence $\mathcal{A} \subset \mathfrak{J} \backslash \mathfrak{A}_{1}=\mathfrak{A}_{1}$.

To demonstrate that any geometric object of the set \mathfrak{A}_{1} precedes any geometric object of the set \mathfrak{B}_{1} suppose the contrary, i.e. that there are $\mathcal{A}_{0} \in \mathfrak{A}_{1}, \mathcal{B}_{0} \in \mathfrak{B}_{1}$ such that $\mathcal{B}_{0} \prec \mathcal{A}_{0}$. Then using the definition of the set \mathfrak{B}_{1} we can write $\mathcal{B} \preceq \mathcal{B}_{0} \preceq \mathcal{A}_{0}$, whence by the same definition $\mathcal{A}_{0} \in \mathfrak{B}_{1}=\mathfrak{J} \backslash \mathfrak{A}_{1}$ - a contradiction. Thus, we have $\mathfrak{J}=\mathfrak{A}_{1} \cup \mathfrak{B}_{1}$, where $\mathfrak{A}_{1} \supset \mathfrak{A} \neq \emptyset, \mathfrak{B}_{1} \supset \mathfrak{B} \neq \emptyset$, and $\left(\forall \mathcal{A}_{1} \in \mathfrak{A}_{1}\right)\left(\forall \mathcal{B}_{1} \in \mathfrak{B}_{1}\right)\left(\mathcal{A}_{1} \prec \mathcal{B}_{1}\right)$, which implies that the sets define a Dedekind cut in \mathfrak{J}. Now by the preceding theorem (T 1.4.31) we can find a geometric object $\mathcal{C} \in \mathfrak{J}$ such that $\left(\forall \mathcal{A}_{1} \in \mathfrak{A}_{1}\right)\left(\forall \mathcal{B}_{1} \in \mathfrak{B}_{1}\right)\left(\mathcal{A}_{1} \preceq \mathcal{C} \preceq \mathcal{B}_{1}\right)$. But then from the inclusions $\mathfrak{A} \subset \mathfrak{A}_{1}, \mathfrak{B} \subset \mathfrak{B}_{1}$ we conclude that $(\forall \mathcal{A} \in \mathfrak{A})(\forall \mathcal{B} \in \mathfrak{B})(\mathcal{A} \preceq \mathcal{C} \preceq \mathcal{B})$, as required.

Chapter 2

Elementary Euclidean Geometry

2.1

Axiom 2.1.1. There is at least one line a and at least one point A such that in the plane $\alpha_{a A}$ defined by a and A, no more than one parallel to a goes through A. ${ }^{1}$

Theorem 2.1.1. Given a line a and a point A not on it, no more than one parallel to a goes through A.
Proof. (See Fig. 2.1.) By A 2.1 .1 there is a line a and a point A such that in the plane $\alpha_{a A}$ defined by a and A, no more than one parallel to a goes through A. Denote this unique parallel by b (it exists by C ??). Choose points B, C, E, F so that $B, C \in a, E \in b, a_{A B} \perp a$ (L 1.3.8.1), $[B C F]$ (A 1.2.2). With this choice, we can assume without loss of generality that $A_{B} \subset I n t \angle E A C$. It can be shown that $\angle E A C \equiv \angle A C F, \angle E A B \equiv \angle A B C$. ${ }^{2}$ Observe that the second of these congruences implies that $\angle E A B$ is a right angle because $\angle A B C$ is (see L 1.3.8.2). Now we can write $\mu \angle B A C+\mu \angle A B C+\mu \angle A C B=\mu \angle B A C+\mu \angle E A B+\mu \angle A C B=\mu \angle E A C+\mu \angle A C B=\mu \angle A C F+\mu \angle A C B=\pi^{(a b s)}$. Thus, there exists at least one triangle whose abstract sum of angles equals $\pi^{(a b s, x t)}$. Therefore, from T 1.4.27 every triangle has abstract sum of angles equal to $\pi^{(a b s, x t)}$. Hence by T 1.4.28 follows the present theorem.

Proposition 2.1.1.1. Proof. In Euclidean geometry every triangle has abstract sum of the angles equal to $\pi^{(a b s, x t)}$. Correspondingly, the sum of numerical measures of angles in every triangle in Euclidean geometry equals π.

Corollary 2.1.1.2. In Euclidean geometry the (abstract) sum of the angles of any convex polygon with $n>3$ sides is $(n-2) \pi^{(a b s, x t)}$. Correspondingly, the sum of numerical measures of the angles of any convex polygon with $n>3$ sides is $(n-2) \pi$. In particular, the (abstract) sum of the angles of any convex quadrilateral is $2 \pi^{(a b s, x t)}$ and the sum of numerical measures of the angles of any convex quadrilateral is $(n-2) \pi$.

Proof.
Corollary 2.1.1.3. In Euclidean geometry any Saccheri quadrilateral is a rectangle.
Proof.
Corollary 2.1.1.4. In Euclidean geometry any Lambert quadrilateral is a rectangle.

Proof.

Theorem 2.1.2. If $a \| b$ and $c \| b$, where $b \neq c$ and then $a \| c$. Since the relation of parallelism is symmetric, we can immediately reformulate this result as follows: If $a\|b, b\| c$, and $a \neq c$, then $a \| c$.

Proof. Suppose $\exists C C \in a \cap c$. Then by T 2.1.1 $a=c$, contrary to hypothesis.
Theorem 2.1.3. If points B, D lie on the same side of a line $a_{A C}$, the point C lies between A and a point E, and the line $a_{A B}$ is parallel to the line $a_{C D}$, then the angles $\angle B A C, \angle D C E$ are congruent.

[^174]

Figure 2.1: If points B, D lie on the same side of $a_{A C}$, the point C lies between A and E, and $a_{A B}$ is parallel to $a_{C D}$, then $\angle B A C, \angle D C E$ are congruent.

Figure 2.2: If points B, D lie on the same side of $a_{A C}$, the point C lies between A and E, and $a_{A B}$ is parallel to $a_{C D}$, then $\angle B A C, \angle D C E$ are congruent.

Proof. (See Fig. 2.2.) Using A 1.3.4, construct C_{F} such that the rays A_{B}, C_{F} lie on the same side of the line $a_{A C}$ and $\angle B A C \equiv \angle F C E$. Then by T 1.3 .26 we have $a_{A B} \| a_{C F}$. But $a_{A B}\left\|a_{C D} \& a_{A B}\right\| a_{C F} \xrightarrow{\mathrm{~T} 2.1 .1} a_{C D}=a_{C F}$. Also, using L 1.2.18.2, we can write $A_{B} C_{D} a_{A C} \& A_{B} C_{F} a_{A C} \Rightarrow C_{D} C_{F} a_{A C}$. In view of L 1.2.19.15, L 1.2.11.3 this implies $C_{F}=C_{D}$. Thus, we have $\angle B A C \equiv \angle D C E$, as required.

Theorem 2.1.4. If points B, D lie on the same side of a line $a_{A C}$, the point C lies between A and a point E, and $\angle D C E<\angle B A C$, then the rays B_{A}, D_{C} concur.

Proof. (See Fig. 2.3.) The lines $a_{A B}, a_{C D}$ are not parallel, for otherwise by the preceding theorem (T 2.1.3) we would have $\angle B A C \equiv \angle D C E$, which contradicts $\angle D C E<\angle B A C$ in view of L1.3.16.11. Thus, $\exists F F \in a_{A B} \cap a_{C D}$. Suppose $F \in A_{B}$. Then by L 1.2.19.8 B, F lie on one side of $a_{A C}$. Also, obviously, $B F a_{A C} \& B D a_{A C} \Rightarrow D F a_{A C}$. By L 1.2.19.15 we have $F \in C_{D}$. Taking into account that $F \in A_{B} \cap C_{D} \xrightarrow{\text { T2.1.1 }} A_{F}=A_{B} \& C_{F}=C_{D}$ and using T 1.3.17, we can write: $\angle B A C=\angle F A C<\angle F C E=\angle D C E$, which contradicts the inequality $\angle D C E<\angle B A C$ in view of L 1.3.16.10. The contradiction shows that in fact $F \in\left(A_{B}\right)^{c}$. Then from L 1.2.15.4 we have $\left(A_{B}\right)^{c} \subset B_{A}$. Hence $F \in B_{A}$.

Corollary 2.1.4.1. If a line b is perpendicular to a line a but parallel to a line c, then the lines a, c are perpendicular.
Proof. (See Fig. 2.4.) Obviously, we can reformulate this corollary as follows: If $a_{A B} \perp a_{A C}$ and $a_{A B} \| a_{C D}$ then $a_{C D} \perp a_{A C}$. Choosing appropriate points A, B, C, D, E so that $b=a_{A B} \perp a_{A C}=a, a_{A B} \| a_{C D}$, and, in addition, $[A C E]$ (A 1.2.2) and B, D lie on the same side of the line $a_{A D}$. Then from T 2.1.3 have $\angle B A C \equiv \angle D C E$, which implies $a \perp c$.

Corollary 2.1.4.2. Suppose a line c is perpendicular to a line b but parallel to a line a. Suppose further that the line a is also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are parallel.

Proof. $a\|c \& b \perp c \stackrel{\text { C2.1.4.1 }}{\Longrightarrow} a \perp b . a \perp b \& a \perp d \& b \neq d \& \exists \alpha(b \subset \alpha \& d \subset \alpha) \xrightarrow{\text { C1.3.26.2 }} b\| d$.

Corollary 2.1.4.3. If points B, D lie on the same side of a line $a_{A C}$ and $a_{A B} \| a_{C D}$, then the angles $\angle B A C$, $\angle D C A$ are supplementary.

Figure 2.3: If points B, D lie on the same side of a line $a_{A C}$, the point C lies between A and a point E, and $\angle D C E<\angle B A C$, then the rays B_{A}, D_{C} concur.

Figure 2.4: Suppose a line c is perpendicular to a line b but parallel to a line a. Suppose further that the line a is also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are parallel.

a)

b)

Figure 2.5: Suppose that points O, A, B, as well as $O, A^{\prime}, B^{\prime}$ colline, and the line $a_{A A^{\prime}}$ is collinear to the line $a_{B B^{\prime}}$. Then $\angle O A A^{\prime} \equiv \angle O B B^{\prime}$.

Proof. Taking a point E so that $[A C E]$ (A 1.2.2), we have $\angle B A C \equiv \angle D C E$ by T 2.1.3. Since $[A C E]$ implies that the angles $\angle D C A, \angle D C E$ are adjacent supplementary, we conclude that the angles $\angle B A C, \angle D C A$ are supplementary.

Corollary 2.1.4.4. If points B, F lie on opposite sides of a line $a_{A C}$ and $a_{A B} \| a_{C D}$, then the angles $\angle B A C$, $\angle F C A$ are congruent.

Proof. Taking points E, D such that $[A C E],[F C D]$, we have $\angle B A C \equiv \angle D C E$ by T 2.1.3. ${ }^{3}$ But $\angle D C E \equiv \angle A C F$ by T 1.3.7, whence the result.

Proposition 2.1.4.5. Suppose that points O, A, B, as well as $O, A^{\prime}, B^{\prime}$ colline, and the line $a_{A A^{\prime}}$ is collinear to the line $a_{B B^{\prime}}$. Then $\angle O A A^{\prime} \equiv \angle O B B^{\prime}$.

Proof. Obviously, the points $O, A, B, A^{\prime}, B^{\prime}$ are all distinct. (Note that $a_{A A^{\prime}} \| a_{B B^{\prime}} \Rightarrow a_{A A^{\prime}} \cap a_{B B^{\prime}}=\emptyset$.) By T 1.2.2 we have either $[O A B]$, or $[O B A]$, or $[A O B]$. Suppose $[O A B]$ (see Fig. 2.5, a)). ${ }^{4}$ Then $\left[O A^{\prime} B^{\prime}\right]$ by T 1.2.44. Hence A^{\prime}, B^{\prime} are on the same side of the line $a_{A B}$ (see L 1.2.19.9). Then, using T 2.1.4, we conclude that $\angle O A A^{\prime} \equiv \angle O B B^{\prime}$. Suppose now that $[A O B]$ (see Fig. 2.5, b)). Then $\left[A^{\prime} O B^{\prime}\right]$ by T 1.2.45. This, in turn, implies that the points A^{\prime}, B^{\prime} are on opposite sides of the line $a_{A B}$. Then $\angle B A A^{\prime} \equiv \angle A B B^{\prime}$, whence the result. ${ }^{5}$

Theorem 2.1.5. In a parallelogram $A B C D$ we have $A B \equiv C D, B C \equiv D A, \angle A B C \equiv \angle A D C, \angle B A D \equiv \angle B C D$.
Proof. By C 1.2.47.3 the ray A_{C} lies inside the angle $\angle B A D$ and the points B, D lie on opposite sides of the line $a_{A C}$. Since $a_{A B} \| a_{C D}$, C 2.1.4.4 gives $\angle B A C \equiv \angle D C A$. Similarly, ${ }^{6} C_{A} \subset$ Int $\angle B C D$ and $\angle B C A \equiv \angle D A C$. Now we can write $\angle B A C \equiv \angle D C A \& \angle D A C \equiv \angle B C A \& A_{C} \subset \operatorname{Int} \angle B A D \& C_{A} \subset \operatorname{Int} \angle B C D \xrightarrow{\text { T1.3.9 }} \angle B A D \equiv \angle B C D$. Furthermore, since also $\angle A D B \equiv \angle C B D^{7}$, we have $B D \equiv B D \& \angle A D B \equiv \angle C B D \& \angle D A B \equiv \angle B C D \xrightarrow{\mathrm{~T} 1.3 .20}$ $\triangle D B A \equiv \triangle B D C \Rightarrow A D \equiv B C \& A B \equiv C D$.

Theorem 2.1.6. In a parallelogram $A B C D$ the open intervals $(A C),(B D)$ concur in the common midpoint X of the diagonals $A C, B D$.

Proof. The open intervals $(A C),(B D)$ concur by L 1.2.47.2. We also have $\angle B C A \equiv \angle D A C, \angle C B D \equiv \angle A D B$ (see proof of the preceding theorem (T 1.2.5)). But $[A X C] \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} A_{X}=A_{C} \& C_{X}=C_{A} \Rightarrow \angle D A X=\angle D A C \& \angle B C X=$ $\angle B C A,[B X D] \stackrel{\mathrm{L} 1.2 .11 .3}{\Longrightarrow} B_{X}=B_{D} \& D_{X}=D_{B} \Rightarrow \angle C B X=\angle C B D \& \angle A D X=\angle A D B$. Hence $\angle B C X \equiv \angle D A X$, $\angle C B X \equiv \angle A D X$. Taking into account that $B C \equiv D A$ from the preceding theorem (T 2.1.5), from T 1.3.5 we obtain $\triangle C X B \equiv \triangle A X D$, whence $A X \equiv C X, B X \equiv D X .^{8} \square$

[^175]

Figure 2.6: In a parallelogram $A B C D$ the open intervals $(A C),(B D)$ concur in the common midpoint X of the diagonals $A C, B D$.

Theorem 2.1.7. Suppose in a trapezoid $A B C D$ with $a_{A B} \| a_{C D}$ the vertices B, C lie on the same side of the line $a_{A D}$. Then $A B C D$ is a parallelogram.

Proof. By C 1.2.47.4 the open intervals $(A C),(B D)$ concur and $A B C D$ is a simple quadrilateral. In particular, the points A, C lie on opposite sides of the line $a_{B D}$, whence in view of $a_{A B} \| a_{C D}$ we have $\angle B A D \equiv \angle C D B$ by C 2.1.4.4. Since also $A B \equiv C D, B D \equiv D B$, from $T 1.3 .4$ (SAS) we conclude that $\triangle A B D \equiv \triangle C D B$, which implies $A D \equiv B C$. Finally, $A B \equiv C D, A D \equiv B C$, and the trapezoid $A B C D$ being simple imply that $A B C D$ is a parallelogram (P 1.3.28.2).

Chapter 3

Elementary Hyperbolic (Lobachevskian) Geometry

3.1

Axiom 3.1.1. There is at least one line a and at least one point A with the following property: if there is a line b containing A and parallel to a, there is another (distinct from b) line c parallel to a.

Theorem 3.1.1. Given a point A on a line a in a plane α, there is more than one parallel to a containing A.
Proof. Suppose the contrary, i.e. that there is a line a and a point A not on it such that no more than one line parallel to a goes through A. But then, according to T 2.1 .1 the same would be true about any line and any point not on it. This, however, contradicts A 3.1.1.

Proposition 3.1.1.1. Proof. In hyperbolic geometry every triangle has abstract sum of the angles less than $\pi^{(a b s, x t)}$. Correspondingly, the sum of numerical measures of angles in every triangle in hyperbolic geometry is less than π.

Corollary 3.1.1.2. In hyperbolic geometry the (abstract) sum of the angles of any convex polygon with $n>3$ sides is less than $(n-2) \pi^{(a b s, x t)}$. Correspondingly, the sum of numerical measures of the angles of any convex polygon with $n>3$ sides is less than $(n-2) \pi$. In particular, the (abstract) sum of the angles of any convex quadrilateral is less than $2 \pi^{(a b s, x t)}$ and the sum of numerical measures of the angles of any convex quadrilateral is less than $(n-2) \pi$.

Proof.
Corollary 3.1.1.3. In hyperbolic geometry the (abstract) sum of the summit angles of any birectangle is less than $\pi^{(a b s, x t)}$. In particular, both summit angles of any Saccheri quadrilateral are acute. Thus, there are no rectangles in hyperbolic geometry.

Proof.
Corollary 3.1.1.4. In hyperbolic geometry any Lambert quadrilateral has one acute angle.
Proof.
Lemma 3.1.1.5. In a birectangle $A B C D$ with right angles $\angle B, \angle C$ we have $\angle A<\operatorname{adjsp} \angle D, \angle D<\operatorname{adjsp} \angle A$.
Proof. Using C 3.1.1.3 we can write

$$
\mu(\angle A, 0)+\mu(\angle D, 0)<\pi^{(a b s, x t)}=\mu(\angle D, 0)+\mu(a d j s p \angle D, 0)
$$

, whence $\mu(\angle A, 0)<\mu(\operatorname{adjsp} \angle D, 0)$ (see P 1.3.66.9). The other inequality is established similarly.
Consider a line a and a point A not on it. Using L 1.3.8.1, construct a perpendicular to a through A. Denote by O the foot of this perpendicular. Suppose also one of the two possible orders on a is chosen (see T 1.2.14). We shall say that this choice of order defines a certain direction on a. (Thus, there are two opposite directions defined on a.)

Now take a point $P \in a, P \neq O$, such that O precedes P in the chosen order. ${ }^{1}$ Let \mathfrak{J} be the set of all rays having initial point A and lying on the same side of a as the point P (and, consequently, as the ray O_{P}) plus the rays A_{O}, A_{O}^{c}. According to P 1.2.21.29 this is a set with generalized angular betweenness relation. This relation is defined in a traditional way: a ray $k \in \mathfrak{J}$ lies between rays $h, l \in \mathfrak{J}$ iff k lies inside the angle $\angle(h, l)$. Let \mathfrak{A} be the set of such rays $k \in \mathfrak{J}$ that the line \bar{k} does not meet a. Now, of the two possible orders on the set \mathfrak{J} (see T 1.2 .35) choose the

[^176]

Figure 3.1: If a ray $l \in \mathfrak{J}$ meets O_{P}, so does any ray l^{\prime} preceding it. If the ray h^{c}, complementary to a ray $h \in \mathfrak{J}$, meets the ray O_{P}^{c}, so does any ray $h^{\prime c}$, complementary to the ray h^{\prime} succeeding h.
one in which the ray A_{O} precedes the ray A_{O}^{c}. This implies, in particular, (in view of [$A_{O} k A_{O}^{c}$] (which follows from definition of interior of straight angle) and T 1.2.35) that $A_{O} \prec k \prec A_{O}^{c}$ for any $k \in \mathfrak{J}$.

Observe that if a ray $l \in \mathfrak{J}$ meets O_{P}, so does any ray l^{\prime} preceding l (see Fig. 3.1). In fact, suppose $l^{\prime} \prec l$ and the ray $l \in \mathfrak{J}$ meets O_{P} in some point R. $A_{O} \prec l^{\prime} \prec l^{2}$ implies $\left[A_{O} l^{\prime} l\right]$, i.e. $l^{\prime} \subset \operatorname{Int} \angle\left(A_{O}, l\right)$. Hence by L 1.2.21.10 the ray l^{\prime} meets the open interval $(O P)$, and, consequently, the ray O_{P} in some point Q.

Thus, any ray $l \in \mathfrak{J}$ which meets O_{P}, is a lower bound for $\mathfrak{A} .{ }^{3}$
Similarly, if the ray h^{c}, complementary to a ray $h \in \mathfrak{J}$, meets the ray O_{P}^{c}, so does any ray $h^{\prime c}$, complementary to the ray h^{\prime} succeeding h (see Fig. 3.1). In fact, suppose $h^{\prime} \succ h$ and the ray h^{c} meets O_{P}^{c} in some point N. Note that $h \prec h^{\prime} \prec A_{O}{ }^{4}$ implies $\left[h h^{\prime} A_{O}^{c}\right]$, i.e. $h^{\prime} \subset \operatorname{Int} \angle\left(A_{O}^{c}, h\right)$ and $h^{\prime c} \subset \operatorname{Int} \angle\left(A_{O}, h^{c}\right)$ (see L 1.2.21.16). Hence by L 1.2.21.10 the ray $h^{\prime c}$ meets the open interval $(O N)$, and, consequently, the ray O_{P}^{c}, in some point M.

Thus, any ray $h \in \mathfrak{J}$, whose complementary ray h^{c} meets O_{P}^{c}, is an upper bound for \mathfrak{A}. ${ }^{5}$
Let $l_{\text {lim }}(a, A) \rightleftharpoons \inf \mathfrak{A}, h_{\text {lim }}(a, A) \rightleftharpoons \sup \mathfrak{A}$. (Since the set \mathfrak{A}, obviously, has both upper and lower bounds, it has the least upper bound and the greatest lower bound by T 1.4.30.) We shall refer to $l_{\text {lim }}, h_{\text {lim }}{ }^{6}$ as, respectively, the lower and upper limiting rays for the pair (a, A) with the given direction on a^{7} (see Fig. 3.2).

Strictly speaking, in place of $l_{\text {lim }}(a, A)$ we should write $l_{\text {lim }}(h, A)$, where h (and, of course, other letters suitable to denote rays may be used in place of h) is a ray giving the direction (i.e. one of the two possible orders) on a. 8 Still, (mostly for practical reasons) we prefer to write $l_{\text {lim }}(a, A)$ or simply $l_{\text {lim }}$ whenever there is no threat of ambiguity. The notation like $l_{\text {lim }}(h, A)$ will be reserved for the cases where it is important which of the two possible directions on a is chosen.

Both lower and upper limiting rays lie in \mathfrak{A}.
To demonstrate that $l_{\text {lim }} \in \mathfrak{A}$ suppose the contrary, i.e. that $l_{\text {lim }} \in \mathfrak{J} \backslash \mathfrak{A}$. Then either $l_{\text {lim }}$ meets O_{P}, or $l_{\text {lim }}^{c}$ meets $O_{P}^{c} .{ }^{9}$

[^177]

Figure 3.2: All rays l in the set \mathfrak{A} lie between the rays $l_{\text {lim }}(a, A), h_{\text {lim }}(a, A)$. That is, they traverse the shaded area in the figure.

Figure 3.3: Illustration for proof that both lower and upper limiting rays lie in \mathfrak{A}.

But $l_{\text {lim }}^{c}$ cannot meet O_{P}^{c}, for that would make $l_{\text {lim }}$ an upper bound of \mathfrak{A}, which would contradict the fact that $l_{\text {lim }}$ is the greatest lower bound of \mathfrak{A}.

Suppose $l_{\text {lim }}$ meets O_{P} in some point Q (see Fig. 3.3). Taking a point R such that $[O Q R]$ (A 1.2.2) and using L 1.2.21.6, L 1.2.21.4, we see that $l_{l i m} \subset \operatorname{Int} \angle\left(A_{O}, l\right)$, where $l=O_{R}$. Hence $l_{l i m} \prec l$ (see T 1.2.35). Since l meets O_{P} in R, we see that l is a lower bound of \mathfrak{A}. We arrive at a contradiction with the fact that $l_{\text {lim }}$ is the greatest lower bound of \mathfrak{A}. This contradiction shows that in reality $l_{\text {lim }}$ does not meet O_{P} and we have $l_{\text {lim }} \in \mathfrak{A}$.

Similarly, we can demonstrate that $h_{\text {lim }} \in \mathfrak{A} .{ }^{10}$
Note that $l_{l i m} \neq h_{\text {lim }}$, for otherwise we would have exactly one line through A parallel to a, contrary to T 3.1.1. Thus, evidently, for any ray $k \in \mathfrak{A}$ we have $A_{O} \prec l_{\text {lim }} \prec h_{\text {lim }} \prec A_{O}^{c}$.

If b is any other (i.e. distinct from $\bar{l}_{\text {lim }}, \bar{h}_{\text {lim }}$) line through A parallel to a, separated by the point A into rays k, k^{c}, then one of these rays, say, k, lies inside the angle $\angle\left(l_{\text {lim }}, l_{\text {lim }}\right)$, and the complementary ray k^{c} then lies inside

[^178]the angle $\angle\left(l_{\text {lim }}^{c}, l_{\text {lim }}^{c}\right)$.
Hence it follows that $l_{l i m}\left(O_{P}^{c}, A\right)=h_{\text {lim }}^{c}\left(O_{P}, A\right), h_{\text {lim }}\left(O_{P}^{c}, A\right)=l_{\text {lim }}^{c}\left(O_{P}, A\right) .{ }^{11}$
To show that $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}^{c}, A\right)\right) \equiv \angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right)$ suppose the contrary. Without any loss of generality we can assume that $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}^{c}, A\right)\right)<\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right)$ (see L 1.3.16.14). Then there is a ray l^{\prime} with initial point O such that $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right) \equiv \angle\left(A_{O}, l^{\prime}\right), l^{\prime} \subset \operatorname{Int} \angle \angle\left(A_{O}, l_{\text {lim }}\left(O_{P}^{c}, A\right)\right)$. Since $l^{\prime} \prec l_{\text {lim }}\left(O_{P}^{c}, A\right)$, we see that l^{\prime} has to meet the ray O_{P}^{c} at some point Q^{\prime}. Taking a point $Q \in O_{P}$ such that $O Q^{\prime} \equiv O Q$, and taking into account that $a_{A O} \perp a \Rightarrow \angle A O Q^{\prime} \equiv \angle A O Q$, we can write $O Q^{\prime} \equiv O Q \& O A \equiv O A \& \angle A O Q^{\prime} \equiv \angle A O Q \stackrel{\text { T1.3.4 }}{\Longrightarrow} \triangle A O Q^{\prime} \equiv \triangle A O Q \Rightarrow$ $\angle O A Q^{\prime} \equiv \angle O A Q$. Since $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right) \equiv \angle\left(A_{O}, l^{\prime}\right)=\angle O A Q^{\prime} \equiv \angle O A Q$ and the rays $l_{\text {lim }}\left(O_{P}, A\right), A_{Q}$ lie on the same side of the line $a_{A O}$, from A 1.3.4 we have $l_{\text {lim }}\left(O_{P}, A\right)=A_{Q}$, i.e. the ray $l_{\text {lim }}\left(O_{P}, A\right)$ meets the line a at Q - a contradiction which shows that in fact $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}^{c}, A\right)\right) \equiv \angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right)$.

We shall call either of the two congruent angles $\angle\left(A_{O}, l_{\text {lim }}\left(O_{P}, A\right)\right), \angle\left(A_{O}, l_{\text {lim }}\left(O_{P}^{c}, A\right)\right)$ the angle of parallelism for the line a and the point A. We see that angles of parallelism are always acute.

We shall refer to $\bar{l}_{l i m}$ as the line parallel to a in the given direction (on a). To prove that the concept of the line parallel to a given line in a given direction is well defined, we need to show that in our case $l_{\text {lim }}$ is parallel to a in the chosen (on a) direction regardless of the choice of the point A on $l_{\text {lim }}$.

Take $A^{\prime} \in \bar{l}_{\text {lim }}$. Denote by O^{\prime} the foot of the perpendicular through A^{\prime} to a. Now take a point $P^{\prime} \in a, P^{\prime} \neq O^{\prime}$, such that O^{\prime} precedes P^{\prime} in the chosen order. ${ }^{12}$

Let \mathfrak{J}^{\prime} be the set of all rays having initial point A^{\prime} and lying on the same side of a as the point P^{\prime} (and, consequently, as the ray $O^{\prime}{ }_{P^{\prime}}$) with initial point A^{\prime}, plus the rays $A^{\prime} O^{\prime}, A_{O^{\prime}}^{\prime c}$. According to P 1.2 .21 .29 , this is a set with generalized angular betweenness relation. This relation is defined in a traditional way: a ray $k \in \mathfrak{J}$ lies between rays $h, l \in \mathfrak{J}$ iff k lies inside the angle $\angle(h, l)$. Let \mathfrak{A}^{\prime} be the set of such rays $k \in \mathfrak{J}^{\prime}$ that the line \bar{k} does not meet a. Now, of the two possible orders on the set \mathfrak{J}^{\prime} (see T 1.2.35) choose the one in which the ray $A^{\prime} O^{\prime}$ precedes the ray $A^{\prime c}{ }^{\prime}$.

Let $l^{\prime}{ }_{\text {lim }} \rightleftharpoons l_{\text {lim }}\left(a, A^{\prime}\right) \rightleftharpoons \inf \mathfrak{A}^{\prime}, h_{\text {lim }}^{\prime} \rightleftharpoons h_{\text {lim }}\left(a, A^{\prime}\right) \rightleftharpoons \sup \mathfrak{A}^{\prime}$.
First, suppose $A^{\prime} \in l_{l i m}(a, A)$ (see Fig. 3.4, a)). We are going to show that $A_{A}^{\prime c}=l_{\text {lim }}\left(a, A^{\prime}\right)$.
As the lines $a_{O A}, a_{O^{\prime} A^{\prime}}$ are distinct and are both perpendicular (by construction) to the line $a_{O O^{\prime}}=a$, the lines $a_{O A}, a_{O^{\prime} A^{\prime}}$ are parallel (see C 1.3.26.2). Therefore, the points A, O lie on the same side of the line $a_{A^{\prime} O^{\prime}}$ and the points A^{\prime}, O^{\prime} lie on the same side of the line $a_{A O}$. Consequently, $O^{\prime} \in O_{P} .{ }^{13}$ From the properties of order on a it follows that $O \prec O^{\prime}$. Hence $O \prec O^{\prime} \prec P^{\prime} \stackrel{\mathrm{T} 1.2 .35}{\Longrightarrow}\left[O O^{\prime} P^{\prime}\right]$. We know that the point A and the ray $A^{\prime c}{ }_{O^{\prime}}$ lie on opposite sides of the line $a_{O^{\prime} A^{\prime}}$, as do the point O and the ray $O^{\prime}{ }_{P^{\prime}}$. At the same time, the points A, O lie on the same side of $a_{A^{\prime} O^{\prime}}$. Therefore, the rays $A_{O^{\prime}}^{c}$ and $O_{P^{\prime}}^{\prime}$ lie on the same side of the line $a_{O A}(\mathrm{~L} 1.2 .18 .5, \mathrm{~L} 1.2 .18 .4)$.

Note that $\bar{A}_{A}^{c}=\bar{l}_{\text {lim }}(a, A)$ and, consequently, $A_{A}^{\prime c} \in \mathfrak{A}^{\prime}$. Now, to establish that $A_{A}^{\prime c}=l_{\text {lim }}\left(a, A^{\prime}\right)$, we need to prove only that any ray preceding ${A^{\prime}}_{A}^{c}$ (in \mathfrak{J}^{\prime}) meets the ray $O^{\prime}{ }_{P^{\prime}}$ and thus lies outside the set \mathfrak{A}^{\prime}. Take a ray l^{\prime} emanating from A^{\prime} and distinct from $A^{\prime} O^{\prime}$, such that l^{\prime} precedes $A^{\prime c}{ }_{A}$ in \mathfrak{J}^{\prime}. Then we have $l^{\prime} \subset \operatorname{Int} \angle\left(A^{\prime} O^{\prime}, A_{A}^{\prime c}\right.$) (see T 1.2.35). Take a point $Q \in l^{\prime}$.

Since the lines $l_{l i m}(a, A)$ and a do not meet, the points $O, O^{\prime} \in a$, and, consequently, the rays $A_{O}, A^{\prime}{ }_{O^{\prime}}$ lie on the same side of the line $l_{l i m}\left(a, A^{\prime}\right)$. Also, from the definition of interior of angle the rays l^{\prime} and $A^{\prime} O^{\prime}$ lie on the same side of the line $l_{\text {lim }}(a, A)$. Thus, we see (using L 1.2.18.2) that the rays l^{\prime} and A_{O} lie on the same side of the $l_{\text {lim }}(a, A)$.

Observe that the ray l^{\prime} and the line $a_{A O}$ lie on opposite sides of the line $a_{A^{\prime} O^{\prime}} .{ }^{14}$ Therefore, the line \bar{l}^{\prime} can have no common points with the ray $A_{O},{ }^{15}$ and, in particular, with ($A O$] (L 1.2.11.1, L 1.2.11.13).

Evidently, we can assume without any loss of generality that the point Q and the line $l_{l i m}(a, A)$ lie on the same side of the line $a .{ }^{16}$ Since both l^{\prime} and $A^{\prime c}$ lie on the same side of the line $a_{A^{\prime} O^{\prime}}$ and the rays l^{\prime} and A_{O} lie on the same side of the $l_{\text {lim }}(a, A)$, the point Q lies inside the angle $\angle O A A^{\prime}$. But, in view of L 1.2 .21 .4 , so does the whole ray A_{Q}. Hence $A_{Q} \prec l_{\text {lim }}(a, A)$ in \mathfrak{J} (by T 1.2.35). Therefore, the ray A_{Q} has to meet the line a in some point M. Since the rays A_{Q}, O_{P} lie on the same side of $a_{A O},{ }^{17}$ the point M lies on O_{P}.

[^179]Evidently, all common points the line \bar{l}^{\prime} has with the contour of the triangle $\triangle A O M$ lie on the ray $l^{\prime} .{ }^{18}$ It is also obvious that the line \bar{l}^{\prime} lies in the plane $\alpha_{A O M}$ and does not contain any of the points A, O, M. Since \bar{l}^{\prime} meets the open interval $(A M)$ in Q (one can use L 1.2 .21 .9 to show that $[A Q M]$), by A 1.2.4 it meets the open interval $(O M)$, and thus the ray O_{P}, in some point N, q.e.d.

Suppose $A^{\prime} \in l_{\text {lim }}^{c}(a, A)$ (see Fig. 3.4, b)). We are going to show that $A^{\prime}{ }_{A}=l_{\text {lim }}\left(a, A^{\prime}\right)$. Since the point P and the ray $l_{\text {lim }}(a, A)$ lie on on the same side of the line $a_{A O}$ (by construction), the ray $l_{\text {lim }}(a, A)$ and the point A^{\prime} lie on opposite sides of the line $a_{A O}$, finally, as shown above, the points A^{\prime}, O^{\prime} lie on the same side of $a_{A O}$, using L 1.2.18.5 we conclude that the points O^{\prime}, P lie on opposite sides of the line $a_{A O}$. Therefore, points O^{\prime}, P lie on the line a on opposite sides of the point O, whence $O^{\prime} \prec O \prec P$ in view of T 1.2 .35 (we take into account that $O \prec P$ by hypothesis). Since also, by construction, $O^{\prime} \prec P^{\prime}$, from the properties of precedence on the line a it follows that the points O, P^{\prime} lie on a on the same side of O^{\prime} and, consequently, the rays $A^{\prime}{ }_{A}$ and the point P^{\prime} (as well as the whole ray $O_{P^{\prime}}^{\prime}$) lie on the same side of the line $a_{A^{\prime} O^{\prime}}$ (recall that the points A, O lie on the same side of $a_{A^{\prime} O^{\prime}}$). We see that $A^{\prime}{ }_{A} \in \mathfrak{A}^{\prime}$. Now, to complete our proof that $A^{\prime}{ }_{A}=l_{\text {lim }}\left(a, A^{\prime}\right)$, we are left to show only that any ray preceding $A^{\prime}{ }_{A}$ (in \mathfrak{J}^{\prime}) meets the ray $O^{\prime}{ }_{P^{\prime}}$ and thus lies outside the set \mathfrak{A}^{\prime}. Take a ray l^{\prime} emanating from A^{\prime} and distinct from $A^{\prime} O^{\prime}$, such that l^{\prime} precedes $A^{\prime}{ }_{A}$ in \mathfrak{J}^{\prime}. Then we have $l^{\prime} \subset \operatorname{Int} \angle A^{\prime} O^{\prime} A$ (see T 1.2.35). Take a point $Q \in l^{\prime c}$. Evidently, we can assume without any loss of generality that the points A^{\prime}, Q lie on the same side of the line $a_{A O}$. ${ }^{19}$ Since the ray l^{\prime} and the point Q, as well as the ray A_{Q}^{c} and the point Q, lie on opposite sides of the line $\bar{l}_{l i m}(a, A)$; the rays $A^{\prime} O^{\prime}, A_{Q}^{c}$ lie on the same side of $\bar{l}_{l i m}(a, A)$ (by definition of interior of $\angle A^{\prime} O^{\prime} A$), as do the rays $A^{\prime}{ }_{O^{\prime}}, A_{O}$, using L 1.2 .18 .2 , L 1.2 .18 .4 we see that the rays A_{O}, A_{Q}^{c} lie on the same side of $\bar{l}_{l i m}(a, A)$. Similarly, since A^{\prime} and Q lie on the same side of $a_{A O}$ (by our assumption), A^{\prime} and $l_{l i m}(a, A)$, as well as Q and A_{Q}^{c} lie on opposite sides of $a_{A O}$, from L 1.2 .18 .5 , L 1.2 .18 .4 we see that the rays A_{Q}^{c} and $l_{l i m}(a, A)$ lie on the same side of $a_{A O}$. Thus, by definition of interior, the ray A_{Q}^{c} lies inside the angle $\angle\left(A_{O}, l_{\text {lim }}(a, A)\right)$. Consequently, A_{Q}^{c} precedes $l_{\text {lim }}(a, A)$ in the set \mathfrak{J} (T 1.2.35). Now, from the properties of $l_{\text {lim }}(a, A)$ as the greatest lower bound of \mathfrak{A} we see that the ray A_{Q}^{c} has to meet the ray O_{P} in some point M. Since $l^{\prime} \subset \operatorname{Int} \angle A^{\prime} O^{\prime} A$, by L 1.2.21.10 there is a point $R \in l^{\prime} \cap\left(A^{\prime} A\right)$. Now observe that $[Q A M] \& R \in \bar{l}^{\prime} \cap\left(A^{\prime} A\right) \stackrel{\mathrm{C1.2.1.7}}{\Longrightarrow} \exists N\left(N \in\left(O^{\prime} M\right) \cap \bar{l}^{\prime}\right)$. Since the $M \in O_{P^{\prime}}$ and the rays $O^{\prime}{ }_{P^{\prime}}, l^{\prime}$ lie on the same side of $a_{A^{\prime} O^{\prime}}$, we see that the open interval $\left(O^{\prime} M\right)$ and the line \bar{l}^{\prime} can meet only in a point lying on $l^{\prime} .{ }^{20}$ Thus, $\exists N\left(N \in\left(O^{\prime} M\right) \cap l^{\prime}\right)$, which completes the proof of the fact that the notion of the line parallel to a given line in a given (on that line) direction is well defined.

Theorem 3.1.2. Given a line a with direction on it and a point A not on a, there is exactly one line through A parallel to a in the given (on A) direction.

Proof.
Theorem 3.1.3. If a line b is parallel to a line a in a given on a direction, then the line a is parallel to the line b in the same direction.

Proof. Take points $A \in a, B \in b$. Denote $D \rightleftharpoons l \cap a$, where l is the bisector of the angle $\angle\left(B_{A}, k\right)$ (see T 1.3.25) and $k \rightleftharpoons l_{\text {lim }}(a, B) .{ }^{21}$ Denote by I the point of intersection of the bisector of the angle $\angle B A D$ with the open interval $(B D)$ (see T 1.3.25, L 1.2.21.10). ${ }^{22}$ Now choose points J, K, L such that $a_{I J} \perp b, a_{I K} \perp a_{A B}, a_{I L} \perp a .{ }^{23}$ Since the rays B_{I}, A_{I} are the bisectors of proper (non-straight) angles, the angles $\angle I B A, \angle I A B, \angle\left(B_{I}, k\right), \angle I A D$ are acute. Therefore, $K \in(A B)$ by P 1.3.24.3. Hence $\angle K B I=\angle A B I, \angle K A I=\angle B A I$ (L 1.2.11.3). Also, $J \in k, L \in A_{D}$ by C 1.3.18.11, whence $\angle I B J=\angle\left(B_{I}, k\right), \angle I A L=\angle I A D$. Now we can write (taking into account that, by T 1.3.16, all right angles are congruent) $B I \equiv B I \& \angle J B I \equiv \angle K B I \& \angle B J I \equiv \angle B K I \stackrel{\mathrm{~T} 1.3 .19}{\Longrightarrow} \triangle B J I \equiv \triangle B K I \Rightarrow I J \equiv I K$, $I A \equiv I A \& \angle K A I \equiv \angle L A I \& \angle I K A \equiv \angle I L A \stackrel{\mathrm{~T} 1.3 .19}{\Longrightarrow} \triangle A K I \equiv \triangle A L I \Rightarrow I K \equiv I L$. Thus, $I J \equiv I L$. The points I, J, L are not collinear. In fact, the angle, formed by the ray J_{L} and one of the rays into which the point J separates the line b, is the angle of parallelism corresponding to the line a and the point J. This angle, like any angle of parallelism, is acute (see above) and thus cannot be a right angle. But $I \in J_{L}$ (we take into account that, since $I \in \operatorname{Int}(a b)$ if the points I, J, L were collinear, we would necessarily have $I \in J_{L}{ }^{24}$) would imply that $J_{L} \perp b$ - a

[^180]

Figure 3.4: Illustration for proof that the notion of the line parallel to a given line in a given (on that line) direction is well defined.

Figure 3.5: If a line b is parallel to a line a in a given on a direction, then a is parallel to b in the same direction.
contradiction. Denote h^{\prime} the ray with initial point L such that $\angle\left(L_{J}, h^{\prime}\right)$ is acute. Let $k^{\prime} \rightleftharpoons l_{\text {lim }}\left(h^{\prime}, J\right)$. ${ }^{25}$ We are going to show that $h^{\prime}=l_{\text {lim }}\left(k^{\prime}, J\right) .{ }^{26}$ Since we know that $a=\bar{h}^{\prime} \| \bar{k}^{\prime}=b$, we need to establish only that any ray $h^{\prime \prime}$ lying inside the angle $\angle\left(L_{F}, h^{\prime}\right)$ meets the line b. Evidently, without any loss of generality, it suffices to take an arbitrary ray $h^{\prime \prime} \subset \operatorname{Int} \angle\left(L_{J}, h^{\prime}\right)$ and show that it meets b. Observe that the ray J_{L} lies inside the angle $\angle\left(J_{I}, k^{\prime}\right)$. ${ }^{27}$ Since $\angle I J L \equiv \angle I L J$ by T 1.3 .3 (recall that $I J \equiv I L$), the angles $\angle\left(J_{I}, k^{\prime}\right), \angle\left(L_{I}, h^{\prime}\right)$ are congruent (both being right angles), and $J_{L} \subset \operatorname{Int} \angle\left(J_{I}, k^{\prime}\right), L_{J} \subset \operatorname{Int} \angle\left(L_{I}, h^{\prime}\right)$, using T 1.3 .9 we conclude that $\angle\left(L_{J}, k^{\prime}\right) \equiv \angle\left(J_{L}, h^{\prime}\right)$.

Consider the ray $k^{\prime \prime}$ such that $k^{\prime}, k^{\prime \prime}$ lie on the same side of $a_{J L}$ and $\angle\left(L_{J}, h^{\prime \prime}\right) \equiv \angle\left(J_{L}, k^{\prime \prime}\right)$ (see A 1.3.4). We have $h^{\prime \prime} \subset \operatorname{Int} \angle\left(L_{J}, h^{\prime}\right) \& k^{\prime} k^{\prime \prime} a_{J L} \& \angle\left(L_{J}, h^{\prime \prime}\right) \equiv \angle\left(J_{L}, k^{\prime \prime}\right) \& \angle\left(L_{J}, k^{\prime}\right) \equiv \angle\left(J_{L}, h^{\prime}\right) \stackrel{\mathrm{P} 1.3 .9 .5}{\Longrightarrow} k^{\prime \prime} \subset \operatorname{Int} \angle\left(J_{L}, k^{\prime}\right)$. Since $k^{\prime}=l_{\text {lim }}\left(h^{\prime}, J\right)$, the ray $k^{\prime \prime}$ meets the ray h^{\prime} in some point P. ${ }^{28}$ Now take a point $Q \in k^{\prime}$ such that $J Q \equiv L P$ (see A 1.3.1). Now we can write $L J \equiv J L \& J Q \equiv L P \& \angle L J Q \equiv \angle J L P \stackrel{T 1.3 .4}{\Longrightarrow} \triangle L J Q \equiv \triangle J L P \Rightarrow \angle J L Q \equiv \angle L J P$. In conjunction with $\angle\left(J_{L}, h^{\prime \prime}\right) \equiv \angle\left(L_{J}, k^{\prime \prime}\right)$, this gives $L_{Q}=h^{\prime \prime}$, i.e. $h^{\prime \prime}$ meets the line b (or, to be more precise, the ray k^{\prime}) in the point Q.

Lemma 3.1.4.1. Suppose that lines a, b are parallel to a line c in the same direction. Suppose, further, that there is a point $B \in b$ lying inside the strip (ac). Then for any points $A \in a, C \in c$ there is a point $X \in b$ such that $[A X C]$.

Proof. Evidently, $a \| b$, for if they met in some point, we would have two lines through a single point, parallel to c in the same direction - in contradiction with T 1.3.2. Therefore, $b \subset$ Intac (from L 1.2.19.20), i.e. the line b lies completely inside the strip $a c$. Choose a ray l^{\prime} (with initial point C) such that $l^{\prime} \subset \operatorname{Int} \angle\left(C_{A}, l\right), l^{\prime} \subset \operatorname{Int} \angle\left(C_{G}, l\right)$, $l^{\prime} \subset \operatorname{Int} \angle\left(C_{F}, l\right)$, where $l \rightleftharpoons l_{\text {lim }}(a, C)$, and G, F are the feet of the perpendiculars drawn through C to b and a, respectively. Since a, c are parallel in a given direction, the ray l^{\prime} is bound to meet the line a in some point P. For the same reason l^{\prime} meets b in a point Q. From L 1.2 .19 .16 we see that $[C Q P]$. Finally, since the line b lies in the plane $\alpha_{A C P}$ and does not contain any of the points A, C, P, using Pasch's axiom (A 1.2.4) we conclude that b meets the open interval $(A C)$ in some point X, as required. ${ }^{29} \square$

Theorem 3.1.4. Suppose that two lines a, b are both parallel to a line c in the same direction. Then the lines a, b are parallel to each other in that direction.

Proof. Observe that $a \| b$ (see proof of the preceding lemma (L 3.1.4.1)). Obviously (since both a and b do not meet c), either a, b lie on the same side of c, or a, b lie on opposite sides of the line c.

First, suppose that a, b lie on the same side of c. Then either the line b lies inside the strip $a c$, or the line c lies inside the strip $a b$ (see L 1.2.21.34). Evidently, we can assume without loss of generality (due to symmetry) that

[^181]$b \subset \operatorname{Int}(a c)$. To prove that $h=l_{\text {lim }}(b, A)$ consider a ray h^{\prime} such that $h^{\prime} \subset \operatorname{Int} \angle\left(h, A_{B}\right), h^{\prime} \subset \operatorname{Int} \angle\left(h, A_{C}\right) .{ }^{30}$ We need to show that the ray h^{\prime} chosen in this way meets the line b. Suppose the contrary. But then h^{\prime} would not meet the line c either. For, if h^{\prime} met c in some point, in view of the preceding lemma (L3.1.4.1) it would have to meet the line b as well, which contradicts our assumption. On the other hand, from the fact that the line a is parallel to the line c in the given direction it follows that h^{\prime} must meet c. From these contradictions we see that h^{\prime} does not meet b, which means that the line a is parallel to the line b in the given direction.

Now suppose that a, b lie on opposite sides of the line c. Then the lines b, c lie on the same side of the line a (see L 1.2.19.25). Take a point $A \in a$ and a ray h^{\prime} such that $h^{\prime} \subset \operatorname{Int} \angle\left(A_{C}, h\right), h^{\prime} \subset \operatorname{Int} \angle\left(A_{B}, h\right)$, where $h=l_{\text {lim }}(c, A)$. Observe that, since the lines a, c are directionally parallel, the ray h lies on the line a. For the same reason, the ray h^{\prime} meets the line c. Now we see from the preceding lemma (L 3.1.4.1) that the ray h^{\prime} also meets the line b. Since the choice of h^{\prime} was arbitrary, we see that a is directionally parallel to b, as required.

If a, b are parallel, but not directionally parallel, they are said to be hyperparallel or ultraparallel.
Theorem 3.1.5. Two (distinct) lines a, b, perpendicular to a line c, are hyperparallel.
Proof. Follows from the (previously shown) fact that the angles of parallelism are always acute.
Theorem 3.1.6. If $A, B \in a, C, D \in b$, points A, D lie on opposite sides of the line $a_{B C}$, and $\angle A B C \equiv \angle B C D$, then the lines a, b are hyperparallel.

Proof. Let O be the midpoint of the interval $B C$ (see T 1.3.22). Taking points $E \in a, F \in b$ such that $a_{O E} \perp a$, $a_{O F} \perp b$ (see L 1.3.8.3). Since the angles $\angle A B C=\angle A B O$ and $\angle B C D=\angle O C D$, being congruent, are either both acute or both obtuse, from C 1.3.18.11 we see that either $\left(E \in B_{A}\right) \&\left(F \in C_{D}\right)$, or $\left(E \in B_{A}^{c}\right) \&\left(F \in C_{D}^{c}\right)$. Hence, using T 1.3.6 if necessary, we conclude that $\angle O B E \equiv \angle O C F$. Evidently, since both $\angle O E B$ and $\angle O F C$ are right angles, they are congruent (T 1.3.16). Therefore, we can write $O B \equiv O C \& \angle O B E \equiv \angle O C F \& \angle O E B \equiv$ $\angle O F C \xrightarrow{\mathrm{~T} 1.3 .19} \triangle O B E \equiv \triangle O C F \Rightarrow \angle B O E \equiv \angle C O F$. Observe that the points E, F lie on opposite sides of the line $a_{B C} .{ }^{31}$ Since also $O_{C}=O_{B}^{c}$, using C 1.3.7.1 we conclude that $O_{F}=O_{E}^{c}$ and, consequently, the points E, O, F are collinear. Hence (see L 1.2.11.15) $E_{O}=E_{F}, F_{E}=F_{O}$. Therefore, the line $a_{E F}$ is perpendicular to both a and b, whence the result follows by the preceding theorem T 3.1.5.

Corollary 3.1.6.1. If $A, B \in a, C, D \in b$, points B, D lie on the same side of the line $a_{A C}$, and the angles $\angle B A C$, $\angle A C D$ are supplementary, then the lines a, b are hyperparallel.

Proof. Take a point E such that $[D C E]$ (see A 1.2.2). Then $[D C E] \Rightarrow \angle A C E=\operatorname{adj} s p \angle A C D$. Furthermore, the points D, E lie on the opposite sides of the line $a_{A C}$ (see L 1.2.17.10). Since (by hypothesis) the angles $\angle B A C$, $\angle A C D$ are supplementary, we have $\angle B A C \equiv \angle A C E$. Now, using T 3.1.6 we find that the lines a, b are hyperparallel.

Theorem 3.1.7. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, there is at most one line c, perpendicular to both of them.

Proof. Otherwise we would get a rectangle, in contradiction with C 3.1.1.2.
Theorem 3.1.8. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, the set of points on b equidistant from a contains at most two elements.

Proof. Suppose the contrary, i.e. that there are points $A, B, C \in b$ and $A^{\prime}, B^{\prime}, C^{\prime} \in a$ such that $A A^{\prime} \perp a, B B^{\prime} \perp a$, $C C^{\prime} \perp a$, and $A A^{\prime} \equiv B B^{\prime} \equiv C C^{\prime}$.

Theorem 3.1.9. Proof.
Theorem 3.1.10. Proof. \square
We shall now construct the configuration we will refer to as the NTD configuration. ${ }^{32}$
Take a line b and a point A not on it. Let B be a point $B \in b$ such that $a_{A B} \perp b$ (see L 1.3.8.1). Suppose, further, that Q is a point on a line $a \ni A$ with the additional condition that the angle $\angle B A Q$ is obtuse.

Now we construct an infinite sequence of congruent intervals inductively as follows:
Take a point $A_{1} \in A_{Q}$. ${ }^{33}$ Then take a point A_{2} such that $\left[A A_{1} A_{2}\right]$ and $A A_{1} \equiv A_{1} A_{2}$. ${ }^{34}$ Now suppose that we already have the first $n-1$ members of the sequence: $A_{1}, A_{2}, \ldots, A_{n-1}$. We define the next member A_{n} of the sequence by the requirements that $\left[A_{n-2} A_{n-1} A_{n}\right]$ and $A A_{1} \equiv A_{n-1} A_{n}$.

[^182]It is obvious from construction that all the intervals $A A_{1}, A_{1} A_{2}, \ldots, A_{n-1} A_{n}, \ldots$ are congruent. Furthermore, the points of any finite $(n+1)$-tuple of points $A A_{1}, A_{2}, \ldots, A_{n}$ are in order $\left[A A_{1} A_{2} \ldots A_{n}\right]$. ${ }^{35}$ Denote $B_{i}, i=$ $1,2, \ldots, n(, \ldots)$ the feet of the perpendiculars to a drawn through the corresponding points A_{i}. Observe that, due to C 1.3.26.10, this immediately implies that the points $B, B_{1}, B_{2}, \ldots, B_{n-1}, B_{n}(, \ldots)$ are in order $\left[B B_{1} B_{2} \ldots B_{n-1} B_{n}(, \ldots)\right]$. In particular, the points $B_{1}, B_{2}, \ldots, B_{n-1}, B_{n}(, \ldots)$ all lie on the same side of the point B.

Theorem 3.1.11. In the NTD configuration defined above we have $A B<A_{1} B_{1}<A_{2} B_{2} \ldots A_{n-1} B_{n-1}<A_{n} B_{n}<$ \ldots... What is more, we can claim that $\mu A_{1} B_{1}-\mu A B<\mu A_{2} B_{2}-\mu A_{1} B_{1}<\ldots<A_{n-1} B_{n-1}-A_{n-2} B_{n-2}<$ $A_{n} B_{n}-A_{n-1} B_{n-1}<\ldots$ Also, $\mu B B_{1}>B_{1} B_{2}>\ldots>B_{n-2} B_{n-1} B_{n-1} B_{n}>\ldots$

Proof. ${ }^{36}$ Using A 1.3.1, choose points $C_{i} \in B_{i_{i}}$ so that $B_{i} A_{i} \equiv B_{i+1} C_{i+1}$, where $i=1,2, \ldots, n, \ldots$ and we denote $A_{0} \rightleftharpoons A, B_{0} \rightleftharpoons B$. We are going to show that the ray $A_{i-1 C_{i}}$ lies inside the angle $\angle B_{i-1} A_{i-1} A_{i}$ for all $i=$ $1,2, \ldots, n, \ldots$ First, observe that the angles $\angle B_{i-1} A_{i-1} A_{i}, i \in \mathbb{N}$ are all obtuse. In fact, the angle $\angle B A A_{1}=\angle B A Q$ is obtuse by construction. Using L 3.1.1.5, we can write the following chain of inequalities:

$$
\angle B A A_{1}<\angle B_{1} A_{1} A_{2}<\ldots<B_{n-1} A_{n-1} A_{n}<B_{n} A_{n} A_{n+1}<\ldots
$$

which ensure that the angles $\angle B_{1} A_{1} A_{2}, \angle B_{2} A_{2} A_{3}, \ldots, \angle B_{n-1} A_{n-1} A_{n}, \ldots$ are also obtuse. ${ }^{37}$
On the other hand, the angle $\angle B_{i-1} A_{i-1} C_{i}, i \in \mathbb{N}$, is acute as being a summit angle in the Saccheri quadrilateral $A_{i-1} B_{i-1} B_{i} C_{i}$ with the right angles $\angle A_{i-1} B_{i-1} B_{i}$ and $\angle B_{i-1} B_{i} C_{i}$ (see C 3.1.1.3).

Since $\angle B_{i-1} A_{i-1} C_{i}<\angle B_{i-1} A_{i-1} A_{i}{ }^{38}$ and the rays $A_{i-1} C_{i}, A_{i-1 A_{i}}$ lie on the same side of the line $a_{B_{i-1} A_{i-1}}$, 39 the ray $A_{i-1 C_{i}}$ lies inside the angle $\angle B_{i-1} A_{i-1} A_{i}$ for all $i=1,2, \ldots, n, \ldots$.

Now we intend to show that $C_{i} \in\left(B_{i} A_{i}\right)$ for all $i \in \mathbb{N}$. Since $A_{i-1} B_{i-1} B_{i} C_{i}$, being a Saccheri quadrilateral, is convex, the ray $A_{i-1 B_{i}}$ lies inside the angle $\angle B_{i-1} A_{i-1} C_{i}$ (see L 1.2.62.4). Now we can write $A_{i-1 C_{i}} \subset$ $\operatorname{Int} \angle \angle B_{i-1} A_{i-1} A_{i} \& A_{i-1_{B_{i}}} \subset \operatorname{Int} \angle B_{i-1} A_{i-1} C_{i} \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} A_{i-1} C_{i} \subset \operatorname{Int} \angle B_{i} A_{i-1} A_{i}$. In view of L 1.2.21.6, L 1.2.21.4 the ray $A_{i-1 C_{i}}$ is bound to meet the open interval $B_{i} A_{i}$ in some point $C^{\prime}{ }_{i}$. Since the lines $a_{A_{i-1} C_{i}}, a_{B_{i} A_{i}}$ are distinct, we find that $C^{\prime}{ }_{i}=C_{i}$.

Now, using C 1.3.13.4, we see that $B_{i} C_{i}<B_{i} A_{i}$ for every $i \in \mathbb{N}$.
Now we are going to show that the intervals $C_{1} A_{1}, C_{2} A_{2}, \ldots, C_{n} A_{n}, \ldots$ form a monotonously increasing sequence, i.e. that $C_{i} A_{i}<C_{i+1} A_{i+1}$ for all $i \in \mathbb{N}$. Consider the triangle $A_{i-1} C_{i} A_{i}$ for an arbitrary $i \in \mathbb{N}$. Taking a point $C^{\prime}{ }_{i}$ such that $\left[C_{i} A_{i} C^{\prime}{ }_{i}\right]$ and $C_{i} A_{i} \equiv A_{i} C^{\prime}{ }_{i}$ (see A 1.3.1), we find (taking into account that $\left[A_{i-1} A_{i} A_{i+1}\right]$, $A_{i-1} A_{i} \equiv A_{i} A_{i+1}$, and $\angle A_{i-1} A_{i} C_{i} \equiv \angle C^{\prime}{ }_{i} A_{i} A_{i+1}$ (as vertical; see T 1.3.7)) that $\triangle A_{i-1} A_{i} C_{i} \equiv \triangle C^{\prime}{ }_{i} A_{i} A_{i+1}$ and, consequently, $\angle A_{i-1} C_{i} A_{i} \equiv \angle A_{i} C^{\prime}{ }_{i} A_{i+1}$. Observe that the angle $\angle A_{i-1} C_{i} A_{i}$, being adjacent complementary to the summit angle $\angle A_{i-1} C_{i} B_{i}$ of the Saccheri quadrilateral $A_{i-1} B_{i-1} B_{i} C_{i}$, is obtuse. Hence the angle $\angle A_{i} C^{\prime}{ }_{i} A_{i+1}$, congruent to it, is also obtuse. Taking a point $C^{\prime \prime}{ }_{i+1}$ such that $\left[B_{i+1} C_{i+1} C^{\prime \prime}{ }_{i+1}\right]$ and $A_{i} C^{\prime}{ }_{i} \equiv C_{i+1} C^{\prime \prime}{ }_{i+1}$, we obtain a Saccheri quadrilateral $C^{\prime}{ }_{i} B_{i} B_{i+1} C^{\prime \prime}{ }_{i+1} .{ }^{40}$ Using arguments very similar to those already employed once in the present proof, it is easy to show that $\left[C_{i+1} C^{\prime \prime}{ }_{i+1} A_{i+1}\right]$ and thus $C_{i} A_{i}<C_{i+1} A_{i+1}$. ${ }^{41}$

Finally, we are going to show that the intervals $B_{0} B_{1}, B_{1} B_{2}, \ldots, B_{n-1} B_{n}, B_{n} B_{n+1}, \ldots$ form a monotonously decreasing sequence, i.e. $B_{i} B_{i+1}<B_{i-1} B_{i}$ for all iin $\in \mathbb{N}$.

For an arbitrary $i \in \mathbb{N}$ choose a (unique) point $A^{\prime}{ }_{i-1}$ such that the points $A^{\prime}{ }_{i-1}, A_{i+1}$ lie on the opposite sides of the line $a_{A_{i} B_{i}}, \angle B_{i} A_{i} A^{\prime}{ }_{i-1} \equiv \angle B_{i} A_{i} A_{i+1}$, and $A_{i} A^{\prime}{ }_{i-1} \equiv A_{i} A_{i+1}$ (see A 1.3.1, A 1.3.4). Denote now by $B^{\prime}{ }_{i-1}$ the foot of the perpendicular to b drawn through $A^{\prime}{ }_{i-1}$ (see L 1.3.8.1).

Suppose that the ray $A_{i A^{\prime}{ }_{i-1}}$ does not meet the ray $B_{i-1} A_{A_{i-1}}$. Then it has no common points with the whole line $a_{A_{i-1} B_{i-1}}$.

Since the ray $A_{i A^{\prime}{ }_{i-1}}$ lies on the same side of the line $a_{A_{i} B_{i}}$ as the line $a_{A_{i-1} B_{i-1}}$ and on the same side of the line $a_{A_{i-1} B_{i-1}}$ as the line $a_{A_{i} B_{i}}$, by the definition of strip interior the ray $A_{i A^{\prime}{ }_{i-1}}$ lies inside the strip $a_{A_{i-1} B_{i-1}} a_{A_{i} B_{i}}$. Consequently, the point $A^{\prime}{ }_{i-1}$ and with it the whole line $A^{\prime}{ }_{i-1} B^{\prime}{ }_{i-1}$ (see L 1.2.19.20) lies inside $a_{A_{i-1} B_{i-1}} a_{A_{i} B_{i}}$. But this, in turn, implies that the point $B^{\prime}{ }_{i-1}$ lies between B_{i-1}, B_{i} (see L 1.2.19.16), whence $B_{i} B^{\prime}{ }_{i-1}<B_{i} B_{i-1}$ (see C 1.3.13.4). Since, by construction, $A_{i} A^{\prime}{ }_{i-1} \equiv A_{i} A_{i+1}$ and $\angle B_{i} A_{i} A^{\prime}{ }_{i-1} \equiv \angle B_{i} A_{i} A_{i+1}$, in view of P ?? we have $B_{i} B^{\prime}{ }_{i-1} \equiv B_{i} B_{i+1}$. Now we see that $B_{i} B^{\prime}{ }_{i-1} \equiv B_{i} B_{i+1} \& B_{i} B^{\prime}{ }_{i-1}<B_{i} B_{i-1} \Rightarrow B_{i} B_{i+1}<B_{i-1} B_{i}$.

[^183]Now suppose that the ray $A_{i_{A^{\prime}-1}}$ does meet the ray $B_{i-1_{A_{i-1}}}$ in some point $A^{\prime \prime}{ }_{i-1}$. We are going to show that [$B_{i-1} A_{i-1} A^{\prime}{ }_{i-1}$]. First, we will demonstrate that the ray $A_{A_{i-1}}$ lies inside the angle $\angle B_{i} A_{i} A^{\prime}{ }_{i-1}$. In fact, since the angle $\angle B_{i} A_{i} A_{i-1}$ is acute (as being adjacent supplementary to the angle $\angle \angle B_{i} A_{i} A_{i+1}$ we have shown to be acute) and the angle $\angle B_{i} A_{i} A_{i-1}^{\prime}$ is obtuse (as being congruent by construction to the obtuse angle $\angle \angle B_{i} A_{i} A_{i+1}$), we find that $\angle B_{i} A_{i} A_{i-1}<\angle B_{i} A_{i} A^{\prime}{ }_{i-1}$. But since $A_{i-1} A^{\prime}{ }_{i-1} a_{B_{i} A_{i}}$, this inequality implies that the ray $A_{i A_{i-1}}$ lies inside the angle $\angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1}=\angle B_{i} A_{i} A^{\prime}{ }_{i-1}$. But the ray $A_{i_{B_{i-1}}}$, in turn, lies inside the angle $\angle B_{i-1} B_{i} A_{i}$, as can be seen, for example, observing the convexity of the birectangle $A_{i-1} B_{i-1} B_{i} A_{i}$ (see L 1.2.62.4). Hence in view of L 1.2 .21 .27 we find that the ray $A_{i A_{i-1}}$ lies inside the angle $\angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1}$. By L 1.2 .21 .10 this means that the ray $A_{A_{i-1}}$ and the open interval $\left(B_{i-1} A^{\prime \prime}{ }_{i}\right)$ meet in some point, which, in view of the distinctness of the lines $a_{A_{i-1} A_{i}}, a_{B_{i-1} A_{i-1}}$, coincides with the point A_{i-1}. Thus, we see that the point A_{i-1} lies between points B_{i-1} and $A^{\prime \prime}{ }_{i-1}$. Therefore, we can write $\left[B_{i-1} A_{i-1} A^{\prime \prime}{ }_{i-1}\right] \Rightarrow \angle A^{\prime \prime}{ }_{i-1} A_{i-1} A_{i}=\operatorname{adj} \operatorname{sp} \angle B_{i-1} A_{i-1} A_{i} \Rightarrow \mu \angle A^{\prime \prime}{ }_{i-1} A_{i-1} A_{i}+$ $\mu \angle B_{i-1} A_{i-1} A_{i}=\pi^{(a b s)}$. On the other hand, from C 3.1.1.3 we have $\mu \angle B_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}+\mu \angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1}<\pi^{(a b s)}$, since $\angle B_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}$ and $\angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1}$ are the summit angles of the birectangle $A^{\prime \prime}{ }_{i-1} B_{i-1} B_{i} A_{i}$. Therefore, we have $\mu \angle B_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}+\mu \angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1}<\mu \angle A^{\prime \prime}{ }_{i-1} A_{i-1} A_{i}+\mu \angle B_{i-1} A_{i-1} A_{i}$. Taking into account that (by construction) $\angle B_{i} A_{i} A^{\prime \prime}{ }_{i-1} \equiv \angle B_{i} A_{i} A_{i+1}, B_{i-1} A_{i-1} A_{i}<B_{i} A_{i} A_{i+1}$, and $\angle A_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}=\angle B_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}$ (see L 1.2.11.15) using P 1.3.63.8 we can write $\angle A_{i-1} A^{\prime \prime}{ }_{i-1} A_{i}<\angle A^{\prime \prime}{ }_{i-1} A_{i-1} A_{i}$, which, in view of T 1.3.18, implies that $A_{i-1} A_{i}<A^{\prime \prime}{ }_{i-1} A_{i}$. Since, by construction, $A_{i-1} A_{i} \equiv A_{i} A_{i-1}, A_{i} A_{i+1} \equiv A_{i} A^{\prime}{ }_{i-1}$ and the points $A^{\prime}{ }_{i-1}, A^{\prime \prime}{ }_{i-1}$ lie on the same side of the point $A_{i},{ }^{42}$, we conclude using C 1.3.13.4 that $\left[A_{i} A^{\prime}{ }_{i-1} A^{\prime \prime}{ }_{i-1}\right]$. Proceeding as above, we find again that $B_{i} B_{i+1}<B_{i-1} B_{i}$. \square

Corollary 3.1.11.1. Suppose we are given lines a, b and points A, B such that $a_{A B} \perp a, a_{A B} \perp b$. Suppose further that we are given an arbitrary interval $C D$. Then on any ray into which the point A separates the line a there is a point E such that $E F>C D$, where F is the foot of the perpendicular to b drawn through E.

Proof. Follows from the preceding theorem (T 3.1.11) and Archimedes' axiom (A 1.4.1).
Theorem 3.1.12. Given a line a, a point $D \notin a$ not on it, an angle $\angle(h, k)$, and an interval $E F$, there are points $B \in a$ and $C \in A_{D}$ such that $\angle A B C \equiv \angle(h, k), B C \equiv E F$.

Proof.

Corollary 3.1.12.1. Given a line a, a point $D \notin a$ not on it, and an interval $E F$, there is a point $C \in A_{D}$ such that $B C \equiv E F$, where the point $B \in a$ is such that $a_{B C} \perp a .{ }^{43}$

Proof.

Theorem 3.1.13. Proof.
Theorem 3.1.14. Any two hyperparallel lines have a common perpendicular.

Proof. \square

Theorem 3.1.15. Suppose that the angles $\angle A, \angle B, \angle C$, of the triangle $\triangle A B C$ are congruent, respectively, to the angles $\angle A^{\prime}, \angle B^{\prime}, \angle C^{\prime}$, of the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then the triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent.

Proof. Suppose the contrary, i.e. that the triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are not congruent. Then we can assume without loss of generality that the side $A B$ of $\triangle A B C$ is not congruent to the side $A^{\prime} B^{\prime}$ of $A^{\prime} B^{\prime} C^{\prime}$ and, furthermore, that $A B<A^{\prime} B^{\prime} .{ }^{44}$ By L 1.3 .13 .3 there is a point $B^{\prime \prime} \in\left(A^{\prime} B^{\prime}\right)$ such that $A B \equiv A^{\prime} B^{\prime \prime}$. Using A 1.3.1, we also take a point $C^{\prime \prime} \in A^{\prime} C^{\prime}$ such that $A C \equiv A^{\prime} C^{\prime \prime}$. Then, evidently, $\angle B^{\prime \prime} A^{\prime} C^{\prime \prime}=\angle B^{\prime} A^{\prime} C^{\prime}$, $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle B^{\prime \prime} A^{\prime} C^{\prime \prime}=\angle B^{\prime} A^{\prime} C^{\prime} \Rightarrow \angle B A C=\angle B^{\prime \prime} A^{\prime} C^{\prime \prime}, A B \equiv A^{\prime} B^{\prime \prime} \& A C \equiv A^{\prime} C^{\prime \prime} \& \angle B A C \equiv$ $\angle B^{\prime \prime} A^{\prime} C^{\prime \prime} \stackrel{\mathrm{T1.3.4}}{\Longrightarrow} \triangle A B C \equiv \triangle A^{\prime} B^{\prime \prime} C^{\prime \prime} \Rightarrow \angle A B C \equiv \angle A^{\prime \prime} B^{\prime} C^{\prime \prime} \& \angle B C A \equiv \angle B^{\prime \prime} C^{\prime \prime} A^{\prime}$. Since $C^{\prime \prime} \in A_{C^{\prime}}^{\prime}$, we see that either $C^{\prime \prime}=C^{\prime}$, or $\left[A^{\prime} C^{\prime \prime} C^{\prime}\right]$, or $\left[A^{\prime} C^{\prime} C^{\prime \prime}\right]$. We are going to show that each of these options is contradictory. First, suppose $C^{\prime \prime}=C^{\prime}$. Then $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime \prime} C^{\prime \prime} \stackrel{\text { L1.3.11.1 }}{\Longrightarrow} \angle A^{\prime} B^{\prime} C^{\prime} \equiv \angle A^{\prime} B^{\prime \prime} C^{\prime \prime}$. Since also $\left[A^{\prime} B^{\prime \prime} B^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle B^{\prime \prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}$, we obtain $\angle B^{\prime \prime} B^{\prime} C^{\prime} \equiv \angle A^{\prime} B^{\prime \prime} C^{\prime}$, in contradiction with T 1.3.17. ${ }^{45}$ Suppose now that the point $C^{\prime \prime}$ lies between A^{\prime}, C^{\prime}. Since all angles of the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent to the corresponding angles of the triangle $\triangle A^{\prime} B^{\prime \prime} C^{\prime \prime}$, their (abstract) angle sums are equal, which again leads to contradiction in view of C 1.3.67.16. Finally, suppose that $\left[A^{\prime} C^{\prime} C^{\prime \prime}\right]$. In view of C 1.2.1.7 the open intervals $\left(B^{\prime} C^{\prime}\right),\left(B^{\prime \prime} C^{\prime \prime}\right)$ meet in some point D. Obviously, $\left[B^{\prime} D C^{\prime}\right] \&\left[B^{\prime \prime} D C^{\prime \prime}\right] \&\left[A^{\prime} B^{\prime} B^{\prime \prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle B^{\prime \prime} B^{\prime} D^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime} \& \angle A^{\prime} B^{\prime \prime} D^{\prime}=\angle A^{\prime} B^{\prime \prime} C^{\prime \prime}$, whence $\angle B^{\prime \prime} B^{\prime} D^{\prime} \equiv \angle A^{\prime} B^{\prime \prime} D^{\prime}$, and we arrive once more to a contradiction with T 1.3 .17 . The contradictions obtained establish that $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$, q.e.d.

[^184]Theorem 3.1.16. Proof. \square
Theorem 3.1.17. Consider two simple quadrilaterals, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A B \equiv A^{\prime} B^{\prime}, \angle A B C \equiv A^{\prime} B^{\prime} C^{\prime}$, $\angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}, \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime}, \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime}$. Suppose further that if A, D lie on the same side of the line $a_{B C}$ then A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$, and if A, D lie on the opposite sides of the line $a_{B C}$ then A^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Then the quadrilaterals are congruent, $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Proof. Using A 1.3.1, we take points $A^{\prime \prime} \in B^{\prime} A^{\prime}, D^{\prime \prime} \in C^{\prime} D^{\prime}$ such that $B A \equiv B^{\prime} A^{\prime \prime}, C D \equiv C^{\prime} D^{\prime \prime}$. We start with the case where the points A, D lie on the opposite sides of the line $a_{B C}$. Then, by hypothesis, A^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Since, by construction, $A^{\prime \prime} \in B_{A^{\prime}}^{\prime}, D^{\prime \prime} \in C^{\prime}{ }_{D^{\prime}}$, is is easy to see using T 1.2.20 that the points $A^{\prime \prime}, D^{\prime \prime}$ lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Therefore, we can write $A B \equiv$ $A^{\prime \prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& C D \equiv C^{\prime} D^{\prime \prime} \& \angle A B C \equiv A^{\prime} B^{\prime} C^{\prime \prime} \& \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime \prime} \&\left(A a_{B C} D \& A^{\prime \prime} a_{B^{\prime} C^{\prime}} D^{\prime \prime}\right) \xrightarrow{P 1.3 .19 .3}$ $A B C D \equiv A^{\prime \prime} B^{\prime} C^{\prime} D^{\prime \prime} \Rightarrow \angle D A B \equiv \angle D^{\prime \prime} A^{\prime \prime} B^{\prime} \& \angle C D A \equiv \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}, \angle D A B \equiv \angle D^{\prime} A^{\prime} B^{\prime} \& \angle D A B \equiv \angle D^{\prime \prime} A^{\prime \prime} B^{\prime} \xrightarrow{\mathrm{LL} .3 .11 .1}$ $\angle D^{\prime} A^{\prime} B^{\prime} \equiv \angle D^{\prime \prime} A^{\prime \prime} B^{\prime}, \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime} \& \angle C D A \equiv \angle C^{\prime} D^{\prime \prime} A^{\prime \prime} \stackrel{\mathrm{L1}}{\Rightarrow}{ }^{\text {L.3.11.1 }} \angle C^{\prime} D^{\prime} A^{\prime} \equiv \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}$.

Denote $E \rightleftharpoons(A D) \cap a_{B C},{ }^{46} E^{\prime} \rightleftharpoons\left(A^{\prime} D^{\prime}\right) \cap a_{B^{\prime} C^{\prime}}, E^{\prime \prime} \rightleftharpoons\left(A^{\prime \prime} D^{\prime \prime}\right) \cap a_{B^{\prime} C^{\prime}}$. In view of T 1.2 .2 we have either [EBC] or $[B C E]$ and, similarly, either $\left[E^{\prime} B^{\prime} C^{\prime}\right]$ or $\left[B^{\prime} C^{\prime} E^{\prime}\right]$ and either $\left[E^{\prime \prime} B^{\prime} C^{\prime}\right]$ or $\left[B^{\prime} C^{\prime} E^{\prime \prime}\right]$. (Evidently, due to simplicity of $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}, A^{\prime \prime} B^{\prime} C^{\prime} D^{\prime \prime}$ we can immediately discard from our consideration the cases $E=B,[B E C], E=C$, $E^{\prime}=B^{\prime},\left[B^{\prime} E^{\prime} C^{\prime}\right], E^{\prime}=C^{\prime}, E^{\prime \prime}=B^{\prime},\left[B^{\prime} E^{\prime \prime} C^{\prime}\right], E^{\prime \prime}=C^{\prime}$. We are going to show that if $[E B C]$ then also $\left[E^{\prime} B^{\prime} C^{\prime}\right]$. To establish this suppose the contrary, i.e. that both $[E B C]$ and $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. Then, using T 1.3 .17 we would have $\angle B C D=\angle E C D<\angle A E C=\angle A E B<\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} E^{\prime}<\angle B^{\prime} E^{\prime} D^{\prime}=\angle C^{\prime} E^{\prime} D^{\prime}<\angle B^{\prime} C^{\prime} D^{\prime}$ (see also L 1.2.11.15), whence $\angle B C D<\angle B^{\prime} C^{\prime} D^{\prime}$ (see L 1.3.16.6-L 1.3.16.8), which contradicts $\angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$ in view of L 1.3 .16 .11 . Thus, we see that $[E B C]$ implies $\left[E^{\prime} B^{\prime} C^{\prime}\right]$. Similar arguments show that $[B C E]$ implies $\left[B^{\prime} C^{\prime} E^{\prime}\right]$. ${ }^{47}$ Since, obviously, $\angle A^{\prime \prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}, \angle B^{\prime} C^{\prime} D^{\prime \prime}=\angle B^{\prime} C^{\prime} D^{\prime}$ (see L 1.2.11.15), and, consequently, $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime \prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime \prime}$, it is easy to see that also [$E B C$] implies [$\left.E^{\prime \prime} B^{\prime} C^{\prime}\right]$ and $\left[B C E^{\prime \prime}\right]$ implies [$\left.B^{\prime} C^{\prime} E^{\prime \prime}\right]$.

Consider first the case where $[E B C],\left[E^{\prime} B^{\prime} C^{\prime}\right],\left[E^{\prime \prime} B^{\prime} C^{\prime}\right]$. We then have $\left[A^{\prime} E^{\prime} D^{\prime}\right] \& B^{\prime} \in\left(E^{\prime} C^{\prime}\right) \xrightarrow{\text { C1.2.1.7 }}$ $\exists F^{\prime}\left(\left[C^{\prime} F^{\prime} D^{\prime}\right] \&\left[A^{\prime} B^{\prime} F^{\prime}\right]\right)$. Similarly, $\left[A^{\prime \prime} E^{\prime \prime} D^{\prime \prime}\right] \& B^{\prime} \in\left(E^{\prime \prime} C^{\prime}\right) \stackrel{C 1.2 .1 .7}{\Longrightarrow} \exists F^{\prime \prime}\left(\left[C^{\prime} F^{\prime \prime} D^{\prime \prime}\right] \&\left[A^{\prime \prime} B^{\prime} F^{\prime \prime}\right]\right)$. Evidently, $F^{\prime \prime}=F^{\prime}$. In fact, as the points $A^{\prime \prime}, A^{\prime}, B^{\prime}$ colline even if the points $A^{\prime \prime}$, A^{\prime} were distinct (which, as we are about to show, they are not), the lines $a_{A^{\prime \prime} B^{\prime}}=a_{A^{\prime} B^{\prime}}$ and $a_{C^{\prime} D^{\prime}}=a_{C^{\prime} D^{\prime \prime}}$ (distinct due to simplicity of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$) can meet in at most one point (see T 1.1.1), which happens to be $F^{\prime \prime}=F^{\prime}$. Since both C^{\prime}, D^{\prime} and $C^{\prime}, D^{\prime \prime}$ lie on the opposite sides of $F^{\prime \prime}=F^{\prime}$, by L 1.2 .11 .10 the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of F^{\prime} even if $D^{\prime \prime} \neq D^{\prime}$. (Which again, as we are about to prove, they are not.) Using L 1.2.11.16 we can also see that the points $A^{\prime}, A^{\prime \prime}$ lie on the same side of the point $F^{\prime} .{ }^{48}$

Observe that $\left[C^{\prime} F^{\prime} D^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle C^{\prime} D^{\prime} A^{\prime}=\angle F^{\prime} D^{\prime} A^{\prime},\left[C^{\prime} F^{\prime} D^{\prime \prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}=\angle F^{\prime} D^{\prime \prime} A^{\prime \prime},\left[F^{\prime} B^{\prime} A^{\prime}\right] \xrightarrow{\text { L1.2.11.15 }}$ $\angle D^{\prime} A^{\prime} B^{\prime}=\angle D^{\prime} A^{\prime} F^{\prime},\left[F^{\prime} B^{\prime} A^{\prime \prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle D^{\prime \prime} A^{\prime \prime} B^{\prime}=\angle D^{\prime \prime} A^{\prime \prime} F^{\prime}$. Furthermore, since, as we have seen, the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of F^{\prime} as do the points $A^{\prime}, A^{\prime \prime}$, the angles $\angle D^{\prime} F^{\prime} A^{\prime}, \angle D^{\prime \prime} F^{\prime} A^{\prime \prime}$ are equal and thus are congruent. Therefore, we can write $\angle D^{\prime} F^{\prime} A^{\prime} \equiv \angle D^{\prime \prime} F^{\prime} A^{\prime \prime} \& \angle F^{\prime} D^{\prime} A^{\prime} \equiv \angle F^{\prime} D^{\prime \prime} A^{\prime \prime} \& \angle D^{\prime} A^{\prime} F^{\prime} \equiv \angle D^{\prime \prime} A^{\prime \prime} F^{\prime} \xrightarrow{\mathrm{T} 3.1 .15}$ $\triangle F^{\prime} D^{\prime} A^{\prime} \equiv \triangle F^{\prime} D^{\prime \prime} A^{\prime \prime} \Rightarrow F^{\prime} D^{\prime} \equiv F^{\prime} D^{\prime \prime} \& F^{\prime} A^{\prime} \equiv F^{\prime} A^{\prime \prime}$, whence in view of T 1.3.2 (taking into account that the points $D^{\prime \prime}, D^{\prime}$, as well as the points $A^{\prime}, A^{\prime \prime}$, lie on the same side of F^{\prime}) we are forced to conclude that $D^{\prime}=D^{\prime \prime}$ and $A^{\prime}=A^{\prime \prime}$.

Consider now the case where $[B C E]$ and, consequently, $\left[B^{\prime} C^{\prime} E^{\prime}\right],\left[B^{\prime} C^{\prime} E^{\prime \prime}\right]$ (see above), while the points A, D still lie on the opposite sides of the line $a_{B C}$ (and, consequently, (by hypothesis) the points A^{\prime}, D^{\prime}, as well as the points $A^{\prime \prime}$, $D^{\prime \prime}$, lie on the opposite sides of $\left.a_{B^{\prime} C^{\prime}}\right)$. We then have ${ }^{49}\left[A^{\prime} E^{\prime} D^{\prime}\right] \& C^{\prime} \in\left(B^{\prime} E^{\prime}\right) \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists F^{\prime}\left(\left[D^{\prime} C^{\prime} F^{\prime}\right] \&\left[B^{\prime} F^{\prime} A^{\prime}\right]\right)$. Similarly, $\left[A^{\prime \prime} E^{\prime \prime} D^{\prime \prime}\right] \& C^{\prime} \in\left(B^{\prime} E^{\prime \prime}\right) \stackrel{\text { C1.2.1.7 }}{\Longrightarrow} \exists F^{\prime \prime}\left(\left[D^{\prime \prime} C^{\prime} F^{\prime \prime}\right] \&\left[B^{\prime} F^{\prime \prime} A^{\prime \prime}\right]\right)$. Evidently, $F^{\prime \prime}=F^{\prime}$ (shown as above) ${ }^{50}$

[^185]Again, ${ }^{51}$ the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of F^{\prime} even if $D^{\prime \prime} \neq D^{\prime}$. Note that $\left[D^{\prime} C^{\prime} F^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle C^{\prime} D^{\prime} A^{\prime}=$ $\angle F^{\prime} D^{\prime} A^{\prime},\left[D^{\prime \prime} C^{\prime} F^{\prime}\right] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}=\angle F^{\prime} D^{\prime \prime} A^{\prime \prime},\left[B^{\prime} F^{\prime} A^{\prime}\right] \stackrel{L 1.2 .11 .15}{\Longrightarrow} \angle D^{\prime} A^{\prime} B^{\prime}=\angle D^{\prime} A^{\prime} F^{\prime},\left[B^{\prime} F^{\prime} A^{\prime \prime}\right] \xrightarrow{\text { L1.2.11.15 }}$ $\angle D^{\prime \prime} A^{\prime \prime} B^{\prime}=\angle D^{\prime \prime} A^{\prime \prime} F^{\prime}$. As before, we see that the angles $\angle D^{\prime} F^{\prime} A^{\prime}, \angle D^{\prime \prime} F^{\prime} A^{\prime \prime}$ are equal and thus are congruent. ${ }^{52}$ And, observing that the points $A^{\prime}, A^{\prime \prime}$ lie on the same side of the point $F^{\prime},{ }^{53}$ we can bring this case to contradiction exactly as above. ${ }^{54}$

Suppose now that the points A, D lie on the same side of the line $a_{B C}$, and, consequently (by hypothesis) the points A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$. Since, by construction, the points $A^{\prime}, A^{\prime \prime}$ lie on the same side of the point of B^{\prime}, we have either $\left[B^{\prime} A^{\prime} A^{\prime \prime}\right]$, or $\left[B^{\prime} A^{\prime \prime} A^{\prime}\right]$, or $A^{\prime \prime}=A^{\prime}$ (see L 1.2.11.8). Similarly, the points $D^{\prime}, D^{\prime \prime}$ lie on the same side of the point of C^{\prime}, we have either $\left[C^{\prime} D^{\prime} D^{\prime \prime}\right]$, or $\left[D^{\prime} D^{\prime \prime} C^{\prime}\right]$, or $D^{\prime \prime}=D^{\prime}$ (see L1.2.11.8). To show that $A^{\prime \prime}=A^{\prime}, D^{\prime \prime}=D^{\prime}$ we are going to bring to contradiction the other options. Suppose $\left[B^{\prime} A^{\prime} A^{\prime \prime}\right]$. Then $\angle A^{\prime} A^{\prime \prime} D^{\prime \prime}=\angle B^{\prime} A^{\prime \prime} D^{\prime}$ (see L 1.2.11.15), $\angle A^{\prime \prime} A^{\prime} D^{\prime}=\operatorname{adj} \operatorname{sp} \angle B^{\prime} A^{\prime} D^{\prime}$. Taking into account that, as shown above, $\angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle B^{\prime} A^{\prime \prime} D^{\prime \prime}$, we see that $\mu \angle A^{\prime} A^{\prime \prime} D^{\prime \prime}+\mu \angle A^{\prime \prime} A^{\prime} D^{\prime}=\pi^{(a b s)}$. Similarly, the assumption that $\left[B^{\prime} A^{\prime \prime} A^{\prime}\right]$ also gives the equality $\mu \angle A^{\prime} A^{\prime \prime} D^{\prime \prime}+\mu \angle A^{\prime \prime} A^{\prime} D^{\prime}=\pi^{(a b s)}$. ${ }^{55}$ Employing similar arguments, it is easy to show that if $\left[C^{\prime} D^{\prime} D^{\prime \prime}\right]$ or $\left[C^{\prime} D^{\prime \prime} D^{\prime}\right]$ then $\mu \angle A^{\prime} D^{\prime} D^{\prime \prime}+\mu \angle A^{\prime} D^{\prime \prime} D^{\prime}=\pi^{(a b s)}$. ${ }^{56}$ Finally, it is easy to see that the equalities $\mu \angle A^{\prime} A^{\prime \prime} D^{\prime \prime}+\mu \angle A^{\prime \prime} A^{\prime} D^{\prime}=\pi^{(a b s)}, \mu \angle A^{\prime} D^{\prime} D^{\prime \prime}+\mu \angle A^{\prime} D^{\prime \prime} D^{\prime}=\pi^{(a b s)}$ lead us to contradiction with P 3.1.1.1, C 3.1.1.2 for all cases except $A^{\prime \prime}=A^{\prime}, D^{\prime \prime}=D^{\prime}$, which completes the proof.

Consider the class of intervals $\mu A B$ congruent to some given interval $A B$. In hyperbolic geometry we can put into correspondence with this class a unique class of congruent acute angles using the following construction:

Draw a line $a \ni A$ such that $a \perp a_{A B}$. Choosing one of the two possible directions on a, draw through B the line b parallel to a in that direction. By definition, the Lobachevsky function Π puts into correspondence with the class $\mu A B$ the class of angles congruent to the angle $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)$. We shall refer to $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)$, as well as any angle congruent to it, as a Lobachevsky angle. In other words, a Lobachevsky angle is a representative $\angle(h, k) \in \Pi(\mu A B)$ of the class $\Pi(\mu A B)$. To show that the Lobachevsky function is well defined, we need to take another interval $C D \in \mu A B$, choose one of the two possible directions on a line $c \in C, c \perp a_{C D}$, draw through D the line d parallel to c in that direction, and show that $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right) \equiv \angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$. To achieve this suppose the contrary, i.e. that either $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)<\angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$ or $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)>\angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$ (see L 1.3.16.14). Obviously, without loss of generality we can assume that $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)<\angle\left(D_{C}, l_{\text {lim }}(c, D)\right.$). 57 Using A 1.3.4 draw a ray h emanating from D, lying with $l_{\text {lim }}(c, D)$ on the same side of $a_{C D}$ and such that $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right) \equiv \angle\left(D_{C}, h\right)$. In view of $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)<\angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$ the ray h lies inside the angle $\angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$. Hence in view of the definition of $l_{\text {lim }}(c, D)$ (as the lower limiting ray) the ray h meets the positive ray of the line c (that is, the ray whose points succeed the point C on the line c) in some point F. Now take a point E on the positive ray of a (that is, the point of this ray succeed A on a) with the additional condition that $A E \equiv C F$ (see A 1.3.1). Observe also that $\angle B A E, \angle D C F$ both being right angles, are congruent. Then we can write $A B \equiv C D \& \angle B A E \equiv \angle D C F \& A E \equiv C F \stackrel{T 1.34}{ } \triangle A B E \equiv \triangle C D F \Rightarrow \angle A B E \equiv \angle C D F$. But since $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right) \equiv \angle\left(D_{C}, h\right)=\angle C D F$ and the rays $B_{E}, l_{\text {lim }}(a, B)$ lie on the same side of the line $a_{A B}$, using A 1.3.4 we find that $B_{E}=l_{\text {lim }}(a, B)$, which implies that $l_{\text {lim }}(a, B)$ meets the line a, which is absurd in view of $l_{\text {lim }}(a, B)$ being the lower limiting ray. This contradiction shows that in fact $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right) \equiv \angle\left(D_{C}, l_{\text {lim }}(c, D)\right)$, as required.

Theorem 3.1.18. If for some (abstract) intervals $A B, C D$ we have $A B<C D$ (and then, of course, $\mu A B<\mu C D$) then $\Pi(\mu A B)<\Pi(\mu C D)$.

Proof. Consider the standard construction (see above), namely, a line $a \ni A$ such that $a \perp a_{A B}$, a direction on a, and draw through B the line b parallel to a in that direction. Take (using A 1.3.1) a point $E \in A_{B}$ such that $C D \equiv A E$. Draw through E the line c parallel to a in the same direction that b is parallel to a. By T 3.1.4 then c is also parallel to b in that direction. To prove the theorem, we need to show that $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)<\angle\left(E_{A}, l_{\text {lim }}(a, E)\right)$. Using A 1.3.4 draw the ray k emanating from E, lying on the same side of the line $a_{A B}$ and such that $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right) \equiv \angle\left(E_{A}, k\right)$. The lines b, \bar{k} are hyperparallel. Now it is easy to see that the ray $\left.l_{\text {lim }}(a, E)\right)$ lies inside the angle $\angle\left(E_{A}, k\right)$. ${ }^{58}$ Thus,

[^186]we have $\angle\left(B_{A}, l_{\text {lim }}(a, B)\right)<\angle\left(E_{A}, l_{\text {lim }}(a, E)\right)$ which obviously implies that $\Pi(\mu A B)<\Pi(\mu C D)$. \square
Lemma 3.1.18.1. For any acute angle $\angle(h, k)$ there is a ray l emanating from a point $B \in h$ such that $l \perp h$, the rays k, l lie on the same side of the line \bar{h}, and the rays k, l do not meet.

Proof. Suppose the contrary, i.e. that there is an angle $\angle(h, k)$ such that for any point $B \in h$ the ray $l \perp h$ emanating from it into the half-plane containing k meets the ray k. Construct two sequences of points $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ and $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ as follows:

Take an arbitrary point $B_{1} \in h$. Draw the ray l_{1} emanating from B_{1} such that $l_{1} \perp h$ and the rays k, l_{1} lie on the same side of the line \bar{h}. Denote by A_{1} the point where l_{1} meets k (it does meet k according to our assumption). Now choose B_{2} so that $\left[O B_{1} B_{2}\right]$ and $O B_{1} \equiv B_{1} B_{2}$ where O is the vertex of $\angle(h, k)$. Draw the ray l_{2} emanating from B_{2} such that $l_{1} \perp h$ and $k l_{1} \bar{h}$. Denote $A_{2} \rightleftharpoons k \cap l_{1}$. Continuing this process inductively, we choose the point B_{n+1} so that $\left[O B_{n} B_{n+1}\right]$ and $O B_{n} \equiv B_{n} B_{n+1}$. The ray $l_{i}, i \in \mathbb{N}$ emanating from the point B_{i} is orthogonal to h, lies on the same side of \bar{h} as k, and concurs with k in A_{i} (this constitutes the definition of the points A_{i}). Denote $\delta_{i} \rightleftharpoons \delta_{\triangle O B_{i} A_{i}}^{(a b s) \angle}$ for all $i \in \mathbb{N}$. We also let (for convenience) $B_{0} \rightleftharpoons O$. Since $B_{i-1} B_{i} \equiv B_{i} B_{i+1}$ (by construction) and $\angle B_{i-1} B_{i} A_{i} \equiv$ $\angle B_{i+1} B_{i} A_{i}$ (the ray $B_{i_{i}}$ being orthogonal to the line $a_{B_{i-1} B_{i}}=B_{i} B_{i+1}=\bar{h}$), we have $\triangle B_{i-1} B_{i} A_{i} \equiv \triangle B_{i+1} B_{i} A_{i}$ for all $i \in \mathbb{N}$, which implies $\delta_{\triangle O B_{i} A_{i}}^{(a b s) \angle}=\delta_{\triangle B_{i+1} B_{i} A_{i}}^{(a b s) \angle}$. In view of $\delta_{i+1}=\delta_{\triangle B_{i+1} A_{i+1}}^{(a b s) \angle}=\delta_{\triangle O A_{i} B_{i+1}}^{(a b s) \angle}+\delta_{\triangle A_{i+1} A_{i} B_{i+1}}^{(a b s) \angle}$, $\delta_{\triangle O A_{i} B_{i+1}}^{(a b s)}=\delta_{\triangle O B_{i} A_{i}}^{(a b s) \angle}+\delta_{\triangle B_{i+1} B_{i} A_{i}}^{(a b s) \angle}$ (see P 1.3.67.12), whence $\delta_{i+1}>2$ delta ${ }_{i}$ for all $i \in \mathbb{N}$. Using these inequalities for $i=1,2, \ldots, n$ we find that $\delta_{n+1}>2^{n}$ delta $_{1}$, which implies (in view of C 1.4 .18 .3) that by appropriate choice of n the angular defect of the triangle $\triangle O B_{i} A_{i}$ (viewed as an overextended angle) can be made greater than any given (in advance) overtextended angle, in particular straight angle, which is absurd. This contradiction shows that in reality there is a point B on the ray h such that the ray $l \perp h$ emanating from B into the half-plane containing k does not meet k.

Lemma 3.1.18.2. Consider an acute angle $\angle(h, k)$ and the set \mathcal{B} of points $B \in h$ such that the ray $l \perp h$ emanating from B into the half-plane containing k does not meet k. Choosing (of the two orders possible on the line \bar{h}) the order in which the origin (which we will denote O) of the ray h precedes the points of that ray h, the set \mathcal{B} has a minimal element B_{0}. Furthermore, the line \bar{l}_{0} containing the ray l_{0}, emanating from B_{0} into the half-plane containing k and such that $l_{0} \perp h$, corresponding to B_{0}, is directionally parallel to \bar{k}.

Proof. Consider, in addition to \mathcal{B}, the set $\mathcal{A} \rightleftharpoons h^{c} \cup\{O\} \cup(h \backslash \mathcal{B})$. Obviously, $\mathcal{A} \cup \mathcal{B}=\mathcal{P}_{\bar{h}}$. Furthermore, we have $A \prec B$ for all points $A \in \mathcal{A}, B \in \mathcal{B}$. For $A \in h \backslash \mathcal{B}$ this follows from P 1.2.44.1, C 1.3.26.2. According to Dedekind's theorem (T 1.4.17), either the set \mathcal{A} has the maximal element, or the set \mathcal{B} has the minimal element. Denote this element B_{0} (the one that performs the Dedekind section). To show that the first option is not the case, suppose the contrary. Then the ray $l_{0} \perp h$ emanating from B into the half-plane containing k, meets k in some point A_{0}. Taking a point A^{\prime} such that $\left[A A_{0} A^{\prime}\right]$ (see A 1.2.2) and lowering the perpendicular from A^{\prime} to \bar{h} (see L 1.3.8.1) which meets \bar{h} in B^{\prime}, we find that $\left[O B_{0} B^{\prime}\right]$ (using C 1.3.26.2, T 1.3.44), which means that $B_{0} \prec B^{\prime}$ and $B^{\prime} \in \mathcal{A}$ in contradiction with our assumption that B_{0} is the maximal element of \mathcal{A}. This contradiction shows that in fact the set \mathcal{B} has B_{0} as its minimal element. To prove that the lines \bar{k}, \bar{l}_{0} are directionally parallel, lower from B_{0} the perpendicular to \bar{k}. Since the angle $\angle(h, k)$ is acute (by hypothesis), by C $1.3 .18 .11 P \in k$. We need to show that an arbitrary ray l^{\prime} emanating from B_{0} into the interior of the angle $\angle\left(B_{0 P}, l_{0}\right)$ meets the ray P_{O}^{c}. (We have seen above that the line \bar{l}_{0} is parallel to (in the sense of absolute geometry, i.e. does not meet) the line \bar{k}.) Suppose the contrary, i.e. that there is a ray l^{\prime} emanating from B_{0} into the interior of the angle $\angle\left(B_{0 P}, l_{0}\right)$ and such that $l^{\prime} \cap P_{O}^{c}=\emptyset$. Since the angle $\angle O P B_{0}$ is right by construction, the angle $\angle O B_{0} P$ is necessarily acute (see C 1.3.17.4) and thus is less than the right angle $\angle\left(B_{O}, l_{0}\right)$ (see L 1.3.16.17). Hence $B_{0 P} \subset \operatorname{Int} \angle\left(B_{0 O}, l_{0}\right)$ (see C 1.3.16.4), and we can write $B_{0 P} \subset \operatorname{Int} \angle\left(B_{0 O}, l_{0}\right) \& l^{\prime} \subset \operatorname{Int} \angle\left(B_{0 P}, l_{0}\right) \stackrel{\text { L1.2.21.27 }}{\Longrightarrow} l^{\prime} \subset \operatorname{Int} \angle\left(B_{0 O}, l_{0}\right) \& B_{0 P} \subset \operatorname{Int} \angle\left(B_{0 O}, l^{\prime}\right)$. Then it is easy to see that the ray l^{\prime} does not meet the line \bar{k} altogether. ${ }^{59}$ Thus, by definition of interior the rays l^{\prime}, l_{0} lie on the same side of the line \bar{h} and the rays $l^{\prime}, B_{0 O}$ lie on the same side of the line \bar{h}_{0}. Furthermore, using L 1.2.19.4 we see that the ray l^{\prime} lies on the same side of \bar{k} as the ray h (under the assumption, of course, that h^{\prime} does not meet \bar{k}). On the other hand, since the rays k, l_{0} lie on the same side of the line \bar{h} and the rays l^{\prime}, l_{0} lie on the same side of \bar{h}, we see that the rays k, l^{\prime} lie on the same side of \bar{h} and thus the ray l^{\prime} lies completely inside the angle $\angle(h, k)$ (by definition of the interior of $\angle(h, k))$. Take a point $E \in l^{\prime}$. Denote by F the foot of the perpendicular lowered from E to \bar{h}. It is easy to see that $[O F B]$. ${ }^{60}$ Consider the ray F_{E}. Since $F \in(O B)$ (and, consequently, $F \prec B$), the ray F_{E} necessarily meets the ray k in some point M. Recalling that $E \in \operatorname{Int} \angle(h, k)$, using L 1.2 .21 .9 we find that [FEM]. Then taking into account that $E \in l^{\prime}$, from C 1.2.1.7 we see that l^{\prime} has to meet the open interval ($O M$) and thus the ray k in some point. This contradiction (with the assumption made above that $l^{\prime} \cap \bar{k}=\emptyset$) shows that in fact the

[^187]line \bar{l}_{0} is directionally parallel to the line \bar{k}. Then in view of T 3.1 .3 the line \bar{k} is directionally parallel to the line \bar{l}_{0}. Now it is evident that $\angle(h, k)$ is a Lobachevsky angle corresponding to the interval $O B_{0}$. ${ }^{61}$

Theorem 3.1.19. For any acute angle $\angle(h, k)$ (and, for that matter, for the class of angles $\mu \angle(h, k)$) congruent to that angle) there is an (abstract) interval $A B$ (and, for that matter, the class $\mu A B$ of intervals congruent to that interval) such that $\Pi(\mu A B)=\mu \angle(h, k)$.

Proof. See proof of the preceding lemma (L 3.1.18.2).
Theorem 3.1.20. Consider two lines a, b, parallel in some direction. Consider further two (distinct) planes $\alpha \supset a$, $\beta \supset b$ drawn through the lines a, b, respectively. If c is the line of intersection of α, β (i.e. the line containing all common points of the planes α, β), then c is parallel to both a and b in the same direction as they are parallel to each other.

Proof.

[^188]
[^0]: ${ }^{1}$ The reader will readily note that what we mean by points, lines, planes, and, consequently, the classes $\mathcal{C}^{P t}, \mathcal{C}^{L}$ and $\mathcal{C}^{P l}$ changes from section to section in this chapter. Thus, in the first section we denote by $\mathcal{C}^{P t}, \mathcal{C}^{L}$ and $\mathcal{C}^{P l}$ the classes of all points, lines and planes, respectively satisfying axioms A 1.1.1-A 1.1.8. But in the second section we already denote by $\mathcal{C}^{P t}, \mathcal{C}^{L}$ and $\mathcal{C}^{P l}$ the classes of all points, lines and planes, respectively satisfying those axioms plus A 1.2.1-A 1.2.4, etc.
 ${ }^{2}$ As is customary in mathematics, if mathematical objects $a \in A$ and $b \in B$ are in the relation ρ, we write $a \rho b$; that is, we let $a \rho b \stackrel{\text { def }}{\Longleftrightarrow}(a, b) \in \rho \subset A \times B$.
 ${ }^{3}$ Obviously, to say that several points or other geometric object lie on one line a (plane α) equals to saying that there is a line a (plane α) containing all of them
 ${ }^{4}$ Obviously, this definition makes sense only for sets, containing at least two points or other appropriate geometric objects.

[^1]: ${ }^{5}$ Similar to the definition of $a \subset \alpha$, this notation agrees with the set-theoretical interpretation of a line or plane as an array of points. However, this interpretation is not made necessary by axioms. This observation also applies to the definitions that follow.
 ${ }^{6}$ These relations "to meet" are obviously symmetric, which will be reflected in their verbal usage.

[^2]: ${ }^{7}$ That is, a set conforming to the general definition on p. 4.
 ${ }^{8}$ The topological meaning of these definitions will be elucidated later; see p. 18.

[^3]: ${ }^{9}$ For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.1.
 ${ }^{10}$ For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.2.
 ${ }^{11}$ We have shown that $B \notin b$ in L 1.2.1.6

[^4]: ${ }^{12}$ This lemma will also be used in the following form:
 If points A, B, C do not colline, the half-open/half-closed intervals $[A B),(B C]$ do not meet, i.e. have no common points.
 ${ }^{13}$ Again, we use (see L 1.2.1.3, A 1.1.2).
 ${ }^{14}$ In particular, this is true if any one of the points A, B, C lies between the two others (see L 1.2.1.3). Note also that we can formulate a pseudo generalization of this corollary as follows: Given a line a, if a point $A \in a$ lies in a plane α, and a point $B \in a$ lies outside α, then any other point $C \neq A$ of the line a lies outside the plane α.

[^5]: ${ }^{15}$ The theorem is, obviously, also true in the case when one of the points lies on the line formed by the two others, i.e. when, say, $B \in a_{A C}$, because this is equivalent to collinearity.

[^6]: ${ }^{16}$ Note that in different words this lemma implies that if a point C lies on an open interval $(A D)$, the open intervals $(A C),(C D)$ are both subsets of $(A D)$.
 ${ }^{17} a_{A L}$ definitely exists, because $[A L D] \Rightarrow A \neq L$.

[^7]: ${ }^{19}$ Thus, based on this theorem and some of the preceding results (namely, $\mathrm{T} 1.2 .1, \mathrm{~L} 1.2 .3 .2, \mathrm{~T} 1.2 .4$), we can write $[A B C] \Rightarrow(A C)=$ $(A B) \cup\{B\} \cup(B C),(A B) \subset(A C),(B C) \subset(A C),(A B) \cap(B C)=\emptyset$.
 ${ }^{20}$ for $C=D$ see A 1.2.1
 ${ }^{21}$ Since A, B, C, and therefore L, M, N, enter the conditions of the theorem symmetrically, we can do this without any loss of generality and not consider the other two cases
 ${ }^{22}$ See previous footnote

[^8]: ${ }^{23}$ The present theorem can thus be viewed as a direct generalization of T 1.2.2.
 ${ }^{24}$ In particular, given a finite (countable infinite) sequence of points $A_{i}, i \in \mathbb{N}_{n}(n \in \mathbb{N})$ in order $\left[A_{1} A_{2} \ldots A_{n}(\ldots)\right]$, if $i \leq j \leq l$, $i \leq k \leq l, i, j, k, l \in \mathbb{N}_{n}(i, j, k, l \in \mathbb{N})$, the open interval $\left(A_{j} A_{k}\right)$ is included in the open interval $\left(A_{i} A_{l}\right)$.
 ${ }^{2}{ }^{2}$ Also, $\left[B A_{k} A_{l}\right]$, but this gives nothing new because of symmetry.

[^9]: ${ }^{26}$ Due to symmetry, we can do so without loss of generality.
 ${ }^{27}$ Recall that by L 1.2 .7 .3 this means that the points $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$ are in order $\left[A_{0} A_{1} A_{2} \ldots A_{n}\right]$.
 ${ }^{28}$ Similarly, it can be shown that if $0<l \leq j<k \leq n$ and $B \in\left(A_{l-1} A_{l}\right)$ then $\left[B A_{j} A_{k}\right]$. Because of symmetry this essentially adds nothing new to the original statement.
 ${ }^{29} \mathrm{An}$ easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set $\left\{A_{0}, A_{1}, \ldots, A_{n}, B_{1}, B_{2}\right\}$ are in order $\left[\left(A_{0} \ldots\right) A_{i} B_{1} A_{j} \ldots A_{k} B_{2} A_{l}\left(\ldots A_{n}\right)\right.$.

[^10]: ${ }^{30}$ Again, we use in this proof the lemmas L 1.2.3.1, L 1.2 .3 .2 , and the results following them (summarized in the footnote accompanying T 1.2.5) without referring to these results explicitly.
 ${ }^{31}$ To put it shortly, $\forall j \in\{2,3, \ldots, n\} B_{j} \notin a_{B_{i} D_{i}} \vee D_{j} \notin a_{B_{i} D_{i}}, 1 \leq i<j$.
 ${ }^{32}$ Naturally, we count only distinct points. Also, it is obvious that $1<i<n$, because there is at least one interval containing $C=A_{i}$.

[^11]: ${ }^{33}$ We present here a proof for the case of linear open sets. For planar and spatial open sets the result is obtained by obvious modification of the arguments given for the linear case. Thus, in the planar case we apply these arguments on every line drawn through a given point and constrained to lie in the appropriate plane. Similarly, in the spatial case our argumentation concerns all lines in space that go through a chosen point.

[^12]: ${ }^{34}$ Making use of L 1.2.11.6, this statement can be reformulated as follows:
 If a point C lies on the ray O_{A}, and the point O divides the points A and D, then $O \operatorname{divides} C$ and D.

[^13]: ${ }^{35}$ Otherwise there is nothing else to prove
 ${ }^{36}$ One could as well have said: If O lies between A and C, as well as between A and $D \ldots$

[^14]: ${ }^{37}$ In other words, a finite sequence of points A_{i}, where $i+1 \in \mathbb{N}_{n-1}, n \geq 4$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers.
 ${ }^{38} \mathrm{Say}$, on $a_{A_{0} A_{1}}$. Observe also that L 1.2.7.2 implies that, given the conditions of this lemma, all lines $a_{A_{i} A_{j}}$, where $i+1, j+1 \in \mathbb{N}_{n}$, $i \neq j$, are equal, so we can put any of these $a_{A_{i} A_{j}}$ in place of $a_{A_{0} A_{1}}$
 ${ }^{39}$ By the same token, we can assert also that the points $A_{0}, A_{1} \ldots A_{n-1}$ lie on the same side of the point A_{n}, but due to symmetry, this adds essentially nothing new to the statement of the lemma.
 ${ }^{40}$ In most instances in what follows we will assume the ray O_{D} (or some other ray) fixed and omit the mention of it in our notation.
 ${ }^{41}$ In fact, once we require that $A, C \in O_{P}$ and $[A B C]$, this ensures that $B \in O_{P}$. (To establish this, we can combine $[O B C]$ shown below with, say, L 1.2.11.3, L 1.2.11.13.) This observation will be referred to in the footnote accompanying proof of T 1.2.14.
 ${ }^{42}$ Since $[A B C]$ and $[C B A]$ are equivalent in view of A 1.2.1, we do not need to consider the case $[O C A]$ separately.

[^15]: ${ }^{44}$ We obtain this result letting $P^{\prime}=P$. Since $\left[O O^{\prime} P\right] \stackrel{\text { L1.2.11.9 }}{\Longrightarrow} O^{\prime} \in O_{P}$, the condition $O^{\prime} \in O_{P}$ becomes redundant for this particular case
 ${ }^{45}$ We take into account that $A \in O^{\prime}{ }_{P^{\prime}} \& B \in O^{\prime}{ }_{Q^{\prime}} \xrightarrow{\text { L1.2.11.11 }}\left[A O^{\prime} B\right]$.

[^16]: ${ }^{46}$ The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote O_{P}, O_{Q} respectively, the first and the second ray for the given direct order on a. If a point $A \in\{O\} \cup O_{Q}$ precedes a point $B \in a$, then $B \in O_{Q}$. If a point A precedes a point $B \in O_{P} \cup\{O\}$, then $A \in O_{P}$.
 ${ }^{47}$ Again, we denote O_{P}, O_{Q} respectively, the first and the second ray for the given order on a. The following trivial observations help limit the number of cases we have to consider: If $A \in O_{P}$ and $C \in O_{P} \cup\{O\}$ then $[A B C]$ implies $B \in O_{P}$. Similarly, if $A \in\{O\} \cup O_{Q}$ and $C \in O_{Q}$ then $[A B C]$ implies $B \in O_{Q}$. In fact, in the case $A \in O_{P}, C=O$ this can be seen immediately using, say, L 1.2.11.3. For $A, C \in O_{P}$ we conclude that $B \in O_{P}$ once $[A B C]$ immediately from L 1.2.16.4, which, of course, does not use the present lemma or any results following from it. Alternatively, this can be shown using proof of L 1.2.12.3-see footnote accompanying that lemma.
 ${ }^{48}$ Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.13.6): If a point $A \in\{O\} \cup O Q$ precedes a point $B \in a$, then $B \in O_{Q}$. If a point A precedes a point $B \in O_{P} \cup\{O\}$, then $A \in O_{P}$.
 ${ }^{49}$ Again, for brevity we shall usually leave out the word "abstract" whenever there is no danger of confusion.

[^17]: ${ }^{50}$ In particular, if an open interval $(C D)$ is included in the open interval $(A B)$, the points C, D both lie on the segment $[A B]$.
 ${ }^{51}$ Alternatively, this theorem can be formulated as follows: Consider a ray O_{A}, a point $B \in O_{A}$, and a convex set \mathcal{A}. (This time we do not assume that the set \mathcal{A} lies on $a_{O A}$ or on any other line or even plane.) If $B \in \mathcal{A}$ but $O \notin \mathcal{A}$ then $\mathcal{A} \cap a_{O A} \subset O_{A}$.
 ${ }^{52}$ We shall usually assume the plane (denoted here α) to be fixed and omit the mention of it from our notation

[^18]: ${ }^{53}$ Observe that since $A \notin a$, the conditions of the theorem T 1.2 .6 are met whether the points A, B, C are collinear or not.

[^19]: ${ }^{54}$ Perhaps, it would be more natural to assume that the ray O_{B} lies in plane $\alpha_{a A}$, but we choose here to formulate weaker, albeit clumsier, conditions.

[^20]: ${ }^{55}$ see previous footnote

[^21]: ${ }^{56}$ Cf. the corresponding notation for rays on p. 18
 ${ }^{57}$ See the preceding lemma, L 1.2.19.11.
 ${ }^{58}$ Observe that, obviously, if h is the section of χ by α, then the line \bar{h} lies in plane $\bar{\chi}$ (see A 1.1.6). Furthermore, we have then $\bar{h}=\bar{\chi} \cap \alpha$.

[^22]: ${ }^{59}$ In fact, since a and α concur at O, the point $A \neq O$ cannot lie on a. Hence $A \in \bar{\chi} \& A \notin a \stackrel{\text { L1.2.17.8 }}{\Longrightarrow} A \in \chi \vee A \in \chi^{c}$. In the second case (when $A \in \chi^{c}$) we can use A 1.2 .2 to choose a point B such that $[A O B]$. Then, obviously, $B \in \chi$, so we just need to rename $A \leftrightarrow B$.
 ${ }^{60}$ Observe that, using T 1.1.5, we can write $a_{O A}=\bar{\chi} \cap \alpha$. In view of $\mathcal{P}_{\bar{\chi}}=\chi \cup \mathcal{P}_{a} \cup \chi^{c}, O_{A} \subset \chi \cap \alpha, O_{A}^{c} \subset \chi^{c} \cap \alpha$, this gives $O_{A}=\chi \cap \alpha$.
 ${ }^{61}$ In fact, since $B \in a_{O A}=b$, we have either $B \in O_{A}$ or $B \in O_{A}^{c}$. L 1.2.19.8 then implies that in the first case $B \in a_{A}$, while in the second $B \in a_{A}^{c}$. Hence the result. Indeed, suppose $B A a$, i.e. $B \in a_{A}$. Then $B \in O_{A}$, for $B \in O_{A}^{c}$ would imply a_{A}^{c}. Similarly, $B a A$ implies $B \in O_{A}^{c}$.
 ${ }^{62}$ Evidently, since the lines a, b are parallel, all points of b lie on the same side of a, and all points of a lie on the same side of b.
 ${ }^{63}$ This is immediately apparent from symmetry upon the substitution $A \leftrightarrow B, C \leftrightarrow D, a \leftrightarrow b$, which does not alter the conditions of the theorem.
 ${ }^{64}$ Note that the lines $a, a_{A B}$ are distinct $(B \notin a)$ and thus have only one common point, namely, A. Consequently, the inclusion $C \in a \cap a_{A B}$ would imply $C=A$. But this contradicts the assumption that A, B lie on the same side of $a_{C D}$, which presupposes that the point A lies outside $a_{C D}$.

[^23]: ${ }^{65}$ In this, as well as many other proofs, we leave it to the reader to supply references to some well-known facts such as L 1.2 .11 .13 , T 1.2.14, etc.
 ${ }^{66}$ We make use of the following fact, which will be used (for different points and lines) again and again in this proof: $C \prec O, C^{\prime} \prec O^{\prime}$, $A \prec O, A^{\prime} \prec O^{\prime}$, and A, A^{\prime} lie on the same side of $a_{O O^{\prime}}$, then C, C^{\prime} lie on the same side of $a_{O O^{\prime}}$. This, in turn, stems from the fact that once the points A, A^{\prime} lie on the same side of $a_{O O^{\prime}}$, the complete rays $O_{A}, O_{A^{\prime}}^{\prime}$ (of course, including the points C, C^{\prime}, respectively) lie on the same side of $a_{O O^{\prime}}$.
 ${ }^{67}$ We take into account that every point of the ray O_{A} lies on the same side of $a_{O O^{\prime}}$.
 ${ }^{68} \mathrm{We}$ take into account that the points O, C lie on the line a on the same side of A and the points O^{\prime}, C^{\prime} lie on the line b on the same side of A^{\prime}.
 ${ }^{69}$ And, of course, the lines a, c lie on opposite sides of the line b.
 ${ }^{70}$ Alternatively, this theorem can be formulated as follows: Consider a half-plane a_{A}, a point $B \in a_{A}$, and a convex set \mathcal{A}. (This time we do not assume that the set \mathcal{A} lies completely on $\alpha_{a A}$ or on any other plane.) If $B \in \mathcal{A}$ but $\mathcal{A} \cap \mathcal{P}_{a}=\emptyset$ then $\mathcal{A} \cap \alpha_{a A} \subset a_{A}$.

[^24]: ${ }^{71}$ In practice the letter used to denote the vertex of an angle is usually omitted from its ray-pair notation, so we can write simply $\angle(h, k)$
 ${ }^{72}$ Thus, the angle $\angle A O B$ exists if and only if the points A, O, B do not colline. A 1.1.3 shows that there exists at least one angle.

[^25]: ${ }^{73}$ Our use of the notation $\alpha_{A O B}$ is in agreement with the definition on p. 3.
 ${ }^{74}$ obviously, in plane of the angle
 ${ }^{75}$ The theorem T 1.2.19 makes this notion well defined in its "any of the points" part.
 ${ }^{76}$ In full analogy with the case of L 1.2.21.4, from L 1.2.11.3 it follows that this lemma can be reformulated as: If one of the points of a ray O_{C} lies outside an angle $\angle A O B$, the whole ray O_{C} lies outside the angle $\angle A O B$.

[^26]: ${ }^{77}$ By hypothesis, $C_{D} \cap O_{A}=\emptyset$. Note also that the ray C_{D} cannot meet the ray O_{A}^{c}, for they lie on opposite sides of the line $a_{O B}$.
 ${ }^{78}$ See proof of the preceding lemma. Note that L 1.2.21.4, L 1.2.21.7 can be viewed as particular cases of the present lemma.

[^27]: ${ }^{79}$ The contradiction for $[A B C]$ is immediately apparent if we make the simultaneous substitutions $A \leftrightarrow B$, $h \leftrightarrow k$. Thus, due to symmetry inherent in the properties of the betweenness relations both for intervals and angles, we do not really need to consider this case separately.
 ${ }^{80}$ Of course, by writing $\angle(k, m)=a d j \angle(h, k)$ we do not imply that $\angle(k, m)$ is the only angle adjacent to $\angle(h, k)$. It can be easily seen that in reality there are infinitely many such angles. The situation here is analogous to the usage of the symbols o and O in calculus (used particularly in the theory of asymptotic expansions).
 ${ }^{81}$ In particular, if a ray k, equioriginal with rays h, l, lies inside the angle $\angle(h, l)$, then the angles $\angle(h, k), \angle(k, l)$ are adjacent and thus the rays h, l lie on opposite sides of the ray k.

[^28]: ${ }^{82}$ For illustration on a particular case of this situation, see Fig. 1.113, a).

[^29]: ${ }^{83}$ Obviously, this means that none of the interior points of $\angle\left(h^{c}, k^{c}\right)$ can lie inside $\angle(h, k)$.
 ${ }^{84}$ and, consequently, a ray O_{C}
 ${ }^{85}$ This lemma is an analogue of A 1.2.2.

[^30]: ${ }^{86}$ According to $\mathrm{L} 1.2 .21 .2, B \in a_{O A}$ contradicts the fact that the rays O_{A}, O_{B} form an angle.
 ${ }^{87}$ This lemma is analogous to T 1.2 .2 . In the future the reader will encounter many such analogies.
 ${ }^{88}$ Obviously, this means that given an angle $\angle(h, k)$, none of the interior points of an angle $\angle(k, m)$ adjacent to it, lies inside $\angle(h, k)$.
 ${ }^{89}$ The lemma L 1.2.21.15 is applied here to every point of the ray O_{C}.
 ${ }^{90}$ If $O_{C} \subset \operatorname{Int} \angle A O B$ we have nothing more to prove.

[^31]: ${ }^{91}$ And, by the same token (due to symmetry), the ray B_{E} lies inside the angle $\angle A B F$, the ray A_{F} lies inside lies inside the angle $\angle E A B$, and the ray F_{A} lies inside the angle $\angle E F B$.
 ${ }^{92}$ Again, due to symmetry, we can immediately conclude that the points A, B also lie on the same side of the line $a_{E F}$, etc.
 ${ }^{93}$ And, of course, the ray B_{E} lies inside the angle $\angle A B F$, the ray A_{F} lies inside lies inside the angle $\angle E A B$, and the ray F_{A} lies inside the angle $\angle E F B$.
 ${ }^{94}$ Again, A, B also lie on the same side of the line $a_{E F}$, etc.

[^32]: ${ }^{95} \mathrm{~L}$ 1.2.21.4 implies that any other point of the ray O_{C} can enter this condition in place of C, so instead of "If a point $C \ldots$ " we can write "if some point of the ray $O_{C} \ldots$ "; the same holds true for the ray O_{B} and the angle $\angle A O C$. Note that, for example, L 1.2 .21 .16 , L 1.2 .21 .10 , L 1.2.21.21 also allow similar reformulation, which we shall refer to in the future to avoid excessive mentioning of L 1.2 .11 .3 . Observe also that we could equally well have given for this lemma a formulation apparently converse to the one presented here: If a point B lies inside an angle $\angle A O D$, and a point C lies inside the angle $\angle B O D$ (the comments above concerning our ability to choose instead of B and C any other points of the rays O_{B} and O_{C}, respectively being applicable here as well), the ray O_{C} lies inside the angle $\angle A O D$, and the ray O_{B} lies inside the angle $\angle A O C$. This would make L 1.2.21.27 fully analogous to L1.2.3.2. But now we don't have to devise a proof similar to that given at the end of L 1.2.3.2, because it follows simply from the symmetry of the original formulation of this lemma with respect to the substitution $A \rightarrow D, B \rightarrow C, C \rightarrow B, D \rightarrow A$. This symmetry, in its turn, stems from the definition of angle as a non-ordered couple of rays, which entails $\angle A O C=\angle C O A, \angle A O D=\angle D O A$, etc.
 ${ }^{96}$ Summing up the results of L 1.2.21.4, L 1.2.21.27, and this lemma, given a point C inside an angle $\angle A O D$, we can write Int $\angle A O D=$ Int $\angle A O C \cup O_{C} \cup$ Int $\angle C O D$.
 ${ }^{97}$ Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points $A_{i}, A_{j}, i \neq j, i, j \in \mathbb{N}$, i.e. $a=a_{A_{i} A_{j}}$.

[^33]: ${ }^{98}$ Since the points A_{2}, B_{1} lie on the same side of the line $a_{A_{1} B}$, so do rays $A_{1 A_{2}}, B_{B_{1}}$ (T1.2.19). Therefore, no point of the ray $A_{1} A_{2}$ can lie on $B_{B_{1}}^{c}$, which lies on opposite side of the line $a_{A_{1} B}$.

[^34]: ${ }^{99}$ By that lemma, any open interval joining a point $K \in k$ with a point $L \in l$ would then contain a point $H \in \mathcal{P}_{\bar{h}}$.
 ${ }^{100}$ We shall usually omit the word weak for brevity.
 ${ }^{101}$ The superscript \mathfrak{J} in parentheses in $[\mathcal{A B C}]^{(\mathfrak{J})}$ is used to signify the set (with generalized betweenness relation) \mathfrak{J} containing the geometric objects $\mathcal{A}, \mathcal{B}, \mathcal{C}$. This superscript is normally omitted when the set \mathfrak{J} is obvious from context or not relevant.

[^35]: ${ }^{102}$ The term linear here reflects the resemblance to the betweenness relation for points on a line. The word open is indicative of the topological properties of \mathfrak{J}.
 ${ }^{103}$ Note that, stated in different terms, this property implies that if a geometric object \mathcal{C} lies on an open interval $(\mathcal{A D})$, the open intervals $(\mathcal{A C}),(\mathcal{C D})$ are both subsets of $(\mathcal{A D})$ (see below the definition of intervals in the sets equipped with a generalized betweenness relation).
 ${ }^{104}$ The use of the term angular in this context will be elucidated later, as we reveal its connection with the properties of angles. The word closed reflects the topological properties of \mathfrak{J}.
 ${ }^{105}$ In this situation it is natural to call $\mathcal{A}_{0}, \mathcal{B}_{0}$ the ends of the set \mathfrak{J}.
 ${ }^{106}$ That is, of all rays with origins at O, lying in the half-plane a_{Q}.
 ${ }^{107}$ If $O_{B} \in \mathfrak{J}$ lies between $O_{A} \in \mathfrak{J}$ and $O_{C} \in \mathfrak{J}$, we write this as $\left[O_{A} O_{B} O_{C}\right.$] in accord with the general notation. Sometimes, however, it is more convenient to write simply $O_{B} \subset$ Int $\angle A O C$.

[^36]: ${ }^{108}$ We can do this without any loss of generality. No loss of generality results from the fact that the rays O_{A}, O_{B}, O_{C} enter the conditions of the theorem symmetrically.
 ${ }^{109}$ By A 1.1.3 $\exists E E \in a \& E \neq O$. By A 1.1.2 $a=a_{O E}$. By L 1.2.21.15, L 1.2.21.4 $O_{D} O_{B} a \& O_{D} \neq O_{B} \Rightarrow O_{B} \subset$ Int $\angle E O D \vee O_{B} \subset$ Int $\angle F O D$, where $O_{F}=\left(O_{E}\right)^{c}$. We choose $O_{B} \subset \operatorname{Int} \angle E O D$, renaming $E \rightarrow F, F \rightarrow E$ if needed.
 ${ }^{110}$ We shall find the notation \mathfrak{J}_{0} convenient in the proof of P 1.2.21.29.
 ${ }^{111}$ That is, we say that a ray $O_{B} \in \mathfrak{J}$ lies between rays $O_{A} \in \mathfrak{J}$ and $O_{C} \in \mathfrak{J}$ iff O_{B} lies inside the angle $\angle A O C$, i.e. iff $O_{B} \subset$ Int $\angle A O C$.
 ${ }^{112}$ That is, of all rays with origins at O, lying in the half-plane a_{Q}.

[^37]: ${ }^{113}$ Since h and h^{c} enter the conditions of the theorem in the completely symmetrical way, we do not really need to consider the case of h^{c} separately. Thus when only one side of the straight angle $\angle\left(h, h^{c}\right)$ is in question, for the rest of this proof we will be content with considering only h.
 ${ }^{114}$ If necessary, we can make one or both of the substitutions $A \leftrightarrow C, h \leftrightarrow h^{c}$.
 ${ }^{115}$ Making the substitution $A \leftrightarrow D$ or $h \leftrightarrow h^{c}$ if necessary.

[^38]: ${ }^{116}$ Making, if necessary, one or both of the substitutions $A \leftrightarrow C, h \leftrightarrow h^{c}$.
 ${ }^{117}$ In fact, in view of L 1.2.19.8, we require only that one of the points of h and one of the points of k lie in a_{A}.
 ${ }^{118}$ Recall that $(h k)$ is a set of rays lying inside the angle $\angle(h, k)$ and having the vertex of $\angle(h, k)$ as their initial point.
 ${ }^{119}$ Since, by hypothesis, the lines $a \ni A, b \ni B, c \ni C$ are pairwise parallel, the points A, B, C are obviously distinct.
 ${ }^{120}$ Since the points A, C do not lie on the line b, they lie either on one side or on opposite sides of the line b. But if A, C lie on opposite sides of b, then by L 1.2 .21 .34 either h or h^{c} lie inside the angle $\angle A B C$ (recall that we now assume that A, B, C are not collinear), contrary to our assumption.

[^39]: ${ }^{121}$ Thus, based on this lemma and some of the preceding results, we can write $[\mathcal{A B C}] \Rightarrow(\mathcal{A C})=(\mathcal{A B}) \cup\{\mathcal{B}\} \cup(\mathcal{B C}),(\mathcal{A B}) \subset(\mathcal{A C})$, $(\mathcal{B C}) \subset(\mathcal{A C}),(\mathcal{A B}) \cap(\mathcal{B C})=\emptyset$.
 ${ }^{122}$ For $\mathcal{C}=\mathcal{D}$ see Pr 1.2.1.

[^40]: ${ }^{123}$ In particular, given a finite (countable infinite) sequence of geometric objects $\mathcal{A}_{i}, i \in \mathbb{N}_{n}(n \in \mathbb{N})$ in order $\left[\mathcal{A}_{1} \mathcal{A}_{2} \ldots \mathcal{A}_{n}(\ldots)\right]$, if $i \leq j \leq l, i \leq k \leq l, i, j, k, l \in \mathbb{N}_{n}(i, j, k, l \in \mathbb{N})$, the generalized open interval $\left(\mathcal{A}_{j} \mathcal{A}_{k}\right)$ is included in the generalized open interval $\left(\mathcal{A}_{i} \mathcal{A}_{l}\right)$.
 ${ }^{12} 4$ Also, $\left[\mathcal{B} \mathcal{A}_{k} \overline{\mathcal{A}}_{l}\right]$, but this gives nothing new because of symmetry.
 ${ }^{125}$ Due to symmetry, we can do so without loss of generality.
 ${ }^{126}$ Similarly, it can be shown that if $0<l \leq j<k \leq n$ and $\mathcal{B} \in\left(\mathcal{A}_{l-1} \mathcal{A}_{l}\right)$ then $\left[\mathcal{B} \mathcal{A}_{j} \mathcal{A}_{k}\right]$. Because of symmetry this essentially adds nothing new to the original statement.

[^41]: ${ }^{127}$ An easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set $\left\{\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \mathcal{B}_{1}, \mathcal{B}_{2}\right\}$ are in order $\left[\left(\mathcal{A}_{0} \ldots\right) \mathcal{A}_{i} \mathcal{B}_{1} \mathcal{A}_{j} \ldots \mathcal{A}_{k} \mathcal{B}_{2} \mathcal{A}_{l}\left(\ldots \mathcal{A}_{n}\right)\right.$.
 ${ }^{128}$ Again, we use in this proof the properties $\operatorname{Pr} 1.2 .6$, $\operatorname{Pr} 1.2 .7$ and the results following them (summarized in the footnote accompanying L 1.2 .22 .8) without referring to these results explicitly.
 ${ }^{129}$ The set \mathfrak{J} is usually assumed to be known and fixed, and so its symbol (along with the accompanying parentheses) is dropped from the notation for a generalized ray. (See also our convention concerning the notation for generalized betweenness relation on p. 46.)
 ${ }^{130}$ One might argue that this definition of a generalized ray allows to be viewed as rays objects very different from our traditional "common sense" view of a ray as an "ordered half-line" (for examples, see pp. 65, 104). However, this situation is quite similar to that of many other general mathematical theories. For example, in group theory multiplication in various groups, such as groups of transformations, may at first sight appear to have little in common with number multiplication. Nevertheless, the composition of appropriately defined transformations and number multiplication have the same basic properties reflected in the group axioms. Similarly, our definition of a generalized ray is corroborated by the fact that the generalized rays thus defined possess the same essential properties the conventional, "half-line" rays, do.

[^42]: ${ }^{131}$ Making use of L 1.2.25.6, this statement can be reformulated as follows:
 If a geometric object \mathcal{C} lies on $\mathcal{O}_{\mathcal{A}}$, and \mathcal{O} divides the geometric objects \mathcal{A} and \mathcal{D}, then \mathcal{O} divides \mathcal{C} and \mathcal{D}.
 ${ }^{132}$ Otherwise there is nothing else to prove
 ${ }^{133}$ One could as well have said: If \mathcal{O} lies between \mathcal{A} and \mathcal{C}, as well as between \mathcal{A} and $\mathcal{D} \ldots$

[^43]: ${ }^{134}$ In other words, a finite sequence of geometric objects \mathcal{A}_{i}, where $i+1 \in \mathbb{N}_{n-1}, n \geq 4$, has the property that every geometric object of the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in \mathbb{N}) numbers.
 ${ }^{135}$ By the same token, we can assert also that the geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n-1}$ lie on the same side of the geometric object \mathcal{A}_{n}, but due to symmetry, this adds essentially nothing new to the statement of the lemma.
 ${ }^{136}$ In most instances in what follows we will assume the generalized ray $\mathcal{O}_{\mathcal{D}}$ (or some other generalized ray) fixed and omit the mention of it in our notation.
 ${ }^{137}$ In fact, once we require that $\mathcal{A}, \mathcal{C} \in \mathcal{O}_{\mathcal{P}}$ and $[\mathcal{A B C}]$, this ensures that $\mathcal{B} \in \mathcal{O}_{\mathcal{P}}$. (To establish this, we can combine $[\mathcal{O B C}]$ shown below with, say, L 1.2.25.3, L 1.2.25.13.) This observation will be referred to in the footnote accompanying proof of T 1.2.28.
 ${ }^{138}$ Since $[\mathcal{A B C}]$ and $[\mathcal{C B A}]$ are equivalent in view of $\operatorname{Pr} 1.2 .1$, we do not need to consider the case $[\mathcal{O C A}]$ separately.

[^44]: ${ }^{139}$ We take into account that $\mathcal{A} \in \mathcal{O}^{\prime} \mathcal{P}^{\prime} \& \mathcal{B} \in \mathcal{O}^{\prime} \mathcal{Q}^{\prime} \xrightarrow{\mathrm{L} 1.2 .25 .11}\left[\mathcal{A \mathcal { O } ^ { \prime } \mathcal { B }] .}\right.$

[^45]: ${ }^{140}$ The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote $\mathcal{O}_{\mathcal{P}}$, $\mathcal{O}_{\mathcal{Q}}$ respectively, the first and the second ray for the given direct order on \mathfrak{J}. If a geometric object $\mathcal{A} \in\{\mathcal{O}\} \cup \mathcal{O}_{\mathcal{Q}}$ precedes a geometric object $\mathcal{B} \in \mathfrak{J}$, then $\mathcal{B} \in \mathcal{O}_{\mathcal{Q}}$. If a geometric object \mathcal{A} precedes a geometric object $\mathcal{B} \in \mathcal{O}_{\mathcal{P}} \cup\{\mathcal{O}\}$, then $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}$.
 ${ }^{141}$ Again, we denote $\mathcal{O}_{\mathcal{P}}, \mathcal{O}_{\mathcal{Q}}$ respectively, the first and the second generalized ray for the given order on \mathfrak{J}. The following trivial observations help limit the number of cases we have to consider: If $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}$ and $\mathcal{C} \in \mathcal{O}_{\mathcal{P}} \cup\{\mathcal{O}\}$ then [$\mathcal{A B C}$] implies $\mathcal{B} \in \mathcal{O}_{\mathcal{P}}$. Similarly, if $\mathcal{A} \in\{\mathcal{O}\} \cup \mathcal{O}_{\mathcal{Q}}$ and $\mathcal{C} \in \mathcal{O}_{\mathcal{Q}}$ then $[\mathcal{A B C}]$ implies $\mathcal{B} \in \mathcal{O}_{\mathcal{Q}}$. In fact, in the case $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}, \mathcal{C}=\mathcal{O}$ this can be seen immediately using, say, L 1.2.25.3. For $\mathcal{A}, \mathcal{C} \in \mathcal{O}_{\mathcal{P}}$ we conclude that $\mathcal{B} \in \mathcal{O}_{\mathcal{P}}$ once $[\mathcal{A B C}]$ immediately from L 1.2 .30 .4 , which, of course, does not use the present lemma or any results following from it. Alternatively, this can be shown using proof of L 1.2.26.3 - see footnote accompanying that lemma.
 ${ }^{142}$ Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.27.6): If a geometric object $\mathcal{A} \in\{\mathcal{O}\} \cup \mathcal{O}_{\mathcal{Q}}$ precedes a geometric object $\mathcal{B} \in \mathfrak{J}$, then $\mathcal{B} \in \mathcal{O}_{\mathcal{Q}}$. If a geometric object \mathcal{A} precedes a geometric object $\mathcal{B} \in \mathcal{O}_{\mathcal{P}} \cup\{\mathcal{O}\}$, then $\mathcal{A} \in \mathcal{O}_{\mathcal{P}}$.

[^46]: ${ }^{143}$ Whenever the set \mathfrak{J} is assumed to be known from context or unimportant.

[^47]: $\overline{{ }^{144} \text { It should be noted that, as in the case of intervals consisting of points, in view of the equality } \angle(h, k)=\angle(k, h) \text { and the corresponding }}$ symmetry of open angular intervals, this distinction between half-open and half-closed angular intervals is rather artificial, similar to the distinction between a half-full glass and a half-empty one!
 ${ }^{145}$ Later, we will elaborate on the topological meaning of the words "open", "closed" used in this context.
 ${ }^{146}$ Some of them merely reiterate or even weaken the results proven earlier specifically for rays, but they are given here nonetheless to illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for the generalized betweenness relation on the ray pencil \mathfrak{J}, we give two formulations for a few results to follow.
 ${ }^{147}$ It may prove instructive to reformulate this result using the "pointwise" terminology for angles: Suppose each side of an angle $\angle C O D$ either lies inside an (extended) angle $\angle A O B$, or coincides with one of its sides. Then if a ray has initial point O and lies inside $\angle C O D$, it lies inside the (extended) angle $A O B$.
 ${ }^{148}$ Actually, none of the points lying on any of these rays.

[^48]: ${ }^{149}$ i.e., lies inside the angle formed by two other rays of the sequence

[^49]: ${ }^{150}$ i.e. the ray o does not lie inside the angle $\angle(h, k)$.
 ${ }^{151}$ Note that, according to our definition, an angular ray is formed by traditional rays instead of points! In a similar manner we could construct a "hyper-angular" ray formed by angular rays instead of points or rays. This hyper-angular ray would have essentially the same properties given by $\operatorname{Pr} 1.2 .1$ - $\operatorname{Pr} 1.2 .7$ as the two types of rays already considered, but, on the other hand, it would definitely be too weird to allow any practical use.

[^50]: ${ }^{152}$ Making use of L 1.2.32.6, this statement can be reformulated as follows:
 If a ray l lies on o_{h}, and o divides h and m, then o divides l and m.
 ${ }^{153}$ One could as well have said: If o lies between h and l, as well as between h and $m \ldots$
 ${ }^{154}$ In other words, a finite sequence of rays h_{i}, where $i+1 \in \mathbb{N}_{n-1}, n \geq 4$, has the property that every ray of the sequence, except for the first and the last, lies between the two rays with adjacent (in \mathbb{N}) numbers.
 ${ }^{155}$ By the same token, we can assert also that the rays $h_{0}, h_{1} \ldots, h_{n-1}$ lie on the same side of the ray h_{n}, but due to symmetry, this adds essentially nothing new to the statement of the lemma.
 ${ }^{156}$ In most instances in what follows we will assume the angular ray o_{m} (or some other angular ray) fixed and omit the mention of it in our notation.

[^51]: ${ }^{157}$ In unified terms, an abstract angular interval.

[^52]: ${ }^{158}$ In this part of the book we shall drop the word rectilinear because we consider only such paths.
 ${ }^{159}$ Since, whenever we are dealing with a polygon, we explicitly mention the fact that we have a polygon, and not just general path, the notation "polygon $A_{0} A_{1} \ldots A_{n}$ " should not lead to confusion with the "general path" notation $A_{0} A_{1} \ldots A_{n} A_{n+1}$ for the same object, where in the case of the given polygon $A_{0}=A_{n+1}$.

[^53]: ${ }^{160}$ It is sometimes more convenient to number points starting from the number 1 rather than 0 , i.e. we can also name points A_{1}, A_{2}, \ldots instead of A_{0}, A_{1}, \ldots.
 ${ }^{161}$ In this part of the book we shall drop the word rectilinear because we consider only such paths.
 ${ }^{162}$ Properly, we should have written $(A \prec B)_{A_{1} A_{2} \ldots A_{n}}$. However, as there is no risk of confusion with precedence relations defined for other kinds of sets, we prefer the shorthand notation.

[^54]: ${ }^{163}$ Note that peculiar vertices are not necessarily all different. Only adjacent vertices are always distinct. So are all peculiar vertices in a semisimple path.
 ${ }^{164}$ for paths that are not even semi-simple; see below
 ${ }^{165}$ An angle between adjacent sides of a non-peculiar path (in particular, a polygon) will often be referred to simply as an angle of the path (polygon).

[^55]: ${ }^{166}$ Note that $\left[A_{i} A_{i+1}\right]$ and $\left[A_{j} A_{j+1}\right]$ enter our assumption symmetrically, so we can ignore the case $A_{j+1}=A_{i}$.
 ${ }^{167}$ From Pr 1.2.9 all vertices of the path are distinct, except $A_{1}=A_{n}$ in a polygon, and so the mapping $\psi: i \mapsto A_{i}$, where $i=$ $1,2, \ldots, n-1$, is injective.
 ${ }^{168}$ The first part of this inequality can be assumed due to symmetry on $i, k(k-i>0)$ and definition of a side as an (abstract) interval, which is a pair of distinct points (this gives $k-i \neq 1$). The second part serves to exclude the case of a polygon.
 ${ }^{169}\left[A_{k} A_{k+1}\right]$ makes sense because $i=1 \& k-i<n-1 \Rightarrow k<n$.

[^56]: ${ }^{170}$ Note that, according to the naturalization theorem T 1.2 .38 , usually there is not much sense in considering peculiar paths.
 ${ }^{171}$ Recall that, by definition, $\triangle A_{1} A_{2} A_{3}$ is a closed path $A_{1} A_{2} A_{3} A_{4}$ with $A_{4}=A_{1}$.
 ${ }^{172}$ We have also taken into account the trivial observation that adjacent vertices of the quadrilateral are always distinct. (Every such pair of vertices forms an abstract interval.)

[^57]: ${ }^{173}$ Thus, the theorem is applicable, in particular, in the case when the open intervals $(A F),(B E)$ concur.
 ${ }^{174}$ We do not assume a priori the quadrilateral to be either non-peculiar or semisimple. That our quadrilateral in fact turns out to be simple is shown in the beginning of the proof.
 ${ }^{175}$ which gives $[E X A] \Rightarrow X \in E_{A}$
 ${ }^{176}$ That is, we substitute A for F, F for A, X for Y, etc.

[^58]: ${ }^{177}$ see C 1.1.1.5, L 1.1.1.4
 ${ }^{178}$ That is, the open interval $(A B)$ - see p. 69 on the ambiguity of our usage concerning the word "side".
 ${ }^{179}$ Obviously, we are using in this, as well as in many other proofs, some facts like $[A E B] \stackrel{\text { A1.2.1 }}{\Longrightarrow} A \neq E$, but we choose not to stop to justify them to avoid overloading our exposition with trivial details.

[^59]: ${ }^{180}$ There is a more elegant way to show that $\neg[A C B]$ if we observe that the conditions of the theorem are symmetric with respect to the simultaneous substitutions $B \leftrightarrow C, X \leftrightarrow Y$.

[^60]: ${ }^{181}$ Thus, parallelogram is a particular case of trapezoid. Note that in the traditional terminology a trapezoid has only two parallel side-lines so that parallelograms are excluded.
 ${ }^{182}$ i.e. completely inside one of the half-planes into which the line formed by the remaining vertices divides the plane of the parallelogram
 ${ }^{183}$ And, of course, by symmetry the ray X_{D} then lies inside the angle $\angle A X C$, the ray C_{A} lies inside $\angle X C D$, and D_{X} lies inside $\angle A D C$.
 ${ }^{184}$ Then also by symmetry the points A, B lie one the same side of the line $a_{C D}$. In particular, given a trapezoid $A B C D$ with $a_{B C} \| a_{A D}$, if the points A, B lie on the same side of the line $a_{C D}$ then the points C, D lie on the same side of the line $a_{A B}$.
 ${ }^{185}$ This will be true, in particular, if either A, B lie on the same side of $a_{C D}$ or C, D lie on the same side of $a_{A B}$.
 ${ }^{186}$ Then also by symmetry the ray B_{D} lies inside the angle $\angle A B C$ and the ray C_{A} lies inside the angle $\angle B C D$.

[^61]: ${ }^{187}$ See the definition of peculiarity in p. 71 and the properties $\operatorname{Pr} 1.2 .12-\operatorname{Pr} 1.2 .14$ defining semisimplicity.

[^62]: ${ }^{188}$ The reader can refer to Fig. 1.75 after making appropriate (relatively minor) replacements in notation.

[^63]: ${ }^{189}$ The reader can refer to Fig. 1.81, making necessary corrections in notation.

[^64]: ${ }^{190}$ In practice we shall usually omit the subscript as being either obvious from context or irrelevant.

[^65]: ${ }^{191}$ Thus, the dihedral angle $\widehat{A a B}$ exists if and only if A, a, B do not coplane. With the aid of $\mathrm{T} 1.1 .2, \mathrm{~L} 1.1 .2 .6$ we can see that there exists at least one dihedral angle.
 ${ }^{192}$ In other words, the present lemma states that the conditions (taken separately) i), ii), iii), and the condition of the existence of the dihedral angle $\widehat{A a B}$ are equivalent to one another.
 ${ }^{193}$ Theorem T 1.2.53 makes this notion well defined in its "any of the points" part.
 ${ }^{194}$ In full analogy with the case of L 1.2.55.3, from L 1.2.17.6 it follows that this lemma can be reformulated as: If one of the points of a half-plane a_{C} lies outside a dihedral angle $\widehat{A} a B$, the whole half-plane a_{C} lies outside the dihedral angle $\widehat{A} a B$.

[^66]: ${ }^{195}$ Obviously, this means that none of the interior points of $\widehat{\chi^{c} \kappa^{c}}$ can lie inside $\widehat{\chi \kappa}$.

[^67]: ${ }^{196}$ Obviously, for any such section $\angle(h, k)$ of a dihedral angle $\widehat{\chi \kappa}$, we have $h \subset \chi, k \subset \kappa$.
 ${ }^{197}$ Compare this lemma with L 1.2.19.13 and the definition accompanying it.
 ${ }^{198}$ Of course, by writing $\widehat{\kappa \mu}=a d j \widehat{\chi \kappa}$ we do not imply that $\widehat{\kappa \mu}$ is the only dihedral angle adjacent to $\widehat{\chi \kappa}$. It can be easily seen that in reality there are infinitely many such dihedral angles. The situation here is analogous to the usage of the symbols o and O in calculus (used particularly in the theory of asymptotic expansions).
 ${ }^{199}$ Obviously, this means that given a dihedral angle $\widehat{\chi \kappa}$, none of the interior points of a dihedral angle $\widehat{\kappa \mu}$ adjacent to it, lie inside $\widehat{\chi \kappa}$.

[^68]: ${ }^{200}$ By L 1.2.55.8, when drawing a plane α through a point $C \in \operatorname{Int}(\widehat{\chi \kappa})$, we obtain a section of $\widehat{\chi \kappa}$ by α iff the plane α and the edge a of the dihedral angle $\widehat{\chi \kappa}$ concur at a point O.
 ${ }^{201}$ The existence of $\alpha_{D O F}$ follows from 1. (in the present lemma) and the axiom A 1.1.4.

[^69]: 202 and, consequently, a half-plane a_{C}
 ${ }^{203}$ This lemma is an analogue of A 1.2 .2 , L 1.2.21.18.
 ${ }^{204}$ This lemma is analogous to T 1.2 .2 , L 1.2.21.19. In the future the reader will encounter many such analogies.

[^70]: ${ }^{205}$ The lemma L 1.2.55.19 is applied here to every point of the half-plane a_{C}.
 ${ }^{206}$ If $a_{C} \subset \operatorname{Int}(\widehat{A a B})$, we have nothing more to prove.
 ${ }^{207}$ If $k=l$, using T 1.1 .3 we can see that the half-planes κ, λ coincide.
 ${ }^{208}$ In fact, suppose the contrary, i.e. that, for example h lies on \bar{k}. Then by T 1.1.3 the planes $\bar{\chi}$ and $\bar{\kappa}$ would coincide, which contradicts the hypothesis that χ, λ lie on opposite sides of the plane $\bar{\kappa}$.

[^71]: ${ }^{209} \mathrm{~L} 1.2 .55 .3$ implies that any other point of the half-plane a_{C} can enter this condition in place of C, so instead of "If a point $C \ldots$ " we can write "if some point of the half-plane $O_{C} \ldots$ "; the same holds true for the half-plane a_{B} and the dihedral angle $\widehat{A a C}$. Note that, for example, L 1.2.55.6, L 1.2.55.18, L 1.2.55.22 also allow similar reformulation, which we shall refer to in the future to avoid excessive mentioning of L 1.2.17.6. Observe also that we could equally well have given for this lemma a formulation apparently converse to the one presented here: If a point B lies inside a dihedral angle $\widehat{A a D}$, and a point C lies inside the dihedral angle $\widehat{B a D}$ (the comments above concerning our ability to choose instead of B and C any other points of the half-planes a_{B} and a_{C}, respectively being applicable here as well), the half-plane a_{C} lies inside the dihedral angle $\widehat{A a D}$, and the half-plane a_{B} lies inside the dihedral angle $\widehat{A a C}$. This would make L 1.2 .55 .28 fully analogous to L 1.2 .3 .2 . But now we don't have to devise a proof similar to that given at the end of L 1.2 .3 .2 , because it follows simply from the symmetry of the original formulation of this lemma with respect to the substitution $A \rightarrow D, B \rightarrow C, C \rightarrow B$, $D \rightarrow A$. This symmetry, in its turn, stems from the definition of dihedral angle as a non-ordered couple of half-planes, which entails $\widehat{A a C}=\widehat{C a A}, \widehat{A a D}=\widehat{D a A}$, etc.
 ${ }^{210}$ That is, there is no plane containing both a and b. Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points A_{i}, $A_{j}, i \neq j, i, j \in \mathbb{N}$, i.e. $a=a_{A_{i} A_{j}}$.

[^72]: ${ }^{211}$ By that lemma, any open interval joining a point $K \in \kappa$ with a point $L \in \lambda$ would then contain a point $H \in \mathcal{P} \bar{\chi}$.
 ${ }^{212}$ Suppose the contrary, i.e. that H, L, a coplane. (Then the points H, L lie in the plane $\bar{\chi}=\bar{\lambda}$ on opposite sides of the line a (this can easily be seen using L 1.2 .19 .8 ; actually, we have in this case $\left.\lambda=\chi^{c}\right)$). Then $K \in a=\bar{\chi} \cap \bar{\kappa}$ - a contradiction.
 ${ }^{213}$ That is, of all half-planes with the edge a, lying in the half-space α_{A}.
 ${ }^{214}$ If $a_{B} \in \mathfrak{J}$ lies between $a_{A} \in \mathfrak{J}$ and $a_{C} \in \mathfrak{J}$, we write this as $\left[a_{A} a_{B} a_{C}\right]$ in accord with the general notation. Sometimes, however, it is more convenient to write simply $a_{B} \subset \operatorname{Int}(\widehat{A a C})$.

[^73]: ${ }^{215}$ We can do this without any loss of generality. No loss of generality results from the fact that the half-planes a_{A}, a_{B}, a_{C} enter the conditions of the theorem symmetrically.
 ${ }^{216} \mathrm{By} \mathrm{C} 1.1 .6 .5 \exists E E \in \alpha \& E \notin a$. By T 1.1.2 $\alpha=\alpha_{a E}$. By L 1.2.55.19, L 1.2.55.3 $a_{D} a_{B} \alpha \& a_{D} \neq a_{B} \Rightarrow a_{B} \subset \operatorname{Int}(\widehat{\operatorname{EaD}}) \vee a_{B} \subset$ $\operatorname{Int}(\widehat{F a D})$, where $a_{F}=\left(a_{E}\right)^{c}$. We choose $a_{B} \subset(\widehat{E a D})$, renaming $E \rightarrow F, F \rightarrow E$ if needed.
 ${ }^{217}$ It should be noted that, as in the case of intervals consisting of points, in view of the equality $\widehat{\chi \kappa}=\widehat{\kappa \chi}$, and the corresponding symmetry of open dihedral angular intervals, this distinction between half-open and half-closed dihedral angular intervals is rather artificial, similar to the distinction between a half-full glass and a half-empty one!
 ${ }^{218}$ Some of them merely reiterate or even weaken the results proven earlier specifically for half-planes, but they are given here nonetheless to illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for the generalized betweenness relation on the half-plane pencil \mathfrak{J}, we give two formulations for a few results to follow.
 ${ }^{219}$ A notation like $(\chi \kappa)$ for an open dihedral angular interval should not be confused with the notation ($\widehat{\chi \kappa}$) used for the corresponding dihedral angle.

[^74]: ${ }^{220}$ It may prove instructive to reformulate this result using the "pointwise" terminology for dihedral angles: Suppose each side of a dihedral angle $\widehat{C a D}$ either lies inside an (extended) dihedral angle $\widehat{A} a B$, or coincides with one of its sides. Then if a half-plane has edge point a and lies inside $\widehat{C} a D$, it lies inside the (extended) dihedral angle $A a B$.
 ${ }^{221}$ Actually, none of the points lying on any of these half-planes.
 ${ }^{222}$ i.e., lies inside the dihedral angle formed by two other half-planes of the sequence

[^75]: ${ }^{223}$ i.e. the half-plane o does not lie inside the dihedral angle $\widehat{\chi \kappa}$.
 ${ }^{224}$ Note that, according to our definition, a dihedral angular ray is formed by half-planes instead of points! In a similar manner we could construct a "hyper- dihedral angular" ray formed by dihedral angular rays instead of points, rays, or half-planes. This hyper- dihedral angular ray would have essentially the same properties given by $\operatorname{Pr} 1.2 .1-\operatorname{Pr} 1.2 .7$ as the types of rays already considered, but, on the other hand, it would definitely be too weird to allow any practical use.

[^76]: ${ }^{225}$ Making use of L 1.2.57.6, this statement can be reformulated as follows:
 If a half-plane λ lies on o_{χ}, and o divides χ and μ, then o divides λ and μ.
 ${ }^{226}$ One could as well have said: If o lies between χ and λ, as well as between χ and $\mu \ldots$
 ${ }^{227}$ In other words, a finite sequence of half-planes χ_{i}, where $i+1 \in \mathbb{N}_{n-1}, n \geq 4$, has the property that every half-plane of the sequence, except for the first and the last, lies between the two half-planes with adjacent (in \mathbb{N}) numbers.
 ${ }^{228}$ By the same token, we can assert also that the half-planes $\chi_{0}, \chi_{1}, \ldots, \chi_{n-1}$ lie on the same side of half-plane χ_{n}, but due to symmetry, this adds essentially nothing new to the statement of the lemma.
 ${ }^{229}$ In most instances in what follows we will assume the dihedral angular ray o_{μ} (or some other dihedral angular ray) fixed and omit the mention of it in our notation.

[^77]: ${ }^{230}$ In unified terms, an abstract dihedral angular interval.
 ${ }^{231}$ This is a rather unfortunate piece of terminology in that it seems to be at odds with the definition of convex point set. Apparently, this definition is related to the fact (proved) below that the interior of a convex polygon does form a convex set.
 ${ }^{232}$ Thus, $A B C D$ is convex, in particular, if its diagonals $(A C),(B D)$ meet (see beginning of proof).
 ${ }^{233}$ Note also that the result, converse to the preceding lemma, is true: If a quadrilateral $A B C D$ is convex, then the points A, C lie on opposite sides of the line $a_{B D}$, and B, D lie on opposite sides of $a_{A C}$.
 ${ }^{234}$ Indeed, from convexity the vertices A_{j}, A_{l} lie on the same side of the line $a_{A_{i} A_{k}}$ and A_{j}, A_{k} lie on the same side of the line $a_{A_{i} A_{l}}$. Hence $A_{j} \subset \operatorname{Int} \angle A_{k} A_{i} A_{l}$ by the definition of interior and, finally, $A_{i A_{j}} \subset \operatorname{Int} \angle A_{k} A_{i} A_{l}$ by L 1.2.21.4.
 ${ }^{235}$ It is evident that due to symmetry we could alternatively assume that the vertices A, B lie on the line $a_{C D}$.
 ${ }^{236}$ It should be noted that we do not assume here that $A B C D$ is simple. This will follow from C 1.2.47.4.

[^78]: ${ }^{237}$ Thus, it follows that each path lies completely on one side of the line $a_{A_{i} A_{j}}$, although we have yet to prove that the paths lie on opposite sides of the line $a_{A_{i} A_{j}}$ (this proof will be done in the next lemma).
 ${ }^{238}$ Obviously, the points $A_{i}, A_{j}, A_{k}, A_{l}$ cannot be all collinear.
 ${ }^{239}$ In this proof we implicitly use the results of the preceding lemma (L 1.2.63.1) and T 1.2.20.
 ${ }^{240}$ Here are some details: Performing successive straightening operations, we turn the polygon $A_{1} A_{2} \ldots A_{n}$ into the (convex according to L 1.2.63.3) quadrilateral $A_{i} A_{p} A_{j} A_{q}$ (it takes up to four straightenings). Using L 1.2.62.4 we then conclude that $A_{i} A_{j} \subset \operatorname{Int} \angle A_{k} A_{i} A_{l}$.
 ${ }^{241}$ In a polygon $A_{1} A_{2} \ldots A_{n}$, i.e. in a path $A_{1} A_{2} \ldots A_{n} A_{n+1}$ with $A_{n+1}=A_{1}$ we shall use the following notation wherever it is believed to to lead to excessive confusion: $A_{n+2} \rightleftharpoons A_{2}, A_{n+3}=A_{3}$, ldots. While sacrificing some pedantry, this notation saves us much hassle at the place where "the snake bites at its tail".
 ${ }^{242}$ Observe that there are certain requirements on the minimum number of sides the polygon must possess in order to make a traversal of the given type: While traversals of the first type can happen to a digon, it takes a triangle to have a traversal of the second type and a quadrilateral for a traversal of the third type.

[^79]: ${ }^{243}$ Thus, only paths with equal number of vertices (and, therefore, of sides), can be weakly congruent.
 ${ }^{244}$ i.e., formed by vertices with the same numbers as in the first path

[^80]: ${ }^{245}$ i.e., formed by sides made of pairs of vertices with the same numbers as in the first path
 ${ }^{246}$ For convenience, in what follows we shall usually refer to $A 1.3 .5$ instead of L 1.3.1.1.
 ${ }^{247}$ The availability of an interval $A^{\prime} B^{\prime}$ with the property $A B \equiv A^{\prime} B^{\prime}$ is guaranteed by A 1.3.1.

[^81]: ${ }^{248}$ i.e., intervals formed by pairs of points with equal numbers
 ${ }^{249}$ We are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for $n-1$, i.e. if $\left[A_{i} A_{i+1} A_{i+2}\right]$, [$B_{i} B_{i+1} B_{i+2}$] for all $i=1,2, \ldots n-2$, then obviously $\left[A_{i} A_{i+1} A_{i+2}\right],\left[B_{i} B_{i+1} B_{i+2}\right]$ for all $i=1,2, \ldots n-3$; if $A_{i} A_{i+1} \equiv B_{i} B_{i+1}$ for all $i=1,2, \ldots, n-1$, then $A_{i} A_{i+1} \equiv B_{i} B_{i+1}$ for all $i=1,2, \ldots, n-2$.
 ${ }^{250}$ In what follows we shall increasingly often use simple facts and arguments such as that, for instance, $D A_{B_{1}} a_{A C} \& A_{B_{1}} A_{B_{2}} a_{A C} \stackrel{\text { L1.2.18.2 }}{\Longrightarrow} D A_{B_{2}} a_{A C}$ without mention, so as not to clutter exposition with excessive trivial details.

[^82]: ${ }^{251}$ We take into account the obvious fact that the angles $\angle B^{\prime} A^{\prime} C^{\prime}, \angle B^{\prime \prime} A^{\prime} C^{\prime}$ are equal to, respectively, to $\angle C^{\prime} A^{\prime} B^{\prime}, C^{\prime} A^{\prime} B^{\prime \prime}$.
 ${ }^{252}$ Recall that, according to the notation introduced on p. 71, in a $\triangle A B C \angle A \rightleftharpoons \angle B A C=\angle C A B$.

[^83]: ${ }^{253}$ Under the conditions of the theorem, the angle $\angle\left(h, k^{c}\right)$ (which is obviously also adjacent supplementary to the angle $\angle(h, k)$) is also congruent to the angle $\angle\left(h^{\prime}, k^{\prime c}\right)$ (adjacent supplementary to the angle $\angle\left(h^{\prime}, k^{\prime}\right)$). But due to symmetry in the definition of angle, this fact adds nothing new to the statement of the theorem.

[^84]: ${ }^{254}$ We take into account here that in view of L 1.2 .11 .3 we have $E \in A_{B} \Rightarrow \angle E A C=\angle B A C, E^{\prime} \in A^{\prime}{ }_{B^{\prime}} \Rightarrow \angle E^{\prime} A^{\prime} C^{\prime}=\angle B^{\prime} A^{\prime} C^{\prime}$. Thus, $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ turns into $\angle E A C \equiv \angle E^{\prime} A^{\prime} C^{\prime}$.
 ${ }^{255}$ Alternatively, to prove this corollary we can write: $\angle\left(h^{c}, k\right)=\operatorname{adjsp} \angle(h, k) \& \angle\left(h^{c}, k\right)=\operatorname{adj} \angle\left(h^{c}, k^{\prime}\right) \& \angle(h, k) \equiv$ $\angle\left(h^{c}, k^{\prime}\right) \& \angle\left(h^{c}, k\right) \equiv \angle\left(h^{c}, k\right) \stackrel{\mathrm{C} 1.3 .6 .1}{\Longrightarrow} k^{\prime}=k^{c}$. Hence the result follows immediately by the preceding theorem T 1.3.7.
 ${ }^{256}$ I.e. we have $\angle\left(h^{\prime}, l^{\prime}\right) \equiv \angle(h, l)$, where $l=k^{c}$

[^85]: ${ }^{257}$ In our further exposition in this part of the book the word "projection" will mean orthogonal projection, unless otherwise stated. We will also omit the mention of the line onto which the interval is projection whenever this mention is not relevant.
 ${ }^{258}$ Again, we will usually leave out the word "orthogonal". We shall also mention the line on which the interval is projected only on an as needed basis.
 ${ }^{259}$ For example, if both $A \notin a, B \notin a$, then A^{\prime}, B^{\prime} are the feet of the perpendicular to the line a drawn, respectively, through the points A, B in the planes containing the corresponding points.
 ${ }^{260}$ We normally do not mention the direction explicitly, as, once defined and fixed, it is not relevant in our considerations.
 ${ }^{261}$ Evidently, the projection is well defined, for is does not depend on the choice of the point C as long as the point C succeeds A. To see this, we can utilize the following property of the precedence relation: If $A \prec B$ then $A \prec C$ for any point $C \in A_{B}$.
 ${ }^{262}$ The trivial details are left to the reader to work out as an exercise. Observe that we are not yet in a position to prove the existence of the projection B of a given point A onto a given line a under a given angle $\angle(h, k)$. Establishing this generally requires the continuity axioms.

[^86]: ${ }^{263}$ The following formulation of this lemma will also be used: Given a line a and a point O on it, in any plane α containing the line a there exists exactly one line b perpendicular to a (and meeting it) at O.
 ${ }^{264}$ For the particular case where it is already known that the point B^{\prime} divides the points A^{\prime}, C^{\prime}, we can formulate the remaining part of the lemma as follows: Let points B and B^{\prime} lie between points A, C and A^{\prime}, C^{\prime}, respectively. Then congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}$ imply $B C \equiv B^{\prime} C^{\prime}$.

[^87]: ${ }^{265}$ Since B, C enter the conditions of the proposition symmetrically, as do B^{\prime}, C^{\prime}, because $B^{\prime} \in A^{\prime} C^{\prime} \xrightarrow{\text { L1.2.11.3 }} C^{\prime} \in A^{\prime}{ }_{B^{\prime}}$, we do not really need to consider the case when $[A C B]$.
 ${ }^{266}$ These conditions are met, in particular, when both $k \subset \operatorname{Int} \angle(h, l), k^{\prime} \subset \operatorname{Int} \angle\left(h^{\prime}, l^{\prime}\right)$ (see proof).
 ${ }^{267}$ In the case when h, k lie on one line, i.e. when the ray k is the complementary ray of h and thus the angle $\angle(h, l)$ is adjacent supplementary to the angle $\angle(l, k)=\angle\left(l, h^{c}\right)$, the theorem is true only if we extend the notion of angle to include straight angles and declare all straight angles congruent. In this latter case we can write $\angle(h, l) \equiv \angle\left(h^{\prime}, l^{\prime}\right) \& \angle(l, k) \equiv \angle\left(l^{\prime}, k^{\prime}\right) \& \angle(l, k)=\operatorname{adjsp} \angle(h, l) \& \angle\left(l^{\prime}, k^{\prime}\right)=$ $\operatorname{adj} \angle\left(h^{\prime}, l^{\prime}\right) \xrightarrow{\mathrm{C} 1.3 .6 .1} l^{\prime}=h^{\prime c}$.
 ${ }^{268}$ Note that h, k, as well as, h^{\prime}, k^{\prime}, enter the conditions of the theorem symmetrically. Actually, it can be proven that under these conditions $h \subset \operatorname{Int} \angle(l, k)$ implies $h^{\prime} \subset \operatorname{Int} \angle\left(l^{\prime}, k^{\prime}\right)$ (see P 1.3.9.5 below), but this fact is not relevant to the current proof.
 ${ }^{269}$ Obviously, $a_{O^{\prime} L^{\prime}}=\overline{l^{\prime}}$.
 ${ }^{270}$ Note that $a_{O^{\prime} H^{\prime}}=\overline{h^{\prime}}$.

[^88]: ${ }^{271}$ According to T 1.3.9, they also imply in this case $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$.
 ${ }^{272}$ Note that this proof, especially in its beginning, follows closely in the footsteps of the proof of T 1.3.9.

[^89]: ${ }^{273} \mathrm{We}$ take into account that, obviously, $\left[Z_{1} X^{\prime} Z_{2}\right] \stackrel{\text { L1.2.1.3 }}{\Longrightarrow} X^{\prime} \in a_{Z_{1} Z_{2}}$.
 ${ }^{274} \mathrm{We}$ can assume this without loss of generality - see next footnote.
 ${ }^{275}$ Observe that the seemingly useless fact that $\angle Y X Z_{1} \equiv Y X Z_{2}$ allows us to avoid considering the case $Y \in a_{Z_{1} Z_{2}}$ separately. Instead, we can substitute X for Y and Y for X to obtain the desired result, taking advantage of the symmetry of the conditions of the theorem with respect to this substitution.
 ${ }^{276}$ Again, because of obvious symmetry with respect to substitution $X \rightarrow Y, Y \rightarrow X$, we do not need to consider the case when $\left[X^{\prime} Y X\right]$. Note that we could have avoided this discussion altogether if we united both cases $\left[X^{\prime} X Y\right],\left[X^{\prime} Y X\right]$ into the equivalent $Y \in X^{\prime}{ }_{X}, Y \neq X$, but the approach taken here has the appeal of being more illustrative.
 ${ }^{277}$ To be more precise, we take a point B_{0} such that $C^{\prime}{ }_{B^{\prime \prime}} a_{A^{\prime} C^{\prime}} B_{0}$, and then, using A 1.3.4, draw the angle $\angle A^{\prime} C^{\prime} B^{\prime \prime \prime}$ such that $C^{\prime}{ }_{B^{\prime \prime \prime}} B_{0} a_{A^{\prime} C^{\prime}}, \angle A^{\prime} C^{\prime} B^{\prime \prime} \equiv \angle A^{\prime} C^{\prime} B^{\prime \prime \prime}, B^{\prime \prime} C^{\prime} \equiv B^{\prime \prime \prime} C^{\prime}$. We then have, of course, $C^{\prime}{ }_{B^{\prime \prime}} a_{A^{\prime} C^{\prime}} B_{0} \& C^{\prime}{ }_{B^{\prime \prime \prime}} B_{0} a_{A^{\prime} C^{\prime}} \stackrel{\text { L1.2.18.5 }}{\Longrightarrow}$ $C^{\prime}{ }_{B^{\prime \prime \prime}} a_{A^{\prime} C^{\prime}} C^{\prime}{ }_{B^{\prime \prime}}$. Using jargon, as we did here, allows one to avoid cluttering the proofs with trivial details, thus saving the space and intellectual energy of the reader for more intricate points.

[^90]: ${ }^{278}$ This definition is obviously consistent, as can be seen if we let $C D=A B$.
 ${ }^{279}$ We shall usually omit the word 'strictly'.
 ${ }^{280}$ Again, we shall omit the word 'strictly' whenever we feel that this omission does not lead to confusion
 ${ }^{281}$ We could have said here also that $A^{\prime} B^{\prime}<A B$ iff there is a point $D \in(A B)$ such that $A^{\prime} B^{\prime} \equiv B D$, but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.

[^91]: ${ }^{282}$ We shall usually omit the word 'strictly'.
 ${ }^{283}$ Again, the word 'strictly' is normally omitted
 ${ }^{284}$ As we shall see, in practice the subclass $\mathcal{C}^{g b r}$ is "homogeneous", i.e. its elements are of the same type: they are either all lines, or pencils of rays lying on the same side of a given line, etc.
 ${ }^{285}$ This notation, obviously, shows that the two - element set (generalized abstract interval) $\{\mathcal{A}, \mathcal{B}\}$, formed by geometric objects \mathcal{A}, \mathcal{B}, lies in the set $\left\{\{\mathcal{A}, \mathcal{B}\} \mid \exists \mathfrak{J} \in \mathcal{C}^{g b r}(\mathcal{A} \in \mathfrak{J} \& \mathcal{B} \in \mathfrak{J})\right\}$ iff there is a set \mathfrak{J} in $\mathcal{C}^{g b r}$, containing both \mathcal{A} and \mathcal{B}.

[^92]: ${ }^{286}$ It appears that all of the conditions $\operatorname{Pr} 1.3 .1-\operatorname{Pr} 1.3 .5$ are necessary to explicate the relevant betweenness properties for points, rays, half-planes, etc. Unfortunately, the author is not aware of a shorter, simpler, or just more elegant system of conditions (should there exist one!) to characterize these properties.
 ${ }^{287}$ Recall that $\mathcal{A}^{\prime} \mathcal{X}^{\prime} \in \mathfrak{I}$ means there is a set $\mathfrak{J}^{\prime \prime}$ in $\mathcal{C}^{g b r}$, such that $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime}, \mathcal{X}^{\prime} \in \mathfrak{J}^{\prime}$.
 ${ }^{288}$ That is, geometric objects $\mathcal{A}^{\prime}, \mathcal{X}^{\prime}, \mathcal{B}^{\prime}$ all lie in one set \mathfrak{J}^{\prime} (with generalized betweenness relation), which lies in the class $\mathcal{C}^{g b r}$, and may be either equal to, or different from, the set \mathfrak{J}. Note that in our formulation of the following properties we shall also assume that the sets (possibly primed) \mathfrak{J} with generalized betweenness relation lie in the set $\mathcal{C}^{g b r}$.
 ${ }^{289}$ As always, "at most" in this context means "one or none".
 ${ }^{290}$ For the particular case where it is already known that the geometric object \mathcal{B}^{\prime} divides the geometric objects \mathcal{A}^{\prime}, \mathcal{C}^{\prime}, we can formulate the remaining part of this property as follows:

 Let geometric objects $\mathcal{B} \in \mathfrak{J}$ and $\mathcal{B}^{\prime} \in \mathfrak{J}^{\prime}$ lie between geometric objects $\mathcal{A} \in \mathfrak{J}, \mathcal{C} \in \mathfrak{J}$ and $\mathcal{A}^{\prime} \in \mathfrak{J}^{\prime}$, $\mathcal{C}^{\prime} \in \mathfrak{J}^{\prime}$, respectively. Then congruences $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}, \mathcal{A C} \equiv \mathcal{A}^{\prime} \mathcal{C}^{\prime}$ imply $\mathcal{B C} \equiv \mathcal{B}^{\prime} \mathcal{C}^{\prime}$.
 ${ }^{291}$ As explained above, $\mathcal{A B} \in \mathfrak{I}$ means that there is a set $\mathfrak{J} \in \mathcal{C}^{g b r}$ with a generalized betweenness relation containing the generalized abstract interval $\mathcal{A B}$. Note also that a geometric object does not have to be a point in order to be called a midpoint in this generalized sense. Later we will see that it can also be a ray, a half-plane, etc. To avoid confusion of this kind, we will also be referring to the midpoint $\mathcal{A B}$ as the middle of this generalized interval.
 ${ }^{292}$ Conventional angles are those formed by rays made of points in the traditional sense, as opposed to angles formed by any other kind of generalized rays.
 ${ }^{293}$ Worded another way, we can say that each of the sets \mathfrak{J} is formed by the two sides of the corresponding straight angle plus all the rays with the same initial point inside that straight angle.
 ${ }^{294}$ Here the pencil \mathfrak{J} is formed by the rays lying on the same side of a given line a and having the same initial point $O \in a$,plus the two rays into which the point O divides the line a.
 ${ }^{295}$ Moreover, we are then able to immediately claim that the ray n lies between l, m in \mathfrak{J}^{\prime} as well. (See also L 1.3.14.2.)

[^93]: ${ }^{296}$ When applied to the particular cases of conventional (point-pair) or angular abstract intervals, they sometimes reiterate of perhaps even weaken some already proven results. We present them here nonetheless to illustrate the versatility and power of the unified approach. Furthermore, the proofs of general results are more easily done when following in the footsteps of the illustrated proofs of the particular cases.

 Also, to avoid clumsiness of statements and proofs, we shall often omit mentioning that a given geometric object lies in a particular set with generalized betweenness relation when this appears to be obvious from context.
 ${ }^{297}$ As shown above, the availability of an interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \in \mathfrak{I}$ with the property $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$ is guaranteed by Pr 1.3.1.
 ${ }^{298}$ Since \mathcal{B}, \mathcal{C} enter the conditions of the proposition symmetrically, as do $\mathcal{B}^{\prime}, \mathcal{C}^{\prime}$, because $\mathcal{B}^{\prime} \in \mathcal{A}^{\prime} \mathcal{C}^{\prime} \xrightarrow{\mathrm{L} 1.2 .25 .3} \mathcal{C}^{\prime} \in \mathcal{A}^{\prime} \mathcal{B}^{\prime}$, we do not really need to consider the case when $[\mathcal{A C B}]$.

[^94]: ${ }^{299}$ i.e., generalized intervals formed by pairs of geometric objects with equal numbers
 ${ }^{300} \mathrm{We}$ are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for $n-1$, i.e. if $\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{i+2}\right]$, $\left[\mathcal{B}_{i} \mathcal{B}_{i+1} \mathcal{B}_{i+2}\right]$ for all $i=1,2, \ldots n-2$, then obviously $\left[\mathcal{A}_{i} \mathcal{A}_{i+1} \mathcal{A}_{i+2}\right],\left[\mathcal{B}_{i} \mathcal{B}_{i+1} \mathcal{B}_{i+2}\right]$ for all $i=1,2, \ldots n-3$; if $\mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{B}_{i} \mathcal{B}_{i+1}$ for all $i=1,2, \ldots, n-1$, then $\mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{B}_{i} \mathcal{B}_{i+1}$ for all $i=1,2, \ldots, n-2$.
 ${ }^{301}$ From the following it is apparent that $\mathcal{C}, \mathcal{D} \in \mathfrak{J}$.
 ${ }^{302}$ This definition is obviously consistent, as can be seen if we let $\mathcal{C D}=\mathcal{A B}$.
 ${ }^{303}$ We shall usually omit the word 'strictly'.
 ${ }^{304}$ Again, we shall omit the word 'strictly' whenever we feel that this omission does not lead to confusion

[^95]: ${ }^{305} \mathrm{We}$ could have said here also that $\mathcal{A}^{\prime} \mathcal{B}^{\prime}<\mathcal{A B}$ iff there is a point $\mathcal{D} \in(\mathcal{A B})$ such that $\mathcal{A}^{\prime} \mathcal{B}^{\prime} \equiv \mathcal{B} \mathcal{D}$, but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.

[^96]: ${ }^{307}$ Again, we could have said here also that $\angle\left(h^{\prime}, k^{\prime}\right)<\angle(h, k)$ iff there is a ray o $\subset \operatorname{Int} \angle(h, k)$ equioriginal with h, k such that $\angle\left(h^{\prime}, k^{\prime}\right) \equiv \angle(o, k)$, but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.

[^97]: ${ }^{308}$ In different words:
 Any right angle is less than any obtuse angle.

[^98]: ${ }^{309}$ Strictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.
 ${ }^{310}$ It goes without saying that in the case $\angle\left(h^{c}, k\right) \leqq \angle(h, k)$ it is the angle $\angle\left(h^{c}, k\right)$ that is referred to as the angle between the lines a, b.
 ${ }^{311}$ Indeed, by A $1.3 .1 \exists D^{\prime} D^{\prime} \in A_{D} \& C B \equiv A D^{\prime}$. But $D^{\prime} \in A_{D} \stackrel{\text { L1.2.11.3 }}{\Longrightarrow} A_{D^{\prime}}=A_{D}$.
 ${ }^{312}$ Note also that $A \notin a_{B C} \&[B D A] \stackrel{\mathrm{C} 1.2 .1 .8}{\Longrightarrow} D \notin a_{B C} \stackrel{\mathrm{C} 1.1 .2 .3}{\Longrightarrow} C \notin a_{B D}$.

[^99]: ${ }^{313}$ The reader can refer to Fig. 1.140 for the illustration.
 ${ }^{314}$ See also the observation accompanying the definition of orthogonal projections on p. 117 .
 ${ }^{315}$ Observe that instead of $\angle A<\angle C$ we could directly require that $B C<A B$ (see beginning of proof).

[^100]: ${ }^{316}$ In other words, the finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 2$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers (see definition on p. 15.
 ${ }^{317}$ Observe that this condition is always true if the angle $\angle B A_{0} A_{1}$ is either right or obtuse.
 ${ }^{318}$ In other words, the finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 2$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers (see definition on p. 15.)
 ${ }^{319}$ Note again that instead of $\angle A<\angle C$ we could directly require that $B C<A B$ (see beginning of proof).
 ${ }^{320}[A D C] \&[A E C] \stackrel{\mathrm{T} 1.2 .5}{\Longrightarrow}[A D E] \vee D=E \vee[E D C] . D \neq E$, for $C D<A D$ contradicts $C D \equiv A D$ in view of L 1.3.13.11. Also, $\neg[A D E]$, for otherwise $[A D E] \&[A E C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[D E C],[A D E] \&[D E C] \stackrel{\text { C1.3.13.4 }}{\Longrightarrow} A D<A E \& C E<C D, A D<A E \& A E \equiv C E \& C E<C D \Rightarrow$ $A D<C D$, which contradicts $C D<A D$ in view of L 1.3.13.10. Thus, we have the remaining case $[A E D]$. Hence $[A E D] \&[A D C] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}$ [$E D C]$.

[^101]: ${ }^{321}$ In other words, the finite sequence of points A_{i}, where $i \in \mathbb{N}_{n}, n \geq 2$, has the property that every point of the sequence, except for the first and the last, lies between the two points with adjacent (in \mathbb{N}) numbers, and all intervals $A_{i} A_{i+1}$, where $i \in \mathbb{N}_{n}$, are congruent. (See p. 147.)
 ${ }^{322}$ Obviously, If $F=O$, where O is the vertex of $\angle(h, k)$, then $\angle(h, k)$ is a right angle.

[^102]: ${ }^{323}$ In other words, we require that the angles $\angle\left(h_{2}, h_{3}\right), \angle\left(h_{3}, h_{4}\right)$ are adjacent (see p. 38) and are both acute.
 ${ }^{324}$ At this point it is instructive to note that the rays h_{2}, h_{3}, h_{4} all lie on the same side of the line \bar{h}_{1}.
 ${ }^{325}$ Recall that $\left[h_{i} h_{j} h_{k}\right]$ is a shorthand for $h_{j} \subset \operatorname{Int} \angle\left(h_{i}, h_{k}\right)$.
 ${ }^{326}$ And then, of course, k, h lie on the same side of the line \bar{l}, but, due to symmetry this essentially adds nothing new.

[^103]: ${ }^{327}$ For otherwise $A B \equiv A^{\prime} B^{\prime} \& \angle A \equiv \angle A^{\prime} \& \angle B \equiv \angle B^{\prime} \xrightarrow{\mathrm{T} 1.3 .5} \triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
 ${ }^{328}$ Due to symmetry of the relations of congruence of intervals, angles, and, as a consequence, triangles (see T 1.3.1, T 1.3.11, C 1.3.11.2).
 ${ }^{329}$ Perhaps this is not a very elegant result with a proof that is still less elegant, but we are going to use it to prove some fundamental theorems. (See, for example, T 3.1.11.)
 ${ }^{330}$ Since $A B C D$ is simple, no three vertices of this quadrilateral are collinear.
 ${ }^{331}$ We cannot have $\left[A^{\prime} D^{\prime} E^{\prime}\right]$, for this would mean that the points A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$. But since A, D lie on the opposite sides of $a_{B C}$, one of the conditions of our proposition dictates that A^{\prime}, D^{\prime} lie on the opposite sides of $a_{B^{\prime} C^{\prime}}$.
 ${ }^{332}$ We take into account that in view of $\mathrm{L} 1.2 .21 .6, \mathrm{~L} 1.2 .21 .4$ we have $B \in(E C) \Rightarrow A_{B} \subset$ Int $\angle C A D$ and similarly $B^{\prime} \in\left(E^{\prime} C^{\prime}\right) \Rightarrow$ $A^{\prime}{ }_{B^{\prime}} \subset \operatorname{Int} \angle C^{\prime} A^{\prime} D^{\prime}$. We also take into account that $[A E D] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} A_{E}=A_{D} \Rightarrow \angle C A E=\angle C A D$. Similarly, we conclude that $\angle C^{\prime} A^{\prime} E^{\prime}=\angle C^{\prime} A^{\prime} D^{\prime}$.

[^104]: ${ }^{333}$ Again, we take into account that $[E B C] \stackrel{\text { L1.2.11.15 }}{\Longrightarrow} C_{E}=C_{B}$ and $E \in(A D) \Rightarrow C_{E} \subset$ Int $\angle A C D$ in view of L 1.2.21.6, L 1.2.21.4. Similarly, we conclude that $C^{\prime}{ }_{E^{\prime}}=C^{\prime}{ }_{B^{\prime}}$ and $E^{\prime} \in\left(A^{\prime} D^{\prime}\right) \Rightarrow C^{\prime}{ }_{E^{\prime}} \subset$ Int $\angle A^{\prime} C^{\prime} D^{\prime}$.
 ${ }^{334}$ Of course, the rays $A^{\prime} C^{\prime}, A^{\prime} D^{\prime}$ cannot coincide due to simplicity of the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
 ${ }^{335}$ But the points C, D are still assumed to lie on the opposite sides of the line $a_{A B}$!
 ${ }^{336}$ If B^{\prime}, D^{\prime} were on the same side of the line $a_{A^{\prime} C^{\prime}}$, the points B, D would lie on the same side of the line $a_{A C}$. This can shown be using essentially the same arguments as those used above to show that $B D a_{A C}$ implies $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$. (Observe that the quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ enter the conditions of the theorem symmetrically.)
 ${ }^{337}$ We can write $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime} \& \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& C D a_{A B} \& C^{\prime} D^{\prime} a_{A^{\prime} B^{\prime}} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} . A C \equiv A^{\prime} C^{\prime} \& \angle C A D \equiv$ $\angle C^{\prime} A^{\prime} D^{\prime} \& \angle A D C \equiv \angle A^{\prime} D^{\prime} C^{\prime} \stackrel{\mathrm{T} 1.3 .19}{\Longrightarrow} \triangle A D C \equiv \triangle A^{\prime} D^{\prime} C^{\prime} \Rightarrow A D \equiv A^{\prime} D^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} . \quad \angle A C B \equiv$ $\angle A^{\prime} C^{\prime} B^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \& B a_{A C} D \& B^{\prime} a_{A^{\prime} C^{\prime}} D^{\prime} \stackrel{\mathrm{T} 1.3 .9}{\Longrightarrow} \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$.

[^105]: ${ }^{338}$ We have $C^{\prime} a_{A^{\prime} B^{\prime}} D^{\prime} \& C^{\prime} a_{A^{\prime} B^{\prime}} E^{\prime} \stackrel{\mathrm{L} 1.2 .18 .4}{\Longrightarrow} D^{\prime} E^{\prime} a_{A^{\prime} B^{\prime}}, D^{\prime} E^{\prime} a_{A^{\prime} B^{\prime}} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow} A^{\prime}{ }_{D^{\prime}} \subset$ Int $\angle B^{\prime} A^{\prime} E^{\prime} \vee A^{\prime} D_{D^{\prime}} \subset$ Int $\angle B^{\prime} A^{\prime} E^{\prime}$. But $A^{\prime}{ }_{D^{\prime}} \subset \operatorname{Int} \angle B^{\prime} A^{\prime} E^{\prime}$ in view of the definition of interior of the angle $\angle B^{\prime} A^{\prime} E^{\prime}$ would imply that the points B^{\prime}, D^{\prime} lie on the same side of the line $a_{A^{\prime} C^{\prime}}$, contrary to our assumption.
 ${ }^{339}$ Evidently, $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$ would imply $B D a_{A C}$. This is easily seen using arguments completely symmetrical (with respect to priming) to those employed to show that $B D a_{A C}$ implies $B^{\prime} D^{\prime} a_{A^{\prime} C^{\prime}}$.
 ${ }^{340}$ Actually, we need to assume simplicity only for $A B C D$. The simplicity of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ can then be established using the other conditions of the proposition in the following less than elegant proof. Observe that $A B \equiv A^{\prime} B^{\prime} \& B C \equiv B^{\prime} C^{\prime} \& \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B C \equiv$ $\triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime} \& \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime} \& A C \equiv A^{\prime} C^{\prime}, B C \equiv B^{\prime} C^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle B C D \equiv$ $\triangle B^{\prime} C^{\prime} D^{\prime} \Rightarrow B D \equiv B^{\prime} D^{\prime} \& \angle C B D \equiv \angle C^{\prime} B^{\prime} D^{\prime} \& \angle C D B \equiv \angle C^{\prime} D^{\prime} B^{\prime}$. Since either both A, D lie on the same side of $a_{B C}$ and A^{\prime}, D^{\prime} lie on the same side of $a_{B^{\prime} C^{\prime}}$ or both A, D lie on the opposite side of $a_{B C}$ and A^{\prime}, D^{\prime} lie on the opposite sides of $a_{B^{\prime} C^{\prime}}$, taking into account the congruences $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle D B C \equiv D^{\prime} B^{\prime} C^{\prime}, \angle A C B \equiv A^{\prime} C^{\prime} B^{\prime}, \angle D C B \equiv \angle D^{\prime} C^{\prime} B^{\prime}$, assuming that both A, B, D as well as A, D, C are not collinear (and, as we will see below, this is indeed the case given the conditions of the proposition) using T 1.3 .9 we find that $\angle A B D \equiv \angle A^{\prime} B^{\prime} D^{\prime}, \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime}$, whence $A B \equiv A^{\prime} B^{\prime} \& B D \equiv B^{\prime} D^{\prime} \& \angle A B D \equiv \angle A^{\prime} B^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A B D \equiv \triangle A^{\prime} B^{\prime} D^{\prime} \Rightarrow$ $A D \equiv A^{\prime} D^{\prime} \& \angle B A D \equiv \angle B^{\prime} A^{\prime} D^{\prime} \& \angle B D A \equiv \angle B^{\prime} D^{\prime} A^{\prime}, A C \equiv A^{\prime} C^{\prime} \& C D \equiv C^{\prime} D^{\prime} \& \angle A C D \equiv \angle A^{\prime} C^{\prime} D^{\prime} \xrightarrow{\mathrm{T} 1.3 .4} \triangle A C D \equiv \triangle A^{\prime} C^{\prime} D^{\prime} \Rightarrow$ $\angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime} \& \angle C D A \equiv \angle C^{\prime} D^{\prime} A^{\prime}$. Consider first the case where the points A, D lie on the opposite sides of the line $a_{B C}$ and, consequently, the points A^{\prime}, D^{\prime} lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$. Given the assumptions implicit in the conditions of the theorem, we just need to establish that the open intervals $(A D),(B C)$ do not meet and that the points $A^{\prime}, B^{\prime}, D^{\prime}$, as well as the points $B^{\prime}, C^{\prime}, D^{\prime}$, are not collinear, for the only ways that the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ can be not simple are if $(A D) \cap(B C) \neq \emptyset$, or $B^{\prime} \in a_{A^{\prime} D^{\prime}}$, or $C^{\prime} \in a_{A^{\prime} D^{\prime}}$. (Since the (non-straight) angles $\angle A^{\prime} B^{\prime} C^{\prime}, \angle B^{\prime} C^{\prime} D^{\prime}$ are assumed to exist, the points A^{\prime}, B^{\prime}, C^{\prime} are not collinear, as are points $B^{\prime}, C^{\prime}, D^{\prime}$. Therefore, $\left(A^{\prime} B^{\prime}\right) \cap\left(B^{\prime} C^{\prime}\right)=\emptyset$ and $\left(B^{\prime} C^{\prime}\right) \cap\left(C^{\prime} D^{\prime}\right)=\emptyset$, as is easy to see using L 1.2.1.3. Furthermore, since points A^{\prime}, D^{\prime} lie on the opposite sides of $a_{B^{\prime} C^{\prime}}$, the open intervals $\left(A^{\prime} B^{\prime}\right),\left(C^{\prime} D^{\prime}\right)$ lie on the opposite sides of the line $a_{B^{\prime} C^{\prime}}$ (see T 1.2 .20) and thus also have no common points.) Denote $E \rightleftharpoons(A D) \cap a_{B C}, E^{\prime} \rightleftharpoons\left(A^{\prime} D^{\prime}\right) \cap a_{B^{\prime} C^{\prime}}$. Evidently, $E \neq B, E \neq C$, and $\neg[B E C]$ due to simplicity of the quadrilateral $A B C D$. Hence by T 1.2 .2 we have either $[E B C]$ or $[B C E]$. We are going to show that $E^{\prime} \neq B^{\prime}$ and $E^{\prime} \neq C^{\prime}$, which will imply that $A^{\prime}, B^{\prime}, D^{\prime}$, as well as $B^{\prime}, C^{\prime}, D^{\prime}$, are not collinear for the case in question. To do this, suppose the contrary, i.e. that, say, $E^{\prime}=B^{\prime}$. Then $\angle C^{\prime} B^{\prime} D^{\prime}$ is adjacent supplementary to $\angle A^{\prime} B^{\prime} C^{\prime}$, and in view of $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle C B D \equiv \angle C^{\prime} B^{\prime} D^{\prime}$ using C 1.3.6.1 (recall that the points A, D lie on the opposite sides of the line $a_{B C}$), we conclude that the angle $\angle C B D$ is adjacent supplementary to the angle $\angle A B C$, which, in turn, implies that the points A, B, D are collinear, contrary to the simplicity of the quadrilateral $A B C D$. Similarly, assuming that $E^{\prime}=C^{\prime}$ (which obviously makes the angles $\angle A^{\prime} C^{\prime} B^{\prime}, \angle D^{\prime} C^{\prime} B^{\prime}$ adjacent supplementary), taking into account that $A a_{B C} D, \angle A C B \equiv \angle A^{\prime} C^{\prime} B^{\prime}, \angle D C B \equiv \angle D^{\prime} C^{\prime} B^{\prime}$, and using C 1.3.6.1 we would find that the angles $\angle A C B, \angle D C B$ are adjacent supplementary in contradiction with the simplicity of $A B C D$. (Once we know that $E^{\prime} \neq B^{\prime}$, we can immediately conclude that $E^{\prime} \neq C^{\prime}$ because the conditions of the proposition are invariant with respect to the simultaneous substitutions $\left.A \leftrightarrow D, B \leftrightarrow C, A^{\prime} \leftrightarrow D^{\prime}, B^{\prime} \leftrightarrow C^{\prime}.\right)$ To show that $\neg\left[B^{\prime} E^{\prime} C^{\prime}\right]$, suppose the contrary. If $[E B C]$ then using L 1.2.11.15, L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way, we can write $\angle B A C<\angle E A C=\angle C A D \equiv \angle C^{\prime} A^{\prime} D^{\prime}=\angle C^{\prime} A^{\prime} E^{\prime}<\angle B^{\prime} A^{\prime} C^{\prime}$, whence (see L 1.3.16.6-L 1.3.16.8) $\angle B A C<\angle B^{\prime} A^{\prime} C^{\prime}$, which in view of L 1.3 .16 .11 contradicts the congruence $\angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ established earlier. If [$B C E$] then (using again L 1.2 .11 .15 , L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way) we can write $\angle C D B<\angle B D E=\angle B D A \equiv \angle B^{\prime} D^{\prime} A^{\prime}=\angle B^{\prime} D^{\prime} E^{\prime}<\angle C^{\prime} D^{\prime} B^{\prime}$, whence (see L 1.3.16.6-L 1.3.16.8) $\angle C D B<\angle C^{\prime} D^{\prime} B^{\prime}$, which in view of L 1.3 .16 .11 contradicts the congruence $\angle C D B \equiv \angle C^{\prime} D^{\prime} B^{\prime}$ established earlier. (Again, once the case where $[E B C]$ has been considered, the contradiction for the case where $[B C E]$ can be immediately obtained from symmetry considerations; namely, from the fact that the conditions of the theorem are left unchanged by the simultaneous substitutions $A \leftrightarrow D, B \leftrightarrow C, A^{\prime} \leftrightarrow D^{\prime}, B^{\prime} \leftrightarrow C^{\prime}$.) We now turn to the case where the points A, D lie on the same side of the line $a_{B C}$ and, consequently, the points A^{\prime}, D^{\prime} lie on the same side of the line $a_{B^{\prime} C^{\prime}}$. Obviously, the only way the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ could be not simple given the conditions of the theorem is if the half-closed intervals $\left(B^{\prime} A^{\prime}\right],\left(C^{\prime} D^{\prime}\right]$ have a common point, say, E^{\prime}. But then it is easy to show using C 1.3 .6 .2 that the half-closed intervals $(B A],(C D]$ have a common point, say, E, which contradicts the assumed simplicity of $A B C D$. (In fact, since $E^{\prime}=\left(B^{\prime} A^{\prime}\right] \cap\left(C^{\prime} D^{\prime}\right]$ and $\left(B^{\prime} A^{\prime}\right] \subset B^{\prime}{ }_{A^{\prime}},\left(C^{\prime} D^{\prime}\right] \subset C^{\prime}{ }_{D^{\prime}}$ (see L 1.2.11.1, L 1.2.11.13), we have $E^{\prime}=B_{A^{\prime}}^{\prime} \cap C^{\prime}{ }_{D^{\prime}}$. Taking into account $\angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}, \angle B C D \equiv \angle B^{\prime} C^{\prime} D^{\prime}$ and using C 1.3.6.2, we see that the rays B_{A}, C_{D} meet in some point E such that $\triangle A E C \equiv \triangle A^{\prime} E^{\prime} C^{\prime}$, which implies that $A E \equiv A^{\prime} E^{\prime}, C E \equiv C^{\prime} E^{\prime}$. Then from L 1.3.13.3, T 1.3.2 we find that the point E lies on the half-closed intervals $(B A],(C D]$ in contradiction with the assumed simplicity of $A B C D$.

[^106]: ${ }^{341}$ Obviously, E exists by definition of "points A, D lie on the opposite sides of $a_{B C}$ "
 ${ }^{342}$ Observe that the quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ enter the conditions of the theorem symmetrically.
 ${ }^{343}$ And, of course, the angle $B A C$ is right iff $D=A$.
 ${ }^{344}$ Recall that, by hypothesis, $a_{B D} \perp a_{D A}=a_{A C}$.
 ${ }^{345}$ The reader can refer to any of the figures Fig. 1.135, a), c), d) for this case.

[^107]: ${ }^{346}$ Observe that these conditions imply, and this will be used in the ensuing proofs, that $\left[A_{1} A_{n-1} A_{n}\right],\left[B_{1} B_{n-1} B_{n}\right]$ by L 1.2 .7 .3 , and for all $i, j \in \mathbb{N}_{n-1}$ we have $A_{i} A_{i+1} \equiv A_{j} A_{j+1}, B_{i} B_{i+1} \equiv B_{j} B_{j+1}$ by T 1.3.1.
 ${ }^{347}$ Observe that the argument used to prove the present lemma, together with P 1.3.1.5, allows us to formulate the following facts: Given an interval $A B$ consisting of k congruent intervals, each of which (or, equivalently, congruent to one which) results from division of an interval $C D$ into n congruent intervals, and given an interval $A^{\prime} B^{\prime}$ consisting of k congruent intervals (congruent to those) resulting from division of an interval $C^{\prime} D^{\prime}$ into n congruent intervals, if $C D \equiv C^{\prime} D^{\prime}$ then $A B \equiv A^{\prime} B^{\prime}$. Given an interval $A B$ consisting of k_{1} congruent intervals, each of which (or, equivalently, congruent to one which) results from division of an interval $C D$ into n congruent intervals, and given an interval $A^{\prime} B^{\prime}$ consisting of k_{2} congruent intervals (congruent to those) resulting from division of an interval $C^{\prime} D^{\prime}$ into n congruent intervals, if $C D \equiv C^{\prime} D^{\prime}, A B \equiv A^{\prime} B^{\prime}$, then $k_{1}=k_{2}$.
 ${ }^{348}$ Due to symmetry and T 1.3.1, we do not really need to consider the case $B_{1} B_{2}<A_{1} A_{2}$.

[^108]: ${ }^{349}$ In other words, all intervals $A_{i} A_{i+1}$, where $i \in \mathbb{N}_{n-1}$, are congruent
 ${ }^{350}$ For instance, it is obvious from L 1.2.7.3, L 1.2.11.15 that P can be any of the points A_{1}, \ldots, A_{n}.

[^109]: ${ }^{351}$ All congruences we need are already true by hypothesis.
 ${ }^{352}$ And the following theorem T 1.3 .22 shows that it is the midpoint of $A B$.
 ${ }^{353}$ The reader is encouraged to draw for himself figures for the cases left unillustrated in this proof.
 ${ }^{354}$ Observe that (see C 1.1.2.3, C 1.1.1.3) $C \notin a_{A B} \& D \notin a_{A B} \Rightarrow B \notin a_{A D} \& A \notin a_{B C} ; C \notin a_{A E}=a_{A B} \Rightarrow A \notin a_{E C} ; D \notin a_{E B}=$ $a_{A B} \Rightarrow B \notin a_{E D}$.
 ${ }^{355}$ Once we have established that $E \neq A$, the inequality $E \neq B$ follows simply from symmetry considerations, because our construction is invariant with respect to the simultaneous substitution $A \leftrightarrow B, C \leftrightarrow D$, which maps the angle $\angle C A B$ into the angle $\angle A B D$, and the angle $\angle D B A$ into the angle $\angle B A C$, and so preserves the congruence (by construction) of $\angle C A B$ and $\angle A B D$.
 ${ }^{356}$ Again, once we know that $\neg[E A B]$, the fact that $\neg[A B E]$ follows already from the symmetry of our construction under the simultaneous substitution $A \leftrightarrow B, C \leftrightarrow D$.
 ${ }^{357}$ Obviously, E is the only common point of the open interval $(C D),(A B)$, for otherwise the lines $a_{C D}, a_{A B}$ would coincide, thus forcing the points C, D to lie on the line $a_{A B}$ contrary to hypothesis.
 ${ }^{358}$ And the following theorem T 1.3.22 shows that it is the midpoint of $A B$.
 ${ }^{359}$ Due to symmetry, we do not need to consider the case $[A E F]$.

[^110]: ${ }^{360}$ Again, due to symmetry with respect to the substitution $A \leftrightarrow B$, we do not really need to consider the case [$\left.E A B\right]$ once the case $[A B E]$ has been considered and discarded.
 ${ }^{361}$ Thus, we have completed the proof that congruence of conventional intervals is a relation of generalized congruence.
 ${ }^{362}$ Combined with the present lemma, L 1.3.8.1 allows us to assert that given a line $a_{O A}$, through any point C not on it exactly one perpendicular to $a_{O A}$ can be drawn. Observe also that if $a_{C A} \perp a, a_{C A^{\prime}} \perp a$, where both $A \in a, A^{\prime} \in a$, then $A^{\prime}=A$.

[^111]: ${ }^{363}$ One could add here the following two statements: The foot D of the altitude $B D$ coincides with the point C iff the angle $\angle B C A$ is right and the angle $B A C$ is acute. (In this situation we also refer to $B D$ as the side altitude of $\triangle A B C$.) The points A, C, D are in the order $[A C D]$ iff both the angle $\angle B C A$ is obtuse and the angle $\angle B A C$ is acute. (In this situation we again refer to $B D$ as the exterior altitude of $\triangle A B C$.) It is obvious, however, that due to symmetry these assertions add nothing essentially new. Observe also that any triangle can have at most one either exterior or side altitude and, of course, at least two interior altitudes. The exterior and side altitudes can also be sometimes referred to as improper altitudes.
 ${ }^{364}$ Note also an intermediate result of this proof that then the triangle $\triangle A B D$ is congruent to the triangle $\triangle C B D$

[^112]: ${ }^{365}$ Once we have shown that $\neg(\angle A<\angle C)$, the inequality $\neg(\angle C<\angle A)$ follows immediately from symmetry considerations expressed explicitly in the substitutions $A \rightarrow C, C \rightarrow A$.
 ${ }^{366}$ Note that this part of the proof can be made easier using L 1.3.24.1.
 ${ }^{367}$ That is $\angle(h, k)$ is either an angle (in the conventional sense of a pair of non-collinear rays) or a straight angle $\angle\left(h, h^{c}\right)$.
 ${ }^{368}$ More broadly, using the properties of congruence of angles, we can speak of any angle congruent to the angles $\angle(h, l), \angle(l, k)$, as half of the extended angle congruent to the $\angle(h, k)$.
 ${ }^{369}$ Thus, in the case of a straight angle $\angle\left(h, h^{c}\right)$ the role of the bisector is played by the perpendicular l to \bar{h}. The foot of the perpendicular is, of course, the common origin of the rays h and h^{c}.

[^113]: ${ }^{370}$ Thus, we have completed the proof that congruence of conventional angles is a relation of generalized congruence.

[^114]: ${ }^{371}$ Obviously, using A 1.2.2, we can choose the point E so that $[A C E]$. Then, of course, $C_{E}=\left(C_{A}\right)^{c}$.
 ${ }^{372}$ See discussion accompanying the definition of orthogonality on p. 117.
 ${ }^{373}$ We can put the assumption $\angle B^{\prime} B C \equiv a d j s p \angle C^{\prime} C B$ into a slightly more symmetric form by writing it as $\angle B^{\prime} B C \equiv \angle C^{\prime} C D$, where D is an arbitrary point such that $[B C D]$. Obviously, the two assumptions are equivalent.

[^115]: ${ }^{374}$ Note that the lines $a_{A A^{\prime}}, a_{B B^{\prime}}$ and $a_{B B^{\prime}}, a_{C C^{\prime}}$ are parallel no matter whether the points $A^{\prime}, B^{\prime}, C^{\prime}$ all lie on one side of a or one of them (evidently, this can only be either A or C but not B) lies on the side of a opposite to the one containing the other two points. ${ }^{375}$ We have $a_{A A^{\prime}}\left\|a_{B B^{\prime}} \Rightarrow B^{\prime} \neq A^{\prime}, a_{B B^{\prime}}\right\| a_{C C^{\prime}} \Rightarrow B^{\prime} \neq C^{\prime}$. Then from T 1.2 .2 we have either $\left[B^{\prime} A^{\prime} C^{\prime}\right]$, or $\left[A^{\prime} C^{\prime} B^{\prime}\right]$, or $\left[A^{\prime} B^{\prime} C^{\prime}\right]$. But $\left[B^{\prime} A^{\prime} C^{\prime}\right]$ would imply that the point B^{\prime}, C^{\prime} lie on opposite sides of the line $a_{A A^{\prime}}$. This, however, contradicts the fact that the line $a_{B B^{\prime}}$ lies inside the strip $a_{A A^{\prime}} a_{C C^{\prime}}$. (Which, according to the definition of interior of a strip, means that the lines $a_{B B^{\prime}}, a_{C C^{\prime}}$ lie on the same side of the line $\left.a_{A A^{\prime}}.\right)$ This contradiction shows that we have $\neg\left[B^{\prime} A^{\prime} C^{\prime}\right]$. Similarly, we can show that $\neg\left[A^{\prime} C^{\prime} B^{\prime}\right]$.
 ${ }^{376}$ Here we assume, of course, that $A^{\prime} \neq A, B^{\prime} \neq B, C^{\prime} \neq C$.
 ${ }^{377}$ Again, we assume that $A^{\prime} \neq A, B^{\prime} \neq B, C^{\prime} \neq C$.
 ${ }^{378}$ And then, as we shall see in the beginning of the proof, $C^{\prime} \notin a^{\prime}$
 ${ }^{379}$ In the important case of orthogonal projections this result can be formulated as follows: Suppose we are given a line a, points B, B^{\prime} not on it, and points C, C^{\prime} such that $A B \equiv A^{\prime} B^{\prime}, B C \equiv B^{\prime} C^{\prime}, \angle A B C \equiv \angle A^{\prime} B^{\prime} C^{\prime}$, where $A \rightleftharpoons \operatorname{proj}(B, a)$, $A^{\prime} \rightleftharpoons \operatorname{proj}\left(B^{\prime}, a^{\prime}\right)$. Then $A D \equiv A^{\prime} D^{\prime}$, where $D \rightleftharpoons \operatorname{proj}(C, a), D^{\prime} \rightleftharpoons \operatorname{proj}\left(C^{\prime}, a^{\prime}\right)$. Furthermore, if $C \notin a$ then $C D \equiv C^{\prime} D^{\prime}$ and $\angle B C D \equiv B^{\prime} C^{\prime} D^{\prime}$.
 ${ }^{380}$ Note the following properties: If the points B, C lie on the same side of a and $F \in a$ is such a point that $D \prec F$ on a, i.e. such that $[A D F]$, then $\angle B A D \equiv \angle C D F$, since both these angles are congruent to the $\angle(h, k)$ by hypothesis and by definition of projection under $\angle(h, k)$. Similarly, if B^{\prime}, C^{\prime} lie on the same side of a^{\prime} and $F^{\prime} \in a^{\prime}$ is such a point that $D^{\prime} \prec F^{\prime}$ on a^{\prime}, i.e. such that [$\left.A^{\prime} D^{\prime} F^{\prime}\right]$, then $\angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle C^{\prime} D^{\prime} F^{\prime}$. On the other hand, it is easy to see that if B, C lie on the opposite sides of a then $\angle B A D \equiv \angle A D C$. (In fact, by hypothesis and by definition of projection under $\operatorname{suppl} \angle(h, k)$ we then have $\angle C D F \equiv \operatorname{suppl} \angle(h, k)$, where $F \in a$ is any point such that $D \prec F$ on a, i.e. such that $[A D F]$. Evidently, $\angle C D F=\operatorname{adjsp} \angle A D C$, whence in view of $T 1.3 .6$ we find that $\angle A D C \equiv \angle(h, k)$.) Similarly, B^{\prime}, C^{\prime} lie on the opposite sides of a^{\prime} then $\angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle A^{\prime} D^{\prime} C^{\prime}$.
 ${ }^{381}$ Which means, by definition, that $D=C$.

[^116]: ${ }^{382}$ Due to symmetry we do not need to consider the other logically possible case, i.e. the one where B, C lie on the opposite sides of $a_{A D}$.
 ${ }^{383}$ We have $E \in A_{D} \stackrel{\text { L1.2.19.8 }}{\Longrightarrow} D E a_{A B}, C D a_{A B} \& D E a_{A B} \Rightarrow C E a_{A B}$
 ${ }^{384}$ We take into account that $\angle B C D \equiv \angle E C D, \angle B^{\prime} C^{\prime} D^{\prime} \equiv \angle E^{\prime} C^{\prime} D^{\prime}$.

[^117]: ${ }^{385}$ The angles $\angle A D H, \angle C D L^{\prime}$, being vertical angles, are congruent. Observe also that the angles $\angle A H D, \angle A H L$ are identical in view of L 1.2.11.15, and the same is true for $\angle C L D, \angle C L H$.
 ${ }^{386}$ The angles $\angle K M X, \angle L M X$, both being right angles (because $a_{P X}$ is the right bisector of $K L$), are congruent by T 1.3.16.

[^118]: ${ }^{387}$ Due to symmetry of the assumptions of the theorem with respect to the interchange of X, Y, we can do so without any loss of generality.
 ${ }^{388}$ To show that $a_{Y M} \perp a_{K L}$, one could proceed in full analogy with the previously considered case as follows:
 Since $Y M$ is the median joining the vertex Y of the isosceles triangle $\triangle K Y L$ with its base, by $\mathrm{T} 1.3 .24 Y M$ is also an altitude.
 On the other hand, the same result is immediately apparent from symmetry considerations.
 ${ }^{389}$ We take into account that, obviously, $B C a_{K L} \Rightarrow \alpha_{B K L}=\alpha_{B L C}$.
 ${ }^{390}$ This can be done in the following way, using arguments fully analogous to those we have used to show that $K_{X} \subset \angle M K B$. Since $a_{L M}=a_{K L}$, we have $C X a_{K L} \Rightarrow C X a_{K M} \stackrel{\text { L1.2.21.21 }}{\Longrightarrow} L_{X} \subset \operatorname{Int} \angle M L C \vee L_{C} \subset \operatorname{Int} \angle M L X \vee L_{X}=L_{C}$. But $L_{C} \subset$ Int $\angle M L X \xrightarrow{\text { L1.2.21.21 }}$ $\exists P\left(P \in L_{C} \cap(M X)\right) \Rightarrow \exists P P \in a_{L C} \cap a$, which contradicts $a_{L C} \| a$. It is even easier to note that $L_{X}=L_{C} \Rightarrow X \in a_{L C} \cap a-$ again a contradiction. Thus, we have $L_{X} \subset \angle M L C$. Alternatively, we can simply observe that the conditions of the theorem are symmetric with respect to the simultaneous substitutions $K \leftrightarrow L, B \leftrightarrow C$.

[^119]: ${ }^{391}$ Again, this can be done using arguments fully analogous to those employed to prove $X_{K} \subset \operatorname{Int} \angle B X M$. Since $\angle M L C$ is a right angle, by C 1.3.17.4 the other two angles, $\angle L M C$ and $\angle L C M$, of the triangle $\triangle M L C$, are bound to be acute. Since the angle $\angle L M C$ is acute and the angle $\angle L M X$ is a right angle, by L 1.3.16.17 we have $\angle L M C<\angle L M X$. Hence $C X a_{L M} \& \angle L M C<\angle L M X \xrightarrow{\text { C1.3.16.4 }} M_{C} \subset$ Int $\angle L M X \xrightarrow{\mathrm{~L} 1.2 .21 .10} \exists F\left([L F X] \& F \in M_{C}\right) .[L F X] \stackrel{\mathrm{L} 1.2 .11 .15}{\Longrightarrow} L_{F}=L_{X} \& X_{F}=X_{L} . F \in M_{C} \xrightarrow{\mathrm{~L} 1.2 .11 .8}[M F C] \vee[M C F] \vee F=C$. But the assumptions that $[M C F]$ or $F=C$ lead (by L1.2.21.4, L1.2.21.6, L 1.2.11.3) respectively, to $L_{C} \subset \operatorname{Int} \angle M L X$ or $L_{X}=L_{C}-$ the possibilities discarded above. Thus, we have $[M F C]$. By L 1.2.21.4, L 1.2.21.6 [MFC] $\Rightarrow X_{L}=X_{F} \subset$ Int $\angle C X M$. Alternatively, it suffices to observe that the conditions of the theorem are symmetric with respect to the simultaneous substitutions $K \leftrightarrow L, B \leftrightarrow C$.
 ${ }^{392}$ Observe that $F \in(A B) \cap a_{F D} \& D \in(A C) \cap a_{F D} \stackrel{C 1.2 .1 .12}{\Longrightarrow} A \notin a_{F D} \& B \notin a_{F D} \& C \notin a_{F D}$.
 ${ }^{393}$ Obviously, since all of the points D, F, H, K, L are distinct in this case, and we know that $H \in a_{F D}, K \in a_{F D}, L \in a_{F D}$, by A 1.1.2 the line formed by any two of the five points is identical to $a_{F D}$.
 ${ }^{394}$ Note also the congruences $\angle A B C \equiv \angle C D A, \angle B A C \equiv \angle A C D, \angle A C B \equiv \angle C D A$, obtained as by-products of the proof.
 ${ }^{395}$ Note also the congruence of the following vertical angles: $\angle A E D \equiv \angle B E C, \angle A E B \equiv \angle C E D$.
 ${ }^{396}$ We can safely discard the possibility that $A_{B}=A_{D}$, for it would imply that the points A, B, D are collinear contrary to simplicity of $A B C D$.

[^120]: ${ }^{397}$ We take into account that $\angle A M A_{1} \equiv \angle B M A_{1} \& \angle A M A_{1} \equiv \angle B M B_{1} \Rightarrow \angle B M A_{1} \equiv \angle B M B_{1}$.
 ${ }^{398}$ Recall that $a\|c\| b$, and thus the quadrilaterals $A M M^{\prime} A^{\prime}, B M M^{\prime} B^{\prime}$ are trapezoids.
 ${ }^{399}$ Actually, we are also using T 1.3.1, but we do not normally cite our usage of this theorem and other highly familiar facts explicitly to avoid cluttering the proofs with trivial details.
 ${ }^{400}$ Observe that, having proven $B^{\prime \prime} \neq A^{\prime}$, we could get $B^{\prime \prime} \neq C^{\prime}$ simply out of symmetry considerations. Namely, we need to note that the conditions of the lemma are invariant with respect to the simultaneous interchanges $A \leftrightarrow C, A^{\prime} \leftrightarrow C^{\prime}$, and make the appropriate substitutions.
 ${ }^{401}$ Again, once we know that $\neg\left[B^{\prime \prime} A^{\prime} C^{\prime}\right]$, we can immediately exclude the possibility that $\left[A^{\prime} C^{\prime} B^{\prime \prime}\right]$ using symmetry considerations, namely, that the conditions of the lemma are invariant with respect to the substitutions $A \leftrightarrow C, A^{\prime} \leftrightarrow C^{\prime}$.
 ${ }^{402}$ This corollary can be given a more precise formulation as follows: Given two points A, B in a line figure \mathcal{A}, all points of the image $\mathcal{A}^{\prime} \rightleftharpoons f(\mathcal{A})$ of the set \mathcal{A} under an isometry f lie on the line $a_{A^{\prime} B^{\prime}}$, where $A^{\prime} \rightleftharpoons f(A), B^{\prime}=\rightleftharpoons f(B)$.

[^121]: ${ }^{403}$ This corollary can be stated more precisely as follows: Any isometry f whose domain contains the set \mathcal{P}_{a} of all points of a line a transforms \mathcal{P}_{a} into the set \mathcal{P}_{a}^{\prime} of all points of a line a^{\prime}, not necessarily distinct from a.
 ${ }^{404}$ For convenience, we are making use of a popular jargon, replacing the notation for the set (say, \mathcal{P}_{a} in our example) of points of a line a by the notation for the line itself.
 ${ }^{405}$ In fact, since A, B, as well as A^{\prime}, B^{\prime} enter the conditions symmetrically, we just need to substitute $A \rightarrow B, B \rightarrow A$ in the preceding arguments: Using A 1.3.1, choose $B^{\prime} O_{A^{\prime}}^{\prime c}$ (unique by T 1.3 .1) such that $O B \equiv O^{\prime} B^{\prime}$. Now we can write $[O B A] \&\left[O^{\prime} B^{\prime} A^{\prime}\right] \& O B \equiv$ $O^{\prime} B^{\prime} \& B A \equiv B^{\prime} A^{\prime} \stackrel{\mathrm{P} 1.3 .9 .3}{\Longrightarrow} O A \equiv O^{\prime} A^{\prime}$.
 ${ }^{406}$ Due to symmetry, we just need to make the substitutions $A \rightarrow B, B \rightarrow A$ in our preceding arguments concerning the case $[O A B]$. To further convince the reader, we present here the result of this mechanistic replacement. Since the points O, A, B,

[^122]: ${ }^{411}$ Note that, obviously, $[O A B] \Rightarrow B \in O_{A}$ (see L 1.2.11.16).
 ${ }^{412}$ Since the points A, B, C are, obviously, collinear, by T 1.2 .2 one of them lies between the two others. Using L 1.2 .30 .1 it will be shown that the points $A^{\prime}, B^{\prime}, C^{\prime}$ are in the same lexicographic order as A, B, C. That is, $[A B C]$ implies $\left[A^{\prime} B^{\prime} C^{\prime}\right],[C A B]$ implies $\left[C^{\prime} A^{\prime} B^{\prime}\right], A C B$ implies $\left[A^{\prime} C^{\prime} B^{\prime}\right]$.
 ${ }^{413}$ By P 1.2.3.4 we have either $[A C D]$ or $[A D C]$. In the latter case we can simply rename $C \rightarrow D, D \rightarrow C$.

[^123]: ${ }^{414}$ In fact, making the substitutions indicated above, we write: $\left[B^{\prime} D^{\prime} C^{\prime}\right] \&\left[D^{\prime} P^{\prime} C^{\prime}\right] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}\left[B^{\prime} D^{\prime} P^{\prime}\right] .[B D P] \&\left[B^{\prime} D^{\prime} P^{\prime}\right] \& B D \equiv$ $B^{\prime} D^{\prime} \& D P \equiv D^{\prime} P^{\prime} \stackrel{\mathrm{L} 1.3 .9 .1}{\Longrightarrow} B P \equiv B^{\prime} P^{\prime}$.
 ${ }^{415}$ To make our arguments more convincing, we write down the results of the substitutions explicitly: Suppose $P \in(B D)$. Then $[B D C] \&[B P D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[P D C]$. Since f is a motion, we can write $[P D C] \& P D \equiv P^{\prime} D^{\prime} \& D C \equiv D^{\prime} C^{\prime} \& P C \equiv P^{\prime} C^{\prime} \xrightarrow{\mathrm{L} 1.3 .29 .2}\left[P^{\prime} D^{\prime} C^{\prime}\right]$. $\left[B^{\prime} D^{\prime} C^{\prime}\right] \&\left[P^{\prime} D^{\prime} C^{\prime}\right] \stackrel{\mathrm{L} 1.2 .15 .2}{\Longrightarrow} B^{\prime} \in D_{C^{\prime}}^{\prime c} \& P^{\prime} \in D_{C^{\prime}}^{c} . \quad[B P D] \& B^{\prime} \in D_{C^{\prime}}^{c} \& P^{\prime} \in D_{C^{\prime}}^{c} \& B D \equiv B^{\prime} D^{\prime} \& D P \equiv D^{\prime} P^{\prime} \stackrel{\mathrm{L} 1.3 .9 .1}{\Longrightarrow}$ $\left[B^{\prime} P^{\prime} D^{\prime}\right] \& B P \equiv B^{\prime} P^{\prime} .\left[B^{\prime} P^{\prime} D^{\prime}\right] \&\left[B^{\prime} D^{\prime} A^{\prime}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[B^{\prime} P^{\prime} A^{\prime}\right]$.
 Thus, we have shown that $P \in(A B)$ implies $P^{\prime} \in\left(A^{\prime} B^{\prime}\right)$, where $P^{\prime}=f(P)$. This fact can be written down as $f(A B) \subset\left(A^{\prime} B^{\prime}\right)$. Also, we have $A P \equiv A^{\prime} P^{\prime}, B P \equiv B^{\prime} P^{\prime}$, where $P^{\prime}=f(P)$.
 To show that $f(A)=A^{\prime}$ denote $A^{\prime \prime} \rightleftharpoons f(A)$ (now we assume that the domain of f includes A). ${ }^{416} f$ being an isometry, we have $[A C D] \& A C \equiv A^{\prime \prime} C^{\prime} \& A D \equiv A^{\prime \prime} D^{\prime} \& C D \equiv C^{\prime} D^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[A^{\prime \prime} C^{\prime} D^{\prime}\right] .\left[A^{\prime} C^{\prime} D^{\prime}\right] \&\left[A^{\prime \prime} C^{\prime} D^{\prime}\right] \stackrel{\text { L1.2.15.2 }}{\Longrightarrow} A^{\prime} \in C^{\prime c} D^{\prime} \& A^{\prime \prime} \in C^{\prime c} D^{\prime}$. Hence by T 1.3.1 $A^{\prime \prime}=A^{\prime}$.
 ${ }^{417}$ To show that $f(B)=B^{\prime}$ denote $B^{\prime \prime} \rightleftharpoons f(B)$ (now we assume that the domain of f includes B). f being an isometry, we have $[B D C] \& B D \equiv B^{\prime \prime} D^{\prime} \& B C \equiv B^{\prime \prime} C^{\prime} \& D C \equiv D^{\prime} C^{\prime} \stackrel{\mathrm{L} 1.3 .29 .2}{\Longrightarrow}\left[B^{\prime \prime} D^{\prime} C^{\prime}\right] .\left[B^{\prime} D^{\prime} C^{\prime}\right] \&\left[B^{\prime \prime} D^{\prime} C^{\prime}\right] \stackrel{\mathrm{L} 1.2 .15 .2}{\Longrightarrow} B^{\prime} \in D_{C^{\prime}}^{\prime c} \& B^{\prime \prime} \in D_{C^{\prime}}^{\prime c}$. Hence by T $1.3 .1 B^{\prime \prime}=B^{\prime}$.
 ${ }^{418}$ In volume 1 we reiterate some of the material presented here in small print. This is done for convenience of the reader and to make exposition in each volume more self-contained.
 ${ }^{419}$ Generally speaking, \mathcal{M} need not be a set of points or any other geometric objects. However, virtually all examples of \mathcal{M} we will encounter in this volume will be point sets, also referred to as geometric figures.

[^124]: ${ }^{420}$ Obviously, $\operatorname{Pr} 1.3 .7$ means that the restriction of f on \mathcal{A} is an injection.
 ${ }^{421}$ Obviously, $\operatorname{Pr} 1.3 .8$ means that the restriction of f on \mathcal{A} is a surjection.
 ${ }^{422}$ Obviously, a combination of any two symmetry transformations is again a symmetry transformation, and this composition law is associative
 ${ }^{423}$ Except as in this definition, we will virtually never use the word partial when speaking about these symmetry groups, since in practice we will encounter only such groups, and almost never deal with S_{0}-type (unrestricted) groups.
 ${ }^{424}$ It is evident that we need to have at least two points in the set \mathcal{A} to be able to speak about congruence. In the future we may choose to omit obvious conditions of this type.

[^125]: ${ }^{425}$ Since A, B lie on a on the same side of O but (by definition of reflection) A, A^{\prime} as well as B, B^{\prime} lie on opposite sides of O, using L 1.2.17.9, L 1.2.17.10 we see that A^{\prime}, B^{\prime} lie on the same side of O.
 ${ }^{426}$ In other words, a reflection of a line a in a point O coincides with its inverse function.
 ${ }^{427}$ Suppose $A \prec B$ on a. Denote $A^{\prime} \rightleftharpoons \operatorname{refl} l_{(a, O)}(A), B^{\prime} \rightleftharpoons \operatorname{refl} l_{(a, O)}(B)$. We need to show that $B^{\prime} \prec A^{\prime}$ on a. Suppose that A, B both lie on the first ray (see p. 22). The definition of order on a then tells us that $[A B O]$. This, in turn, implies that $\left[O B^{\prime} A^{\prime}\right]$. (This can be seen either directly, using L 1.3.9.1 and the observation that the points A^{\prime}, B^{\prime} lie on the same side of O (both A^{\prime}, B^{\prime} lie on the opposite side of O from A, B), or using L 1.3.33.2, L 1.3.29.2.) We see that B^{\prime} precedes A^{\prime} on the second ray, and thus on the whole line a. Most of the other cases to consider are even simpler. For example, if A lies on the first ray and B on the second ray, then, evidently, A^{\prime} lies on the second ray, and B^{\prime} on the first ray. Hence $B^{\prime} \prec A^{\prime}$ in this case.
 ${ }^{428}$ In other words, a reflection of a plane α in a line a coincides with its inverse function.

[^126]: ${ }^{429}$ That is, for $F \in \mathcal{A}$ if $F \in a_{E}$ then $F^{\prime} \in{a^{\prime}}_{E^{\prime}}$ and $F \in a_{E}^{c}$ implies $F^{\prime} \in{a^{\prime}}_{E^{\prime}}^{c}$
 ${ }^{430}$ We set, by definition, $f(O) \stackrel{\text { def }}{\Longleftrightarrow} O^{\prime}$. For $B \in O_{A} \cap \mathcal{A}$, using A 1.3.1, choose $B^{\prime} \in O^{\prime}{ }_{A^{\prime}}$ so that $O B \equiv O^{\prime} B^{\prime}$. Similarly, for $B \in O_{A}^{c} \cap \mathcal{A}$, using A 1.3.1, choose $B^{\prime} \in\left(O^{\prime} A^{\prime}\right)^{c}$ so that again $O B \equiv O^{\prime} B^{\prime}$. In both cases we let, by definition, $f(B) \rightleftharpoons B^{\prime}$.
 ${ }^{431}$ For $F \in a_{E}$ we let $F^{\prime} \in{a^{\prime}}_{E^{\prime}}$ and for $F \in a_{E}^{c}$ we let $F^{\prime} \in{a^{\prime \prime}}_{E^{\prime}}$.
 ${ }^{432}$ The reader is encouraged to draw for himself the figure for this case, as well as all other cases left unillustrated in this proof.

[^127]: ${ }^{433}$ Observing also that $F^{\prime} a^{\prime} G^{\prime} \Rightarrow \angle A^{\prime} O^{\prime} G^{\prime}=\operatorname{adj} \angle A^{\prime} O^{\prime} F^{\prime}$.
 ${ }^{434} \mathrm{~A}$ cross is a couple of intersecting lines (see definition on p. 4).
 ${ }^{435}$ In other words, we take the point $C \in B_{A}^{c}$ (recall that $C \in B_{A}^{c}$ means that $[A B C]$, see L 1.2.15.2) such that the interval $B C$ lies in the second class, which we denote $\mu B C$. The notation employed here is perfectly legitimate: we know that $A_{1} B_{1} \in \mu A B \Rightarrow A_{1} B_{1} \equiv$ $A B \Rightarrow \mu A_{1} B_{1}=\mu A B$. In our future treatment of classes of congruent intervals we shall often resort to this convenient abuse of notation. Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter μ (possibly with subscripts) without the accompanying name of defining representative to denote congruence classes of intervals whenever giving a particular defining representative for a class is not relevant.

[^128]: ${ }^{436}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of intervals as follows: $\mu_{2}<\mu_{3}$ implies $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$.
 ${ }^{437}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of intervals as follows: $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ implies $\mu_{2}<\mu_{3}$.
 ${ }^{438}$ That is, we have $A_{i-1} A_{i} \equiv B_{i} C_{i}$ for all $i \in \mathbb{N}_{n}$, and $A_{0} A_{n} \equiv B C$.
 ${ }^{439}$ See the discussion following the definition of addition of classes of congruent intervals
 ${ }^{440}$ Observe that if the n points $A_{0}, A_{1}, \ldots A_{n}$ are such that $\left[A_{i-1} A_{i} A_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, A_{i-1} A_{i} \in \mu B_{i} C_{i}$ for all $i \in \mathbb{N}_{n}$, then all these facts remain valid for the $n-1$ points $A_{0}, A_{1}, \ldots A_{n-1}$. Furthermore, we have $A_{0} A_{n-1} \in \mu_{n-1}$ from the definition of μ_{n-1}.
 ${ }^{441}$ That is, we take μ_{2} to be the class of congruent intervals containing the interval $B C$.

[^129]: ${ }^{442}$ Obviously, O is the only point that a and α can have in common (see T 1.1.4.)
 ${ }^{443}$ The point of intersection (denoted here O) is often assumed to be known from context or not relevant, so we write simply $a \perp \alpha$, as is customary.
 ${ }^{444}$ Observe that O is the only point that d and α can have in common. In fact, if d and α have another common point, the line d lies in the plane α. Then d cannot meet both a and c at O, as this would contradict the uniqueness of the perpendicular with the given point (see L 1.3.8.3.) Suppose d meets a, c in two distinct points A_{1}, C_{1}, respectively. Then the triangle $\triangle A_{1} O C_{1}$ (This IS a triangle, the three (obviously distinct) points O, A_{1}, C_{1} being not collinear.) would have two right angles, which contradicts C 1.3.17.4. Thus, the contradictions we have arrived to convince us that the line d and the plane α have no common points other than O.
 ${ }^{445}$ In fact, suppose $B_{2} \in b, C_{2} \in c$, where $B_{2} \neq O, C_{2} \neq O$. Then both $B_{2} \notin a, C_{2} \notin a$, for if $B_{2} \in a$ or $C_{2} \in a$ then, respectively, either b or c would coincide with a, having two points in common with it (see A 1.1.2.) We have $B_{2} i n \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \& \mathcal{P}_{\alpha} \backslash \mathcal{P}_{a} \xrightarrow{\text { L1.2.17.8 }} B C a \vee B a C$. Denoting $k \rightleftharpoons O_{B}$ and $l \rightleftharpoons O_{C}$ if $B C a, l \rightleftharpoons\left(O_{C}\right)^{c}$ if $B a C$, wee see that in both cases the rays k, l lie (in plane α) on the same side of the line $a=\bar{h}$. (see L 1.2.18.4, T 1.2.19.)) But $k l a \xrightarrow{\text { L1.2.21.21 }} k \subset \operatorname{Int} \angle(h, l) \vee l \subset \operatorname{Int} \angle(h, k)$. Making the substitution $b \leftrightarrow c$, which, in its turn, induces the substitution $k \leftrightarrow l$, we see that, indeed, no generality is lost in assuming that $k \subset \operatorname{Int} \angle(h, l)$.
 ${ }^{446}$ This implication can be substantiated using either T 1.3.24 or T 1.3.10.
 ${ }^{447}$ I.e. such that $O=b \cap d, b \perp d$

[^130]: ${ }^{448}$ Obviously, $O \in \alpha \& B \notin \alpha \Rightarrow B \neq O$. Therefore, $B \notin a, O$ being the only point that the line a and the plane B have in common. Note also that by A 1.1.6 $a_{O B} \subset \gamma$.
 ${ }^{449}$ Note that it is absolutely obvious that, containing all common points of the planes α, γ, the line c is bound to contain O.
 ${ }^{450}$ In other words $a_{O B} \perp \beta$ at O and $a_{O C} \perp \gamma$ at O - see p. 174.

[^131]: $a_{O P} \subset \beta \Rightarrow a_{O^{\prime} Q} \subset \beta$.

[^132]: ${ }^{452}$ See also P 1.3.24.3 for a shorter way to demonstrate $A C \equiv C B$
 ${ }^{453}$ The latter, by definition, has properties given by $\operatorname{Pr} 1.3 .1-\operatorname{Pr} 1.3 .5$ (see p 126).
 ${ }^{454}$ We assume that all sets $\mathfrak{J}, \mathfrak{J}^{\prime}, \ldots$ with generalized betweenness relation belong to the class $\mathcal{C}^{g b r}$.

[^133]: ${ }^{455}$ As before, in order to avoid clumsiness in statements and proofs, we often do not mention explicitly the set with generalized betweenness relation where a given geometric object lies whenever this is felt to be obvious from context or not particularly relevant.
 ${ }^{456}$ Observe that these conditions imply, and this will be used in the ensuing proofs, that $\left[\mathcal{A}_{1} \mathcal{A}_{n-1} \mathcal{A}_{n}\right],\left[\mathcal{B}_{1} \mathcal{B}_{n-1} \mathcal{B}_{n}\right]$ by L 1.2 .22 .11 , and for all $i, j \in \mathbb{N}_{n-1}$ we have $\mathcal{A}_{i} \mathcal{A}_{i+1} \equiv \mathcal{A}_{j} \mathcal{A}_{j+1}, \mathcal{B}_{i} \mathcal{B}_{i+1} \equiv \mathcal{B}_{j} \mathcal{B}_{j+1}$ by L 1.3.14.1.
 ${ }^{457}$ Observe that the argument used to prove the present lemma, together with T 1.3 .14 , allows us to formulate the following facts: Given a generalized interval $\mathcal{A B}$ consisting of k congruent generalized intervals, each of which (or, equivalently, congruent to one which) results from division of a generalized interval $\mathcal{C D}$ into n congruent generalized intervals, and given a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ consisting of k congruent generalized intervals (congruent to those) resulting from division of a generalized interval $\mathcal{C}^{\prime} \mathcal{D}^{\prime}$ into n congruent generalized intervals, if $\mathcal{C D} \equiv \mathcal{C}^{\prime} \mathcal{D}^{\prime}$ then $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$. Given a generalized interval $\mathcal{A B}$ consisting of k_{1} congruent generalized intervals, each of which (or, equivalently, congruent to one which) results from division of a generalized interval $\mathcal{C D}$ into n congruent generalized intervals, and given a generalized interval $\mathcal{A}^{\prime} \mathcal{B}^{\prime}$ consisting of k_{2} congruent generalized intervals (congruent to those) resulting from division of a generalized interval $\mathcal{C}^{\prime} \mathcal{D}^{\prime}$ into n congruent generalized intervals, if $\mathcal{C D} \equiv \mathcal{C}^{\prime} \mathcal{D}^{\prime}, \mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$, then $k_{1}=k_{2}$.
 ${ }^{458}$ Due to symmetry and T 1.3 .14 , we do not really need to consider the case $\mathcal{B}_{1} \mathcal{B}_{2}<\mathcal{A}_{1} \mathcal{A}_{2}$.
 ${ }^{459}$ In other words, all generalized intervals $\mathcal{A}_{i} \mathcal{A}_{i+1}$, where $i \in \mathbb{N}_{n-1}$, are congruent
 ${ }^{460}$ For instance, it is obvious from L 1.2 .22 .11 , L 1.2 .25 .15 that \mathcal{P} can be any of the geometric objects $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$.

[^134]: ${ }^{461}$ All congruences we need are already true by hypothesis.

[^135]: ${ }^{462}$ That is, in the second case $\mathfrak{J}=\mathfrak{J}_{0} \cup\left\{h, h^{c}\right\}, \mathfrak{J}^{\prime}=\mathfrak{J}_{0}^{\prime} \cup\left\{h^{\prime}, h^{\prime c}\right\}$.
 ${ }^{463}$ As before, in order to avoid clumsiness in statements, we often do not mention explicitly the pencil in question whenever this is felt to be obvious from context or not particularly relevant.
 ${ }^{464} \mathrm{We}$ can also formulate the following facts: Given an angle $\angle(h, k)$ consisting of p congruent angles, each of which (or, equivalently, congruent to one which) results from division of an angle $\angle(l, m)$ into n congruent angles, and given a generalized interval $\angle\left(h^{\prime}, k^{\prime}\right)$ consisting of p congruent angles (congruent to those) resulting from division of an angle $\angle\left(l^{\prime}, m^{\prime}\right)$ into n congruent angle, if $\angle(l, m) \equiv$ $\angle\left(l^{\prime}, m^{\prime}\right)$ then $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$. Given an angle $\angle(h, k)$ consisting of k_{1} congruent angles, each of which (or, equivalently, congruent to one which) results from division of an angle $\angle(l, m)$ into n congruent angles, and given an angle $\angle\left(h^{\prime}, k^{\prime}\right)$ consisting of k_{2} congruent angles (congruent to those) resulting from division of an angle $\angle\left(l^{\prime}, m^{\prime}\right)$ into n congruent angles, if $\angle(l, m) \equiv \angle\left(l^{\prime}, m^{\prime}\right), \angle(h, k) \equiv \angle\left(h^{\prime}, k^{\prime}\right)$, then $k_{1}=k_{2}$.
 ${ }^{465}$ In other words, all angles $\angle\left(h_{i}, h_{i+1}\right)$, where $i \in \mathbb{N}_{n-1}$, are congruent

[^136]: ${ }^{466}$ Obviously, $A \neq O \& B \neq O \& A_{1} \neq O^{\prime} \& B_{1} \neq O^{\prime} \stackrel{\mathrm{A1.1.1}}{\Longrightarrow} \exists a_{O A} \& \exists a_{O B} \& \exists a_{O^{\prime} A_{1}} \& \exists a_{O^{\prime} B_{1}} . O \in \gamma \& A \in \gamma \xrightarrow{\mathrm{A1.1.6}} a_{O A} \subset \gamma$. $O \in \gamma \& B \in \gamma \stackrel{\mathrm{~A} 1.1 .6}{\Longrightarrow} a_{O B} \subset \gamma . O^{\prime} \in \gamma \& A_{1} \in \gamma^{\prime} \stackrel{\mathrm{A} 1.1 .6}{\Longrightarrow} a_{O^{\prime} A_{1}} \subset \gamma^{\prime} . O^{\prime} \in \gamma \& B_{1} \in \gamma^{\prime} \stackrel{\text { A1.1.6 }}{\Longrightarrow} a_{O^{\prime} B_{1}} \subset \gamma^{\prime}$. Hence $a \perp \gamma \Rightarrow a \perp a_{O A} \& a \perp$ $a_{O B}, a \perp \gamma^{\prime} \Rightarrow a \perp a_{O^{\prime} A_{1}} \& a \perp a_{O^{\prime} B_{1}}$.
 ${ }^{467}$ Obviously, the points A, M, B are non-collinear, for $M \in a \perp \gamma \supset a_{A B}, M \neq O$. In a similar manner, the points $A^{\prime}, M, B^{\prime}$ are also not collinear.
 ${ }^{468}$ This angle is referred to as the section of $\widehat{\chi \kappa}$ by α.
 ${ }^{469}$ Loosely speaking, one can say that the (transfinite) "number" of plane angles corresponding to the given dihedral angle with edge a equal the "number" of points on a.
 ${ }^{470}$ Worded another way, we can say that each of the sets \mathfrak{J} is formed by the two sides of the corresponding straight dihedral angle plus all the half-planes with the same edge inside that straight dihedral angle.
 ${ }^{471}$ Note that each of the two sides (half-planes) of the line \bar{h}^{\prime} in α^{\prime} is a subset of the corresponding side of the plane $\bar{\chi}^{\prime}$ in space (see L 1.2.53.11).

[^137]: ${ }^{472}$ Here the pencil \mathfrak{J} is formed by the half-planes lying on the same side of a given plane α and having the same edge $a \in \alpha$, plus the two half-planes into which the line a divides the plane α.
 ${ }^{473}$ Moreover, we are then able to immediately claim that the half-plane ν lies between λ, μ in \mathfrak{J}^{\prime} as well. (See also L 1.3.14.2.)
 ${ }^{474}$ Under the conditions of the theorem, the dihedral angle $\widehat{\chi \kappa^{c}}$ (which is obviously also adjacent supplementary to the dihedral angle $\widehat{\chi \kappa})$ is also congruent to the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime c}}$ (adjacent supplementary to the dihedral angle $\widehat{\chi^{\prime} \kappa^{\prime}}$). But due to symmetry in the definition of dihedral angle, this fact adds nothing new to the statement of the theorem.
 ${ }^{475}$ Alternatively, to prove this corollary we can write: $\angle\left(h^{c}, k\right)=\operatorname{adjsp} \angle(h, k) \& \angle\left(h^{c}, k\right)=a d j \angle\left(h^{c}, k^{\prime}\right) \& \angle(h, k) \equiv$ $\angle\left(h^{c}, k^{\prime}\right) \& \angle\left(h^{c}, k\right) \equiv \angle\left(h^{c}, k\right) \stackrel{\text { C1.3.6.1 }}{\Longrightarrow} k^{\prime}=k^{c}$. Hence the result follows immediately by the preceding theorem T 1.3.7.
 ${ }^{476}$ These conditions are met, in particular, when both $\kappa \subset \operatorname{Int} \widehat{\chi \lambda}, \kappa^{\prime} \subset \operatorname{Int} \widehat{\chi^{\prime} \lambda^{\prime}}$ (see proof).
 ${ }^{477}$ In the case when χ, κ do lie on one plane, i.e. when the half-plane κ is the complementary half-plane of χ and thus the dihedral angle $\widehat{\chi \lambda}$ is adjacent supplementary to the angle $\widehat{\lambda \kappa}=\widehat{\lambda \chi^{c}}$, the theorem is true only if we extend the notion of dihedral angle to include straight dihedral angles and declare all straight dihedral angles congruent. In this latter case we can write $\widehat{\chi \lambda} \equiv \widehat{\chi^{\prime} \lambda^{\prime} \& \widehat{\lambda \kappa} \equiv \widehat{\lambda^{\prime} \kappa^{\prime}} \& \widehat{\lambda \kappa}=}$ $\operatorname{adjsp} \widehat{\chi \lambda} \& \widehat{\lambda^{\prime} \kappa^{\prime}}=\operatorname{adj} \widehat{\chi^{\prime} \lambda^{\prime}} \xrightarrow{\text { C1.3.55.2 }} \lambda^{\prime}=\chi^{\prime c}$.

[^138]: ${ }^{478}$ According to T 1.3 .56 , they also imply in this case $\widehat{\chi \kappa} \equiv \widehat{\chi^{\prime} \kappa^{\prime}}$.
 ${ }^{479}$ At the outset we proceed exactly as in the proof of the preceding theorem. Then we use L 1.2.55.16 to show that $h \subset \angle(k, l)$ and C 1.2.55.24 to show that $h^{\prime} k^{\prime} \bar{l}^{\prime}$.

[^139]: ${ }^{480}$ We shall usually omit the word 'strictly'.
 ${ }^{481}$ Again, the word 'strictly' is normally omitted
 ${ }^{482}$ Again, we could have said here also that $\widehat{\chi^{\prime} \kappa^{\prime}}<\widehat{\chi \kappa}$ iff there is a half-plane $\varnothing \subset$ Int $\widehat{\chi \kappa}$ sharing the edge with χ, κ such that $\widehat{\chi^{\prime} \kappa^{\prime}} \equiv \widehat{\chi \kappa}$, but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.

[^140]: ${ }^{483}$ In different words: Any right dihedral angle is less than any obtuse dihedral angle.
 ${ }^{484}$ Strictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.
 ${ }^{485}$ It goes without saying that in the case $\widehat{\chi^{c} \kappa} \leqq \widehat{\chi \kappa}$ it is the dihedral angle $\widehat{\chi^{c} \kappa}$ that is referred to as the dihedral angle between the planes α, β.

[^141]: ${ }^{486}$ That is, for $Q \in \mathcal{A}$ if $Q \in \alpha_{P}$ then $Q^{\prime} \in \alpha^{\prime}{ }_{P}^{\prime}$ and $Q \in \alpha_{P}^{c}$ implies $Q^{\prime} \in \alpha^{\prime}{ }^{c}{ }_{P}^{\prime}$.
 ${ }^{487}$ In other words, we must be in a position to take \boldsymbol{a} geometric object $\mathcal{C} \in \mathcal{B}_{\mathcal{A}}^{c}$ (recall that $\mathcal{C} \in \mathcal{B}_{\mathcal{A}}^{c}$ means that $[\mathcal{A B C}]$, see L 1.2.29.2) such that the generalized interval $\mathcal{B C}$ lies in the second class, which we denote $\mu \mathcal{B C}$. The notation employed here is perfectly legitimate: we know that $\mathcal{A}_{1} \mathcal{B}_{1} \in \mu \mathcal{A B} \Rightarrow \mathcal{A}_{1} \mathcal{B}_{1} \equiv \mathcal{A B} \Rightarrow \mu \mathcal{A}_{1} \mathcal{B}_{1}=\mu \mathcal{A B}$. As in the case of classes of (traditional) congruent intervals, in our future treatment of classes of congruent generalized intervals we shall often resort to this convenient abuse of notation. Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter μ (possibly with subscripts) without the accompanying name of defining representative to denote congruence classes of generalized intervals whenever giving a particular defining representative for a class is not relevant.

[^142]: ${ }^{488}$ There is a tricky point here. $\mathcal{A D} \in\left(\mu_{1}+\mu_{2}\right)+\mu_{3}$ implies that there is a geometric object \mathcal{C} lying between \mathcal{A} and \mathcal{D} in some set \mathfrak{J}. In its turn, $\mathcal{A C} \in \mu_{1}+\mu_{2}$ implies that there is a geometric object \mathcal{B} lying between \mathcal{A} and \mathcal{C} in some set \mathfrak{J}^{\prime}. Note that the set \mathfrak{J}^{\prime}, generally speaking, is distinct from the set \mathfrak{J}. L 1.3.14.2 asserts, however, that in this case \mathcal{B} will lie between \mathcal{A} and \mathcal{C} in \mathfrak{J} as well.
 ${ }^{489}$ We assume that the classes $\mu \mathcal{A B}, \mu \mathcal{C D}$ can indeed be added.
 ${ }^{490}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of generalized intervals as follows: $\mu_{2}<\mu_{3}$ implies $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$.
 ${ }^{491}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of generalized intervals as follows: $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ implies $\mu_{2}<\mu_{3}$. Note also that, due to the commutativity property of addition, $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ is the same as $\mu_{2}+\mu_{1}<\mu_{3}+\mu_{1}$. In the future we will often implicitly use such trivial consequences of commutativity.
 ${ }^{492}$ That is, we have $\mathcal{A}_{i-1} \mathcal{A}_{i} \equiv \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n}$, and $\mathcal{A}_{0} \mathcal{A}_{n} \equiv \mathcal{B C}$.

[^143]: ${ }^{493}$ See the discussion following the definition of addition of classes of congruent generalized intervals.
 ${ }^{494}$ Observe that if the n geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots \mathcal{A}_{n}$ are such that $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}, \mathcal{A}_{i-1} \mathcal{A}_{i} \in \mu \mathcal{B}_{i} \mathcal{C}_{i}$ for all $i \in \mathbb{N}_{n}$, then all these facts remain valid for the $n-1$ geometric objects $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots \mathcal{A}_{n-1}$. Furthermore, we have $\mathcal{A}_{0} \mathcal{A}_{n-1} \in \mu_{n-1}$ from the definition of μ_{n-1}.
 ${ }^{495}$ That is, we take μ_{2} to be the class of congruent generalized intervals containing the generalized interval $B C$.
 ${ }^{496}$ And, of course, the inequalities $\mu_{1}>\mu_{2}, \mu_{3}>\mu_{4}$ imply $\mu_{1}+\mu_{3}>\mu_{2}+\mu_{4}$. The inequalities involved will also hold for any representatives of the corresponding classes.

[^144]: ${ }^{497}$ In other words, we must be in a position to take a ray $l \in k_{h}^{c}$ (recall that $l \in k_{h}^{c}$ means that [hkl], see L 1.2.36.2) such that the angle $\angle(k, l)$ lies in the second class, which we denote $\mu \angle(k, l)$. The notation employed here is perfectly legitimate: we know that $\angle\left(h_{1}, k_{1}\right) \in \mu \angle(h, k) \Rightarrow \angle\left(h_{1}, k_{1}\right) \equiv \angle(h, k) \Rightarrow \mu \angle\left(h_{1}, k_{1}\right)=\mu \angle(h, k)$. As in the case of classes of congruent intervals, both traditional and generalized ones, in our future treatment of classes of congruent angles we shall often resort to this convenient abuse of notation. Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter μ (possibly with subscripts) without the accompanying name of defining representative to denote congruence classes of angles whenever giving a particular defining representative for a class is not relevant.
 ${ }^{498}$ Recall that by definition all straight angles are congruent to each other and are not congruent to non-straight angles. Thus, all straight angles lie in the single class of equivalence.
 ${ }^{499}$ We assume that the classes $\mu \angle(h, k), \mu \angle(l, m)$ can indeed be added.
 ${ }^{500}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of angles as follows: $\mu_{2}<\mu_{3}$ implies $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$.
 ${ }^{501}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}, \mu_{2}, \mu_{3}$ of angles as follows: $\mu_{1}+\mu_{2}<\mu_{1}+\mu_{3}$ implies $\mu_{2}<\mu_{3}$.

[^145]: ${ }^{502}$ That is, we have $\angle\left(h_{i-1}, h_{i}\right) \equiv \angle\left(k_{i}, l_{i}\right)$ for all $i \in \mathbb{N}_{n}$, and $\angle\left(h_{0}, h_{n}\right) \equiv \angle(k, l)$.
 ${ }^{503}$ And, of course, the inequalities $\mu_{1}>\mu_{2}, \mu_{3}>\mu_{4}$ imply $\mu_{1}+\mu_{3}>\mu_{2}+\mu_{4}$. The inequalities involved will also hold for any representatives of the corresponding classes.
 ${ }^{504}$ Loosely speaking, the sum of any two angles of any triangle is less than two right angles.
 ${ }^{505}$ Here we omit the letters that denote sides of the defining angle when they are not relevant.

[^146]: ${ }^{506}$ Using definition of the interior of $\angle(h, k)$, we can write $\left.m^{c} \subset \operatorname{Int} \angle(h, k) \Rightarrow h m^{c} \bar{k}\right)$.

[^147]: ${ }^{507}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}^{(x t)}, \mu_{2}^{(x t)}, \mu_{3}^{(x t)}$ of overextended angles as follows: $\mu_{2}^{(x t)}<\mu_{3}^{(x t)}$ implies $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}<\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$.
 ${ }^{508}$ This proposition can be formulated in more abstract terms for congruence classes $\mu_{1}^{(x t)}, \mu_{2}^{(x t)}, \mu_{3}^{(x t)}$ of overextended angles as follows: $\mu_{1}^{(x t)}+\mu_{2}^{(x t)}<\mu_{1}^{(x t)}+\mu_{3}^{(x t)}$ implies $\mu_{2}^{(x t)}<\mu_{3}^{(x t)}$.
 ${ }^{509}$ Observe that the requirement $\mu_{1}^{(x t)}<\mu_{3}^{(x t)}$ gives $n_{1} \leq n_{3}$. The fact that $l \subset \operatorname{Int} \angle(h, k) \xrightarrow{\mathrm{C} 1.3 .16 .4} \angle(h, l)<\angle(h, k)$ in view of $\mu_{1}^{(x t)}<\mu_{3}^{(x t)}$ gives $n_{1} \neq n_{3}$. Thus, we have $n_{1}+1 \leq n_{3}$.

[^148]: ${ }^{510}$ And, of course, the inequalities $\mu_{1}^{(x t)}>\mu_{2}^{(x t)}, \mu_{3}^{(x t)}>\mu_{4}^{(x t)}$ imply $\mu_{1}^{(x t)}+\mu_{3}^{(x t)}>\mu_{2}^{(x t)}+\mu_{4}^{(x t)}$. The inequalities involved will also hold for any representatives of the corresponding classes.

[^149]: ${ }^{511}$ In fact, if this were not the case, we would have $\mu \angle A A^{\prime} C>(1 / 2) \mu \angle B A C, \mu \angle C A A^{\prime}>(1 / 2) \mu \angle B A C$, whence $\mu \angle B A C>\mu \angle A A^{\prime} C+$ $\mu \angle C A A^{\prime}$, which contradicts $\mu \angle B A C=\mu \angle A A^{\prime} C+\mu \angle C A A^{\prime}$.

[^150]: ${ }^{512}$ In fact, since $\angle A C^{\prime} O=\angle A C^{\prime} B$ is a right angle, as is $\angle A C B$, from L 1.3.16.17, C 1.3.17.4 we have $\angle A O C^{\prime}<\angle A C^{\prime} O, \angle A B C<$ $\angle A C B$.
 ${ }^{513}$ There are multiple ways to show that of the three alternatives $[A O D],[A D O], A=D$ we must choose $[A O D]$. Unfortunately, the author has failed to find an easy one. (Assuming such an easy way exists!) In addition to the one presented above, we outline here a couple of other possible approaches. The first of them starts with the observation that $a_{A C}=a_{B C^{\prime}}$, so that the points A, C lie on the same side of the line $a_{B C^{\prime}}$. But $[C B D]$ implies that C, D lie on opposite sides of the line $a_{B C^{\prime}}$. By L 1.2.17.10 A, D lie on opposite sides of the line $a_{B C^{\prime}}$. Hence $\exists O^{\prime} O^{\prime} \in(A D) \cap a_{B C^{\prime}}$. Since the lines $a_{A D}, a_{B C^{\prime}}$ are obviously distinct $\left(A \notin a_{B C^{\prime}}\right), O^{\prime}=O$ is the only point they can have in common (T 1.1.1), whence the result. Perhaps the most perverse way to show that $[A O D]$ involves the observation that the line $a_{B C^{\prime}}$ lies in the plane $\alpha_{A C D}$, does not contain any of the points A, C, D, and meets the open interval $(C D)$ in the point B. The Pasch's axiom (A 1.2.4) then shows that the line $a_{B C^{\prime}}$ then meets the open interval $(A D)$ in a point O^{\prime} which is bound to coincide with O since the lines $a_{A D}, a_{B C^{\prime}}$ are distinct.
 ${ }^{514}$ Since $\Sigma_{\triangle A B C}^{(a b s) \angle}<\pi^{(a b s, x t)}$ the subtraction makes sense.

[^151]: ${ }^{515}$ Since $D \in(A C)$, the angles $\angle A D B, \angle C D B$ are adjacent supplementary.
 ${ }^{516}$ We take into account that the ray B_{D} lies completely inside the angle $\angle A B C$, which, in its turn, implies that $\mu(\angle A B D, 0)+$ $\mu(\angle C B D, 0)=\mu(\angle A B C, 0)$ (see L 1.2.21.6, L 1.2.21.4). We also silently use the obvious equalities $\angle B A D=\angle B A C, \angle B C D=\angle B C A$.
 ${ }^{517}$ From C 1.3.67.13 the angular defect of $\triangle A D E$ is less than the angular defect of the triangle $A B D$, which, in turn, is less than the angular defect of $\triangle A B C$.
 ${ }^{518}$ This condition is required for the quadrilateral to be simple.
 ${ }^{519}$ That is, a quadrilateral $A B C D$ with $A D a_{B C}$ and $\angle A B C \equiv \angle B C D, B A \equiv C D$.

[^152]: ${ }^{520}$ It is convenient to do this by substituting $A \leftrightarrow D, B \leftrightarrow C$ and using the symmetry of the conditions of the lemma with respect to these substitutions.
 ${ }^{521}$ Otherwise we would have $E=B$.
 ${ }^{522}$ We silently employ the facts that any angle is either acute, or right, or obtuse, and that there is at most one right angle in a right triangle.
 ${ }^{523}$ If $\angle A B C$ is acute, then the angle $B C D$, congruent to it, is also acute.
 ${ }^{524} \mathrm{~T}$ 1.3.16 ensures that $\angle A E B \equiv \angle D F C$.

[^153]: ${ }^{525}$ Strictly speaking, it is an offence against mathematical rigor to call a relation an equivalence before it is shown to possess the properties of reflexivity symmetry sand transitivity. However, as long as these properties are eventually shown to hold, in practice this creates no problem.
 ${ }^{526}$ In the last case we also assume that $A \neq B$ (and then it follows in an obvious way that $C \neq D$), so that the abstract intervals $A B$, $C D$ make sense. We also require, of course, that three of (and thus all of) the points A, B, C, D are collinear.
 ${ }^{527} A \neq B, A \neq C$ because $A B, A C$ make sense by hypothesis.
 ${ }^{528}$ In fact, using C 1.2.14.1, L 1.2.13.6, we can write $[A B D C] \Rightarrow A \prec D \prec B \prec C \Rightarrow(A \prec B) \&(D \prec C),[A D B C] \Rightarrow A \prec D \prec B \prec$ $C \Rightarrow(A \prec B) \&(D \prec C),[A D C B] \Rightarrow A \prec D \prec C \prec B \Rightarrow(A \prec B) \&(D \prec C)$, i.e. in all cases we have a contradiction in view of L 1.2.13.5.
 ${ }^{529}$ Suppose $[A C B D]$. Then $[A C B] \&[C M B] \&[C B D] \stackrel{\text { L1.2.3.2 }}{\Longrightarrow}[A C M] \&[M B D]$ and $A C \equiv B D \& C M \equiv M B \&[A C M] \&[M B D] \xrightarrow{\text { A1.3.3 }}$ $A M \equiv M D$, i.e. M is the midpoint of $A D$.
 ${ }^{530}$ As mentioned above, it suffices to require that any three of them colline.
 ${ }^{531}$ In fact, $B M \equiv M C \& A M \equiv M D \& A=C \Rightarrow B M \equiv M D$, whence $B=D$ by T1.3.2.
 ${ }^{532}$ Observe that we do not need to consider the case $[M A C]$ as the result of the simultaneous substitutions $A \leftrightarrow C, B \leftrightarrow D$ which do not alter our assumptions.

[^154]: ${ }^{533}$ We usually assume the line a to be known and fixed and so do not include it in our notation for line vectors.

[^155]: ${ }^{534}$ In other words, we can say that the vectors $\overrightarrow{A B}, \overrightarrow{A^{\prime} B^{\prime}}$ have equal magnitudes and the same direction.
 ${ }^{535}$ Of course, we take care to choose the point A in such a way that $A^{\prime} \neq A$. This is always possible for a sense-reversing transformation.
 ${ }^{536}$ How we choose this order is purely a matter of convenience.

[^156]: ${ }^{537}$ In other words, given any two intervals $A_{0} B, C D$, there is a positive integer n such that if the interval $C D$ is laid off n times from the point A_{0} on the ray $A_{0 B}$, reaching the point A_{n}, then the point B divides A_{0} and A_{n}.
 ${ }^{538}$ In other words, for any two intervals $A_{0} B, C D$, there is a natural number n such that if $C D$ is laid off n times from the point A_{0} on $A_{0 B}$, reaching A_{n}, then the point B lies on the half - open interval $\left[A_{n-1} A_{n}\right)$.

[^157]: ${ }^{539}$ Thus, we can now reformulate Cantor's Axiom A 1.4.2 in the following form: Let $\left[E_{i} F_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence of closed intervals with the property that given (in advance) an arbitrary interval $B_{1} B_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the (abstract) interval $E_{n} F_{n}$ is shorter than the interval $B_{1} B_{2}$. Then there is exactly one point B lying on all closed intervals $\left[E_{0} F_{0}\right],\left[E_{1} F_{1}\right], \ldots,\left[E_{n} F_{n}\right], \ldots$ of the sequence. We can write this fact as $B=\bigcap_{i=0}^{\infty}\left[E_{i} F_{i}\right]$.
 ${ }^{540}$ The argumentation used in proofs in this section will appear to be somewhat more laconic than in the preceding ones. I believe that the reader who has reached this place in sequential study of the book does not need the material to be chewed excessively before being put into his mouth, as it tends to spoil the taste.
 ${ }^{541}$ The first index here refers to the step of the measurement construction.
 ${ }^{542}$ In each case, such division is possible and unique due to T 1.3.22.
 ${ }^{543}$ In fact, after $m-1$ steps we have $B \in\left[D_{m-1, k-1} D_{m-1, k}\right)=\left[E_{m-1} F_{m-1}\right)$, and after m steps $B \in\left[D_{m-1, l-1} D_{m-1, l}\right)=\left[E_{m} F_{m}\right)$. First, consider the case $B \in\left[E_{m-1} C_{m}\right)$, where $C_{m}=\operatorname{mid} E_{m-1} F_{m-1}$. Then, evidently, $l-1=2(k-1)$ and (see above) $e_{m}=$ $e_{m-1}, f_{m}=e_{m}+1 / 2^{m}$. Hence we have $e_{m}=e_{m-1}=(n-1)+(k-1) / 2^{m-1}=(n-1)+2(k-1) / 2^{m}=(n-1)+(l-1) / 2^{m}$, $f_{m}=(n-1)+(l-1) / 2^{m}+1 / 2^{m}=(n-1)+l / 2^{m}$. Suppose now $B \in\left[C_{m} F_{m-1}\right)$. Then $l=2 k$ and $f_{m}=f_{m-1}$. Hence $f_{m}=f_{m-1}=(n-1)+k / 2^{m-1}=(n-1)+2 k / 2^{m}=(n-1)+l / 2^{m}, e_{m}=(n-1)+l / 2^{m}-1 / 2^{m}=(n-1)+(l-1) / 2^{m}$.
 ${ }^{544}$ The interval $A_{0} E_{m}$ is defined when either $n>1$ or $l>1$.

[^158]: ${ }^{545}$ By the properties of real numbers, these conditions imply that the number lying on all closed numerical intervals $\left[e_{m}, f_{m}\right]$ exists and is unique.
 ${ }^{546}$ In fact, once $E_{m} F_{m}$ is shorter than $A_{0} B$, the point E_{m} cannot coincide with A_{0} any longer. To demonstrate this, take the case $n=1$ (if $n>1$ we have the result as a particular case of the equation (1.7)) and consider the congruent intervals $D_{m, 0} D_{m, 1}, D_{m, 1} D_{m, 2}, \ldots, D_{m, 2^{m}-1} D_{m, 2^{m}}$ into which the interval $A_{0} A_{1}=A_{0}=A_{n}$ is divided after m steps of the measurement construction. If B were to lie on the first of the division intervals, as it would be the case if $E_{m}=A_{0}$, we would have $B \in\left[D_{m, 0} D_{m, 1}\right)=\left[E_{m} F_{m}\right.$), whence (see C 1.3.13.4) $A_{0} B<E_{m} F_{m}$, contrary to our choice of m large enough for the inequality $E_{m} F_{m}<A_{0} B$ to hold.
 ${ }^{547}$ In particular, every unit interval has length 1.
 ${ }^{548}$ For the duration of this proof, all elements of the measurement construction for $A^{\prime}{ }_{0} B^{\prime}$ appear primed; for other notations, please refer to the exposition of the measurement construction.

[^159]: ${ }^{549}$ The expression in parentheses in this paragraph pertain to the case $n>1$.
 ${ }^{550}$ The fact that $B_{1} \in\left[D_{m, l-2}^{\prime} D_{m, l-1}^{\prime}\right)$ and $B \in\left[D_{m, l-1}^{\prime} D_{m, l}^{\prime}\right)$ and not the other way round, follows from L 1.2.9.4.
 ${ }^{551}$ We take m large enough for the points $B, E_{m}^{(C)}$ to be distinct and thus for the interval $B E_{m}^{(C)}$ to make sense. (See the discussion accompanying the equation (1.9).)

[^160]: ${ }^{552}$ We take m large enough for the points $B, E_{m}^{(A)}$ to be distinct and thus for the interval $B E_{m}^{(A)}$ to make sense. (See the discussion accompanying the equation (1.9).)
 ${ }^{553}$ Obviously, as we shall explain shortly, the points $E_{m}^{(C)}, C, F_{m}^{(C)}$ lie on the opposite side (i.e. ray) of the point B from the points $E_{m}^{(A)}, A, F_{m}^{(A)}$.
 ${ }^{554}$ Obviously, $\mu A B=(1 / n) \mu A_{1} B_{1}$ and $C D \in \mu A B, C_{1} D_{1} \in \mu A_{1} B_{1}$ then imply $|C D|=(1 / n)\left|C_{1} D_{1}\right|$.
 ${ }^{555}$ We will construct an interval $A_{0} B$ with $\left|A_{0} B\right|=x$ in a way very similar to its measurement construction. In fact, we'll just make the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps
 ${ }^{556}$ Again, the first index here refers to the step of the measurement construction.

[^161]: ${ }^{557}$ In each case, such division is possible and unique due to T 1.3.22.
 ${ }^{558}$ Recall that $\mathcal{P}_{a}=O_{P} \cup\{O\} \cup O_{Q}$, the union being disjoint.
 ${ }^{559}$ See definition on p. 22.

[^162]: ${ }^{560}$ See p. 48. Similarly, the measurement construction given above for intervals could have been easily generalized to the general case of a set \mathfrak{I} whose class $\mathcal{C}^{g b r}$ consists of sets \mathfrak{J} with generalized linear betweenness relation if we additionally require the following generalized Archimedean property: Given a geometric object \mathcal{P} on a generalized ray $\mathcal{A}_{0} \mathcal{A}_{1}$, there is a positive integer n such that if $\left[\mathcal{A}_{i-1} \mathcal{A}_{i} \mathcal{A}_{i+1}\right]$ for all $i \in \mathbb{N}_{n-1}$ and $\mathcal{A}_{0} \mathcal{A}_{1} \equiv \mathcal{A}_{1} \mathcal{A}_{2} \equiv \cdots \equiv \mathcal{A}_{n-1} \mathcal{A}_{n}$ then $\left[\mathcal{A}_{0} \mathcal{P} \mathcal{A}_{n}\right]$. However, all conceivable examples of the sets \mathfrak{I} of this kind seem too contrived to merit a separate procedure of measurement.
 ${ }^{561}$ In accordance with the general definition, a sequence of generalized closed intervals $\left[\mathcal{A}_{1} \mathcal{B}_{1}\right],\left[\mathcal{A}_{2}, \mathcal{B}_{2}\right], \ldots,\left[\mathcal{A}_{n} \mathcal{B}_{n}\right], \ldots$ is said to be nested if $\left[\mathcal{A}_{1} \mathcal{B}_{1}\right] \supset\left[\mathcal{A}_{2}, \mathcal{B}_{2}\right] \supset \ldots \supset\left[\mathcal{A}_{n} \mathcal{B}_{n}\right] \supset \ldots$.
 ${ }^{562}$ Thus, we can now reformulate the Generalized Cantor's Axiom $\operatorname{Pr} 1.4 .2$ in the following form: Let $\left[\mathcal{E}_{i} \mathcal{F}_{i}\right], i \in\{0\} \cup \mathbb{N}$ be a nested sequence of generalized closed intervals with the property that given (in advance) an arbitrary generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$, there is a number $n \in\{0\} \cup \mathbb{N}$ such that the generalized (abstract) interval $\mathcal{E}_{n} \mathcal{F}_{n}$ is shorter than the generalized interval $\mathcal{B}_{1} \mathcal{B}_{2}$. Then there is exactly one geometric object \mathcal{B} lying on all generalized closed intervals $\left[\mathcal{E}_{0} \mathcal{F}_{0}\right],\left[\mathcal{E}_{1} \mathcal{F}_{1}\right], \ldots,\left[\mathcal{E}_{n} \mathcal{F}_{n}\right], \ldots$ of the sequence.
 ${ }^{563}$ Given the properties of angles and dihedral angles, even after restriction to the intervals of this form, our consideration is sufficient for all practical purposes.
 ${ }^{564}$ Generalized intervals $\mathcal{A B}$ such that $[\mathcal{A B}]=\mathfrak{J} \in \mathcal{C}^{g b r}$ can sometimes for convenience be referred to as reference generalized intervals.

[^163]: ${ }^{565}$ The first index here refers to the step of the measurement construction.
 ${ }^{566}$ In each case, such division is possible and unique due to Pr 1.3.5.
 ${ }^{567}$ In fact, after $m-1$ steps we have $\mathcal{P} \in\left[\mathcal{D}_{m-1, k-1} \mathcal{D}_{m-1, k}\right)=\left[\mathcal{A}_{m-1} \mathcal{B}_{m-1}\right)$, and after m steps $\mathcal{P} \in\left[\mathcal{D}_{m-1, l-1} \mathcal{D}_{m-1, l}\right)=\left[\mathcal{A}_{m} \mathcal{B}_{m}\right)$. First, consider the case $\mathcal{P} \in\left[\mathcal{A}_{m-1} \mathcal{C}_{m}\right)$, where $\mathcal{C}_{m}=\operatorname{mid} \mathcal{A}_{m-1} \mathcal{B}_{m-1}$. Then, evidently, $l-1=2(k-1)$ and (see above) $a_{m}=a_{m-1}$, $b_{m}=a_{m}+1 / 2^{m}$. Hence we have $a_{m}=a_{m-1}=(n-1)+(k-1) / 2^{m-1}=(n-1)+2(k-1) / 2^{m}=(n-1)+(l-1) / 2^{m}, b_{m}=$ $(n-1)+(l-1) / 2^{m}+1 / 2^{m}=(n-1)+l / 2^{m}$. Suppose now $\mathcal{P} \in\left[\mathcal{C}_{m} \mathcal{B}_{m-1}\right)$. Then $l=2 k$ and $b_{m}=b_{m-1}$. Hence $b_{m}=b_{m-1}=$ $(n-1)+k / 2^{m-1}=(n-1)+2 k / 2^{m}=(n-1)+l / 2^{m}, a_{m}=(n-1)+l / 2^{m}-1 / 2^{m}=(n-1)+(l-1) / 2^{m}$.
 ${ }^{568}$ By the properties of real numbers, these conditions imply that the number lying on all open numerical intervals (a_{m}, b_{m}) exists and is unique.
 ${ }^{569}$ In fact, once $\mathcal{A}_{m} \mathcal{B}_{m}$ is shorter than $\mathcal{A P}$, the geometric object \mathcal{A}_{m} cannot coincide with \mathcal{A} any longer. To demonstrate this, consider the congruent generalized intervals $\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}, \mathcal{D}_{m, 1} \mathcal{D}_{m, 2}, \ldots, \mathcal{D}_{m, 2^{m}-1} \mathcal{D}_{m, 2^{m}}$ into which the generalized interval $\mathcal{A B}$ is divided after m steps of the measurement construction. If \mathcal{P} were to lie on the first of the division intervals, as it would be the case if $\mathcal{A}_{m}=\mathcal{A}$, we would have $\mathcal{P} \in\left[\mathcal{D}_{m, 0} \mathcal{D}_{m, 1}\right)=\left[\mathcal{A}_{m} \mathcal{B}_{m}\right)$, whence (see C 1.3.15.4) $\mathcal{A} \mathcal{P}<\mathcal{A}_{m} \mathcal{B}_{m}$, contrary to our choice of m large enough for the inequality $\mathcal{A}_{m} \mathcal{B}_{m}<\mathcal{A P}$ to hold.

[^164]: ${ }^{570}$ For the duration of this proof, all elements of the measurement construction for $\mathcal{A}^{\prime} \mathcal{P}^{\prime}$ appear primed; for other notations, please refer to the exposition of the measurement construction.
 ${ }^{571}$ Appropriate means here conforming to the conditions set forth above. Namely, we assume the set \mathfrak{I} to be equipped with a relation of generalized congruence, and the sets \mathfrak{J} with generalized angular betweenness relation in $\mathcal{C}^{g b r}$ are chosen in such a way that the abstract intervals formed by their ends are congruent: if $\mathfrak{J}=[\mathcal{A B}] \in \mathcal{C}^{g b r}, \mathfrak{J}^{\prime}=\left[\mathcal{A}^{\prime} \mathcal{B}^{\prime}\right] \in \mathcal{C}^{g b r}$ then $\mathcal{A B} \equiv \mathcal{A}^{\prime} \mathcal{B}^{\prime}$.

[^165]: ${ }^{572}$ The fact that $\mathcal{P}_{1} \in\left[\mathcal{D}_{m, l-2}^{\prime} \mathcal{D}_{m, l-1}^{\prime}\right)$ and $P \in\left[\mathcal{D}_{m, l-1}^{\prime} \mathcal{D}_{m, l}^{\prime}\right)$ and not the other way round, follows from L 1.2.24.6.
 ${ }^{573}$ We take m large enough for the geometric objects $\mathcal{A}, \mathcal{A}_{m}$ to be distinct and thus for the generalized interval $\mathcal{A} \mathcal{A}_{m}$ to make sense. (See the discussion accompanying the equation (1.17).)
 ${ }^{574}$ We take m large enough for the geometric objects $\mathcal{B}, \mathcal{B}_{m}$ to be distinct and thus for the generalized interval $\mathcal{B} \mathcal{B}_{m}$ to make sense. (See the discussion accompanying the equation (1.17)). Note also how symmetric is our discussion of this with the discussion in the preceding footnote.
 ${ }^{575}$ We take m large enough for the geometric objects $\mathcal{B}, \mathcal{B}_{m}$ to be distinct and thus for the generalized interval $\mathcal{B} \mathcal{B}_{m}$ to make sense. (See the discussion accompanying the equation (1.17).) Note also how symmetric is our discussion of this with the discussion in the preceding footnote.
 ${ }^{576}$ First, we note that we can take m so large that $k<l$. In fact, if both \mathcal{P} and \mathcal{Q} were to lie on $\mathcal{P} \in\left[\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k(m)}\right)$ (note that the number k (of the generalized interval $\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}$ resulting from the division of $\mathcal{A B}$ into 2^{m} congruent intervals) depends on m, which is reflected in the self-explanatory notation used here), then by C 1.3 .15 .4 we would have $\mathcal{P} \mathcal{Q}<\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}$ for all $m \in \mathbb{N}$, which contradicts L 1.2.12.2. Thus, we conclude that $\exists m \in \mathbb{N}$ such that $\mathcal{P} \in\left[\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}\right), \mathcal{Q} \in\left[\mathcal{D}_{m, l-1} \mathcal{D}_{m, l}\right)$, where $0<k<l \leq 2^{m}$. To prove that we can go even further and find such $m \in \mathbb{N}$ that $\mathcal{P} \in\left[\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}\right), \mathcal{Q} \in\left[\mathcal{D}_{m, l-1} \mathcal{D}_{m, l}\right)$, where $k<l-1$, suppose that there is a natural number m_{0} such that $\mathcal{P} \in\left[\mathcal{D}_{m_{0}, k\left(m_{0}\right)-1} \mathcal{D}_{m_{0}, k\left(m_{0}\right)}\right), \mathcal{Q} \in\left[\mathcal{D}_{m_{0}, k\left(m_{0}\right)} \mathcal{D}_{m_{0}, k\left(m_{0}\right)+1}\right)$ (note that if there is no such natural number m_{0}, then there is nothing else to prove). Now, using L 1.4.12.1, we choose a (still larger) number m such that $\left.\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k(m)}\right)<\mathcal{P} \mathcal{D}_{m_{0}, k\left(m_{0}\right)}$. If we still had $\mathcal{P} \in\left[\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k(m)}\right), \mathcal{Q} \in\left[\mathcal{D}_{m, l(m)-1} \mathcal{D}_{m, l(m)}\right)$, where $l(m)-k(m)=1$ and $\mathcal{D}_{m, l(m)-1}=\mathcal{D}_{m_{0}, k\left(m_{0}\right)}$, then this would imply $\mathcal{P} \in\left[\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k(m)}\right)=\left[\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, l(m)-1}\right)=\left[\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k\left(m_{0}\right)}\right) \Rightarrow \mathcal{P}_{\mathcal{D}_{m_{0}, k\left(m_{0}\right)}<\mathcal{D}_{m, k(m)-1} \mathcal{D}_{m, k(m)} \text {, contrary }}$ to our choice of m. This contradiction shows that the number m can be chosen large enough for the inequality $l-1>k$ to hold when $\mathcal{P} \in\left[\mathcal{D}_{m, k-1} \mathcal{D}_{m, k}\right), \mathcal{Q} \in\left[\mathcal{D}_{m, l-1} \mathcal{D}_{m, l}\right)$.

[^166]: ${ }^{577}$ Obviously, $\mu \mathcal{A B}=(1 / n) \mu \mathcal{A}_{1} \mathcal{B}_{1}$ and $\mathcal{C D} \in \mu \mathcal{A B}, \mathcal{C}_{1} \mathcal{D}_{1} \in \mu \mathcal{A}_{1} \mathcal{B}_{1}$ then imply $|\mathcal{C D}|=(1 / n)\left|\mathcal{C}_{1} \mathcal{D}_{1}\right|$.
 ${ }^{578}$ We will construct a generalized interval $\mathcal{A} \mathcal{P}$ with $|\mathcal{A P}|=x$ in a way very similar to its measurement construction. In fact, we'll just make the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps
 ${ }^{579}$ Again, the first index here refers to the step of the measurement construction.
 ${ }^{580}$ In each case, such division is possible and unique due to $\operatorname{Pr} 1.3 .5$

[^167]: ${ }^{581}$ That is, the point denoted by the letter written first in the notation of the interval precedes in the chosen order the point designated by the letter written in the second position
 ${ }^{582}$ This can be shown either referring to L 1.2.15.4, or directly using the facts presented above.
 ${ }^{583}$ Basically, they mean that we can work with order on sets of points on a line just like we are accustomed to work with order on sets of "points" (numbers) on the "real line".
 ${ }^{584}$ The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding results for real numbers in calculus.
 ${ }^{585}$ The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.
 ${ }^{586}$ In fact, if $A \prec B_{1}$ for all $A \in \mathcal{A}$ and $B_{1} \in \mathcal{A}$, we would immediately have $B_{1} \in \mathcal{A}$, and the proof would be complete.
 ${ }^{587}$ If D is the midpoint of the interval $A B$, the intervals $A D, D B$ are (as sometimes are intervals congruent to them) referred to as the halves of $A B$.
 ${ }^{588}$ In fact, if $A \in[X Y]$ and $M=\operatorname{mid} X Y$, then either $A \in[X M]$ or $A \in[M Y]$ (see T 1.2 .5). If $A \in[M Y]$ then the second condition in the definition of normal interval is unchanged, so that it holds for $M Y$ if it does for $X Y$. If $A \notin[M Y]$ then necessarily $A \in[X M]$. In this case the relation $B \succ M$ (together with $X \prec M \prec Y$) implies that either $M \prec B \preceq Y$ (which amounts to $B \in(M Y]$), or $B \succ Y$.

[^168]: ${ }^{589}$ Since the angle $B O A_{0}$ is obtained by repeated congruent dichotomy (i.e. by repeated division into two congruent angles) of the original straight angle (see T 1.3.52), in the case when $\angle B O A_{0}<\angle(h, k)$ we have nothing more to prove. Likewise, for $\angle B O A_{0} \equiv \angle(h, k)$ we only need to divide $\angle B O A_{0}$ into two congruent parts once to get a division of our straight angle into congruent parts smaller than $\angle(h, k)$. Thus, we can safely assume that $\angle(h, k)<\angle B O A_{0}$, the only remaining option.
 L 1.2.11.3 $O A_{1}=h_{1}$.
 ${ }^{591}$ That is, with the property that $h_{k-1} \subset \operatorname{Int} \angle A_{0} O B$, but h_{k} either coincides with O_{B} or lies inside the angle $\angle B O D$, adjacent supplementary to the angle $\angle B O C$. In reality, there are infinitely many k 's satisfying these conditions, but the proof of this would be too messy and pointless. For our purposes in this proof we can be content with knowing that there is at least one such k.

[^169]: ${ }^{592}$ Observe that under our assumption that all rays h_{i}, for $i \in \mathbb{N}$, lie inside the angle $\angle A_{0} O B$, all these rays lie on the same side of the line $a_{O C}$.
 ${ }^{593}$ The reader can refer to L 1.2.31.14 to convince himself of this.
 ${ }^{594}$ That is, h_{j} lies inside $\angle\left(h_{i}, h_{k}\right)$ iff either $i<j<k$ or $k<j<i$ (see p. 65).
 ${ }^{595}$ In fact, we have $h_{n-1} \subset$ Int $\angle A_{0} O B, A_{0} \subset$ Int $\angle C O B$. This implies, respectively, $\angle\left(h_{0}, h_{n-1}\right)<\angle A_{0} O B, \angle A_{0} O B<\angle C O B$, which together give (in view of transitivity of the relation $<$, demonstrated in L 1.3.16.8) $\angle\left(h_{0}, h_{n-1}\right)<\angle C O B$. But $\angle C O B$ is a right angle, so it follows that $\angle\left(h_{0}, h_{n-1}\right)$ is acute. \square

[^170]: ${ }^{596}$ It would be more precise to call $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$ a nested sequence of set-theoretical complements of angle exteriors. We, however, prefer shorter, albeit somewhat misleading, description.
 ${ }^{597}$ Note that we do not assume h_{2}, k_{2} to be distinct from h_{1}, k_{1}, although we still need to assume that $h_{i} \neq k_{i}$ for all $i \in \mathbb{N}$ for the corresponding angles to exist.
 ${ }^{598}$ Without T 1.4.18 this theorem can be proved by the following lengthy argument. While being absolutely redundant (it can be replaced by a mere reference to T 1.4 .18 and thus rendered useless) and having substantial overlaps with the proofs of T 1.4.17, T 1.4.18, it might still help to clarify some points. Observe that any of the points $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ may serve as an upper bound for the set $\mathcal{A}=\left\{A_{i} \mid i \in \mathbb{N}\right\}$. Similarly, any of the points $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ may serve as a lower bound for the set $\mathcal{B}=\left\{B_{i} \mid i \in \mathbb{N}\right\}$. Evidently, $A \preceq B$. To show that actually $A=B$ suppose the contrary, i.e. $A \prec B$. Taking two (distinct) points C, D on the open interval ($A B$) (see C 1.2 .8 .2), we see that the angle $\angle C O D$ is then less than any angle of the sequence $\angle\left(h_{1}, k_{1}\right), \angle\left(h_{2}, k_{2}\right), \ldots, \angle\left(h_{n}, k_{n}\right), \ldots$ (by L 1.2 .21 .6 , L $1.2 .21 .4, \mathrm{C} 1.3 .16 .4$), contrary to hypothesis. Taking an arbitrary interval, construct an interval $E F$ congruent to it, such that the points E, F lie on a, and the point $A=B$ lies between them. This can be done as follows: Choose $E \in A_{A_{1}}$ so that $E A$ is shorter than the given interval (see comment following L 1.3.13.3). Then choose $F \in E_{A}$ such that $E F$ is congruent to the given interval. Evidently, we have $[E A F]$ (see L1.3.13.3, T 1.3.2). Since $E \prec A \prec F$ (recall that if $A_{1} \prec A$ in the chosen order, as it is in our case, the ray $A_{A_{1}}$ is the collection of points preceding A), $A=\sup \left\{A_{i} \mid i \in \mathbb{N}\right\}=B=\inf \left\{B_{i} \mid i \in \mathbb{N}\right\}$, from the definitions of least upper bound and greatest lower bound we conclude that there are points $G \in \mathcal{A}, H \in \mathcal{B}$ such that $E \prec G \preceq A=B \preceq H \prec F$. Since $E \prec G \prec F \Rightarrow[E G F]$, $E \prec H \prec F \Rightarrow[E H F]$ (see T 1.2.14), in view of L 1.3.13.3 we have $G H \prec E F$. Thus, for any given interval we can find a shorter one in the sequence $A_{i} B_{i}, i \in \mathbb{N}$. Hence by Cantor's axiom there is a point P lying on all the closed intervals $\left[A_{i} B_{i}\right], i \in \mathbb{N}$. But, obviously, so does also $A=B$. Since, in view of L 1.4.1.4, there is exactly one point with this property, we have $P=A=B$.
 ${ }^{599}$ Using L 1.3.16.4 it can be seen independently that the ray O_{P} with this property is unique, for if there were another such ray O_{Q}, the (fixed) angle $\angle P O Q$ would be less than any angle $\angle\left(h_{i}, k_{i}\right), i \in \mathbb{N}$.
 ${ }^{600}$ In contract to an "abstract measure" which can be defined as a class of equivalence of congruent extended angles.

[^171]: ${ }^{601}$ Obviously, $\mu \angle(h, k)=(1 / n) \mu \angle\left(h_{1}, k_{1}\right)$ and $\angle(l, m) \in \mu \angle(h, k), \angle\left(l_{1}, m_{1}\right) \in \mu \angle\left(h_{1}, k_{1}\right)$ then imply $|\angle(l, m)|=(1 / n)\left|\angle\left(l_{1}, m_{1}\right)\right|$.
 ${ }^{602}$ No pun intended.
 ${ }^{603}$ In contract to an "abstract measure" which can be defined as a class of equivalence of congruent overextended angles.
 ${ }^{604}$ Basically, Archimedes' axiom and its immediate corollaries assert that for any two intervals $A B, C D$ there is always a positive integer n such that $\mu A B<n \mu C D$. Then, of course, $\mu A B<2^{n} \mu C D$.

[^172]: ${ }^{605}$ In fact, in any triangle at least two angles are acute.
 ${ }^{606}$ We choose h to be that ray with the initial point A which lies on the same side of a^{\prime} as the point B (see, in particular, L 1.2.19.8). Then we take a point $A_{1} \in a^{\prime}$ such that this point and the ray h lie on the same side of the line $a_{A B}$. Evidently, with h and A_{1} so chosen, we have $h \subset \operatorname{Int} \angle B A A_{1}$.
 ${ }^{607}$ Note that the points A_{1}, B_{1}, and thus the rays $A_{A_{1}}, A_{B_{1}}$ lie on the same side of the line $a_{A B}$ by construction. The points B, B_{1}, and, consequently, the rays $A_{B}, A_{B_{1}}$ lie on the same side of the line a. Hence $A_{B_{1}} \subset \operatorname{Int} \angle B A A_{1}$, as stated.

[^173]: ${ }^{608}$ That is, the geometric object denoted by the letter written first in the notation of the generalized interval precedes in the chosen order the point designated by the letter written in the second position.
 ${ }^{609}$ This can be shown either referring to L 1.2 .29 .4 , or directly using the facts presented above.
 ${ }^{610}$ Basically, they mean that we can work with order on sets of geometric objects in a set with generalized betweenness relation just like we are accustomed to work with order on sets of "points" (numbers) on the "real line".
 ${ }^{611}$ The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding results for real numbers in calculus.
 ${ }^{612}$ The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.
 ${ }^{613}$ In fact, in the case where $\mathcal{A} \prec \mathcal{B}_{1}$ for all $\mathcal{A} \in \mathfrak{A}$ we would immediately have $\mathcal{B}_{1}=\sup \mathfrak{A}$, and the proof would be complete.
 ${ }^{614}$ If \mathcal{D} is the midpoint of the generalized interval $\mathcal{A B}$, the generalized intervals $\mathcal{A D}, \mathcal{D B}$ are (as sometimes are generalized intervals congruent to them) referred to as the halves of $\mathcal{A B}$.
 ${ }^{615}$ In fact, if $\mathcal{A} \in[$ mathcal $X Y]$ and $\mathcal{M}=\operatorname{mid} \mathcal{X} \mathcal{Y}$, then either $\mathcal{A} \in[\mathcal{X} \mathcal{M}]$ or $\mathcal{A} \in[$ mathcal $M Y]$ (see L 1.2 .22 .8). If $\mathcal{A} \in[\mathcal{M Y}]$ then the second condition in the definition of normal generalized interval is unchanged, so that it holds for $\mathcal{M} \mathcal{Y}$ if it does for $\mathcal{X} \mathcal{Y}$. If $\mathcal{A} \notin[\mathcal{M} \mathcal{Y}]$ then necessarily $\mathcal{A} \in[\mathcal{X} \mathcal{M}]$. In this case the relation $\mathcal{B} \succ \mathcal{M}$ (together with $\mathcal{X} \prec \mathcal{M} \prec \mathcal{Y}$) implies that either $\mathcal{M} \prec \mathcal{B} \preceq \mathcal{Y}$ (which amounts to $\mathcal{B} \in(\mathcal{M Y}])$, or $\mathcal{B} \succ \mathcal{Y}$.

[^174]: ${ }^{1}$ Without continuity considerations, we would have to formulate this axiom in the following stronger form: There is at least one plane α containing at least one line a such that if A is any point in α not on a, no more than one parallel to a goes through A.
 ${ }^{2}$ This follows from C 1.3.26.3 and the fact that we have chosen the line a and the point A according to A 2.1.1 (so that at most one parallel to a can be drawn through A in $\alpha_{a A}$). Observe that since the notation for the points B, C was chosen so that the ray A_{B} lies inside the angle $\angle E A C$, by definition of anterior of angle the rays A_{E}, A_{B} lie on the same side of the line $a_{A C}$. In conjunction with $[B C F]$ this implies that the points E, F lie on opposite sides of the line $a_{A C}$. Also (in view of C 1.2 .21 .11), the points E, C lie on opposite sides of the line $a_{A B}$. Then the remaining arguments needed to establish the congruences $\angle E A C \equiv \angle A C F, \angle E A B \equiv \angle A B C$ essentially replicate those that used to prove C 2.1.4.4.

[^175]: ${ }^{3}$ Note that $[F C D] \Rightarrow F a_{A C} D, B a_{A C} F \& F a_{A C} D \xrightarrow{\mathrm{~L} 1.2 .17 .9} B D a_{A C}$.
 ${ }^{4}$ Since the pairs of points A, A^{\prime} and B, B^{\prime} enter the conditions of the proposition symmetrically, and, as is shown further, [OAB] implies $\left[O A^{\prime} B^{\prime}\right]$, we do not need to consider the case when $[O B A]$ separately. Alternatively, the result for this case can be immediately obtained by substituting A in place of B and B in place of A.
 ${ }^{5}$ Of course, we also need to make the trivial observation that $\angle B A A^{\prime}=\angle O A A^{\prime}, \angle A B B^{\prime}=\angle O B B^{\prime}$ in view of L 1.2.11.3.
 ${ }^{6}$ By symmetry. Observe that the assumptions of the theorem remain valid upon the substitution $B \leftrightarrow D$.
 ${ }^{7}$ Again, this can be established using arguments completely analogous to those employed above to show that $\angle B A C \equiv \angle D C A$, $\angle B C A \equiv \angle D A C$ (symmetry again!)
 ${ }^{8}$ Alternatively, we could note that $\angle C X B \equiv \angle A X D$ by T 1.3.7 and use T 1.3.20.

[^176]: ${ }^{1}$ We can also say that the direction on a is dictated by choosing a point P on one of the two rays into which the point O separates the line a. This amounts to choosing one of the rays as the first and another ray as the second in the process of defining the order on a.

[^177]: ${ }^{2}$ For $l^{\prime}=A_{O}$ our claim is vacuously true, so we do not consider this case.
 ${ }^{3}$ Since \mathfrak{J} is a chain with respect to the relation \preceq (see T 1.2 .34), for any ray $l \in \mathfrak{J}$ which meets O_{P} and for any ray $k \in \mathfrak{A}$ we have either $l \preceq k$, or $k \preceq l$. Obviously, $k \neq l$, for l meets O_{P}, but k does not according to the definition of \mathfrak{A}. Also, we have $\neg(k \preceq l)$, for, as shown above, if a ray in $k \in \mathfrak{J}$ precedes a ray $l \in \mathfrak{J}$ that meets O_{P}, then the ray k also meets O_{P}, which our ray k does not. Hence $l \prec k \in \mathfrak{A}$ as claimed.
 ${ }^{4}$ For $h^{\prime c}=A_{O}$ our claim is vacuously true, so we do not consider this case.
 ${ }^{5}$ Since \mathfrak{J} is a chain with respect to the relation \preceq (see T 1.2 .34), for any ray $h \in \mathfrak{J}$ whose complementary ray h^{c} meets O_{P}^{c} and for any ray $k \in \mathfrak{A}$ we have either $h \succeq k$, or $k \succeq h$. Obviously, $k \neq h$, for h^{c} meets O_{P}^{c}, but k^{c} does not according to the definition of \mathfrak{A}. Also, we have $\neg(k \succeq h)$, for, as shown above, if a ray in $k \in \mathfrak{J}$ succeeds a ray $h \in \mathfrak{J}$ whose complementary ray meets O_{P}^{c}, then the ray k^{c} also meets O_{P}, which the ray complementary to our ray k does not. Hence $k \prec h \in \mathfrak{A}$, as claimed.
 ${ }^{6}$ For brevity, we prefer to write simply $l_{\text {lim }}$, $h_{\text {lim }}$ instead of $l_{\text {lim }}(a, A), h_{l i m}(a, A)$, respectively, whenever there is no danger of confusion.
 ${ }^{7}$ Here, as in quite a few other places, I break up with what appears to be the established terminology.
 ${ }^{8}$ For example, h can be one of the two rays into which the point O, the foot of the perpendicular lowered from A to a, separates the line a. But, of course, this role (of giving the direction) can be played by any other ray h with the property that its origin precedes (on a) every point of the ray h.
 ${ }^{9}$ Since $l_{l i m}$ and O_{P}^{c} lie on opposite sides of $a_{A O}$ (see L 1.2.18.5), they cannot meet. The same is true of $l_{l i m}^{c}$ and O_{P}. Also, it is absolutely obvious that $O \notin l_{l i m}, O \notin l_{l i m}^{c}$. (In the case $O \in l_{l i m}$ we would have $A_{O}=l_{l i m}$ by L1.2.11.3. This, in turn, would imply that $l_{\text {lim }}$, the greatest lower bound of \mathfrak{A}, precedes the ray O_{P}, which is a lower bound of \mathfrak{A}. The contradiction shows that, in fact, we have $O \notin l_{l i m}$. The assumption $O \in l_{l i m}^{c}$ would imply (by L1.2.11.3) that $A_{O}=l_{l i m}^{c}$, or, equivalently, that $A_{O}^{c}=l_{l i m}$, which leads us to the absurd conclusion that A_{O}^{c} precedes any element of the set \mathfrak{A}. Thus, we have $O \notin l_{\text {lim }}^{c}$.

[^178]: ${ }^{10}$ Suppose the contrary, i.e. that $h_{l i m} \in \mathfrak{J} \backslash \mathfrak{A}$. Then either $h_{\text {lim }}$ meets O_{P}, or $h_{\text {lim }}^{c}$ meets O_{P}^{c}. (Since $h_{l i m}$ and O_{P}^{c} lie on opposite sides of $a_{A O}$ (see L 1.2.18.5), they cannot meet. The same is true of $l_{\text {lim }}^{c}$ and O_{P}. Also, it is absolutely obvious that $O \notin h_{l i m}, O \notin h_{l i m}^{c}$. (In the case $O \in h_{l i m}^{c}$ we would have $A_{O}=h_{l i m}^{c}$ by L1.2.11.3. Hence $A_{O}^{c}=h_{l i m}$. This, in turn, would imply that $h_{l i m}$, the least upper bound of \mathfrak{A}, succeeds a ray h (whose complementary ray h^{c} meets O_{P}^{c}, which is an upper bound of \mathfrak{A}), which is an upper bound of \mathfrak{A}. The contradiction shows that, in fact, we have $O \notin h_{\text {lim }}^{c}$. The assumption $O \in h_{\text {lim }}$ would imply (by L1.2.11.3) that $A_{O}=h_{\text {lim }}$, which leads us to the absurd conclusion that A_{O} succeeds any element of the set \mathfrak{A}. Thus, we have $O \notin h_{\text {lim }}$.) But $h_{l i m}$ cannot meet O_{P}, for that would make $h_{\text {lim }}$ a lower bound of \mathfrak{A}, which would contradict the fact that $h_{\text {lim }}$ is the least upper bound of \mathfrak{A}. Suppose now $h_{\text {lim }}^{c}$ meets O_{P}^{c} in some point M (see Fig. 3.3). Taking a point N such that $[O M N]$ (A 1.2.2) and using L 1.2.21.6, L 1.2.21.4, we see that $h_{\text {lim }}^{c} \subset \operatorname{Int} \angle\left(A_{O}, h^{c}\right)$, where $h^{c}=O_{N}$. Hence $h_{\text {lim }} \subset \operatorname{Int} \angle\left(A_{O}^{c}, h\right)$ (see L 1.2.21.16) and, consequently, $l_{\text {lim }} \prec l$ (see T 1.2.35). Since h^{c} meets O_{P}^{c} in N, we see that h is an upper bound of \mathfrak{A}. We arrive at a contradiction with the fact that $h_{\text {lim }}$ is the least upper bound of \mathfrak{A}. This contradiction shows that in reality $h_{\text {lim }}^{c}$ does not meet O_{P}^{c}.

[^179]: ${ }^{11}$ Evidently, $l_{\text {lim }}\left(O_{P}^{c}, A\right)$ is the lower limiting ray for the reverse direction on a, and $h_{\text {lim }}\left(O_{P}^{c}, A\right)$ is the upper limiting ray for that direction.
 ${ }^{12}$ We proceed now to define the set \mathfrak{A}^{\prime} of rays with initial point A^{\prime} and the corresponding lower and upper limiting rays $l^{\prime}{ }_{l i m}\left(a, A^{\prime}\right)$, $h^{\prime}{ }_{\text {lim }}\left(a, A^{\prime}\right)$ in such a way that \mathfrak{A}^{\prime} and $l^{\prime}{ }_{\text {lim }}\left(a, A^{\prime}\right), h^{\prime}{ }_{\text {lim }}\left(a, A^{\prime}\right)$ play for the line a and the point A^{\prime} the role completely analogous to that played by $l_{\text {lim }}(a, A), h_{\text {lim }}(a, A)$ for \mathfrak{A}.
 ${ }^{13}$ In fact, we know that the point $A^{\prime} \in l_{\text {lim }}(a, A)$ lies on the same side of the line $a_{O A}$ as the point P. Since $A^{\prime} \notin a_{O A}$, from L 1.3 .8 .3 we see that $O^{\prime} \neq O$. If the point O^{\prime} were to lie on the ray O_{P}^{c}, by L 1.2 .17 .10 the points A^{\prime}, O^{\prime} would lie on opposite sides of the line $a_{O A}$, and the lines $A_{O A}, a_{O^{\prime} A^{\prime}}$ would meet - a contradiction. Thus, we see that $O^{\prime} \in O_{P}$.
 ${ }^{14}$ In fact, since $l^{\prime} \subset \operatorname{Int} \angle\left(A_{O^{\prime}}^{\prime}, A_{A}^{\prime c}\right)$, from the definition of interior of angle the rays l^{\prime} and $A_{A}^{\prime c}$ lie on the same side of the line $a_{A^{\prime} O^{\prime}}$. Since the rays l^{\prime} and $A^{\prime c}{ }_{A}$ lie on the same side of the line $a_{A^{\prime} O^{\prime}}$, and the point A and the ray $A^{\prime c}$ lie on opposite sides of the line $a_{A^{\prime} O^{\prime}}$ (recall also that $a_{A O} \| a_{A^{\prime} O^{\prime}}$), we can conclude (using L 1.2.18.5, T 1.2.20) that the ray l^{\prime} and the line $a_{A O}$ lie on opposite sides of the line $a_{A^{\prime} O^{\prime}}$.
 ${ }^{15}$ In fact, since $A^{\prime} \notin a_{A O}$ and the rays $l^{\prime c}, A_{O}$ lie on opposite sides of $l_{l i m}(a, A)$ (recall that l^{\prime} and A_{O} lie on the same side of the $\left.l_{\text {lim }}(a, A)\right)$ and thus have no common points, any common points of A_{O} and \bar{l}^{\prime} would have to lie on the ray l^{\prime}. But we have just shown that the ray l^{\prime} and the line $a_{A O}$ lie on opposite sides of the line $a_{A^{\prime} O^{\prime}}$ and, therefore, cannot meet.
 ${ }^{16} \mathrm{We}$ know that the rays l^{\prime} and $A^{\prime c}{ }_{A}$ lie on the same side of the line $a_{A^{\prime} O^{\prime}}$, as do $O_{P^{\prime}}^{\prime}$ and $A^{\prime c}{ }_{A}$. Hence l^{\prime} and $O^{\prime}{ }_{P^{\prime}}$ lie on the same side of $a_{A^{\prime} O^{\prime}}$. Obviously, if the ray l^{\prime} meets the line a at all, it can do so only on the ray $O^{\prime}{ }_{P^{\prime}}$ (using L 1.2 .18 .5 , we see that l^{\prime} and $O^{\prime c}{ }_{P}^{\prime}$ lie on opposite sides of $a_{A^{\prime} O^{\prime}}$ and thus have no common points; also, it is obvious that $\left.O^{\prime} \notin l^{\prime}\right)$. So, if the point Q and the line $l_{l i m}(a, A)$ containing the point A would lie on opposite sides of a, then the open interval $(A Q)$, and, consequently, the ray l^{\prime}, would meet $O^{\prime}{ }_{P^{\prime}}$ and we would have noting more to prove.
 ${ }^{17}$ Indeed, $l_{l i m}(a, A), O_{P}$ lie on the same side of $a_{A O}$ by construction, and $l_{l i m}(a, A), A_{Q}$ lie on the same side of $a_{A O}$ by definition of interior of $\angle O A A^{\prime}$.

[^180]: ${ }^{18}$ This follows from the even more obvious fact that the ray l^{\prime} and all points of the contour of $\triangle A O M$ except A lie on the same side of the line $l_{l i m}(a, A)$. (Recall that the contour of the triangle $\triangle A O M$ is the union $[A O) \cup[O M \cup[M A)$. In order to make our exposition at all manageable, in this as well as many other proofs we leave out some easy yet tedious details, leaving it to the reader to fill the gaps.)
 ${ }^{19}$ This follows from the fact that any half-plane is an open plane set.
 ${ }^{20}$ Of course, $A^{\prime} \notin\left(O^{\prime} M\right)$. Also, $\left[O^{\prime} O P\right] \stackrel{\text { L1.2.13.2 }}{\Longrightarrow} O_{P} \subset O^{\prime}{ }_{P}$ and O, P^{\prime} lie on a on the same side of O^{\prime}, whence $M \in O^{\prime}{ }_{P}^{\prime}$ and, consequently, $\left(O^{\prime} M\right) \subset O^{\prime}{ }_{P}{ }^{\prime}$.
 ${ }^{21}$ Observe that l definitely meets the line a. A clumsy, but sure way to see this is as follows: Lower a perpendicular from B to a with the foot O. Since, loosely speaking, $\angle(k, l)$ is half $\angle\left(B_{A}, k\right)$ and the latter is not straight, the angle $\angle(k, l)$ is acute. Using L 1.3.16.17, C 1.3.16.4 we see that $l \subset \operatorname{Int} \angle\left(B_{O}, k\right)$. But we have shown above that, in view of definition of k as the lower limiting ray, the ray l is bound to meet the line a.
 ${ }^{22}$ Thus, $A I$ is a bisector of the triangle $\triangle B A D$.
 ${ }^{23}$ In other words, the points J, K, L are the feet of the perpendiculars lowered from I to the lines $b, a_{A B}, a$, respectively.
 ${ }^{24}$ To show that the point I lies inside the strip $a b$, observe that I, lying on the bisector of the angle $\angle\left(B_{A}, k\right)$, lies on the same side of the line b as the point A, and, consequently, as the whole line a. Similarly, since I lies on the bisector of $\angle B A D$, the point I lies on the same side of a as B, and, consequently, as the whole line b. Thus, by definition of interior of the strip $a b$, the point I lies inside this strip. If the points I, J, L were collinear, we would have either $I \in J_{L}$, or $I=J$, or $I \in J_{L}^{c}$. Obviously, $I \neq J$. Also, $I \in J_{L}^{c}$, equivalent to $[I J L]$, would imply that the points I, L lie on opposite sides of the line b - a contradiction with $I \in \operatorname{Int}(a b)$. Thus, we conclude that $I \in J_{L}$.

[^181]: ${ }^{25}$ That is, $l_{l i m}\left(h^{\prime}, J\right)$ is the lower limiting ray with respect to the order defined on a in such a manner that L precedes any point of h^{\prime}.
 ${ }^{26}$ Consider the set \mathfrak{J}^{\prime} of such rays l^{\prime} with initial point L that the rays l^{\prime}, k^{\prime} lie on the same side of the line $a_{L F}$, plus the rays L_{F}, L_{F}^{c}, where $F \in b$ is the foot of the perpendicular drawn through L to b. Consider also the subset $\mathfrak{A}^{\prime} \subset \mathfrak{J}^{\prime}$ defined by the additional requirement that the line \bar{l}^{\prime} does not meet the line b. As explained above, we can define on the set \mathfrak{J}^{\prime} two opposite orders, linked to the betweenness relation, defined in the usual way as follows: a ray $l^{\prime \prime} \in \mathfrak{J}^{\prime}$ lies between $h^{\prime \prime} \in \mathfrak{J}^{\prime}$ and $k^{\prime \prime} \in \mathfrak{J}^{\prime}$ with the same initial point iff $l^{\prime \prime} \subset \operatorname{Int} \angle\left(h^{\prime \prime}, k^{\prime \prime}\right)$. Of the two orders possible, we choose the one in which L_{F} precedes L_{F}^{c}. We then define $l_{\text {lim }}\left(k^{\prime}, J\right) \rightleftharpoons \inf \mathfrak{A}^{\prime}$.
 ${ }^{27}$ Here is a clumsy, but working way to show this: Since the rays L_{I}, L_{J} lie on the same side of the line a and the angle $\angle\left(L_{J}, h^{\prime}\right)$, being acute (by our assumption), is less than the right angle $\angle\left(L_{I}, h^{\prime}\right)$ (see L 1.3 .16 .17), we see (using C 1.2.21.11) that the rays L_{I}, h^{\prime} lie on opposite sides of the line $a_{L J}$. As the rays h^{\prime}, k^{\prime} lie on the same side of the line Since the rays L_{I}, h^{\prime} lie on the same side of $a_{J L}$ (from our definition of k^{\prime} as $l_{l i m}\left(h^{\prime}, J\right)$), using L 1.2 .18 .5 we conclude that the rays J_{I}, k^{\prime} lie on opposite sides of the line $a_{L J}$. (Of course, we also take into account that the rays L_{I}, J_{I} lie on the same side of $a_{L J}$.) Finally, since the rays J_{I}, J_{L} (because the points I, $L \in a$ lie on the same side of b) lie on the same side of b, from L 1.2.21.32 we find that J_{L} lies inside the angle $\angle\left(J_{I}, k^{\prime}\right)$.
 ${ }^{28}$ As $k^{\prime \prime} \subset \angle\left(J_{L}, k^{\prime}\right)$, the rays $k^{\prime \prime}, k^{\prime}$ lie on the same side of the line $a_{J L}$. Since also $h^{\prime} k^{\prime} a_{J L}$, we see that $k^{\prime \prime} a_{J L} h^{\prime}, k^{\prime \prime} a_{J L} h^{\prime c}$, which implies that the ray $k^{\prime \prime}$ can meet the line a only in a point lying on the ray h^{\prime}. (We also take into account that, of course, $L \notin k^{\prime \prime}$.)
 ${ }^{29}$ Obviously, b cannot meet $(A P)$, for $a \| b$.

[^182]: ${ }^{30}$ That such a ray h^{\prime} actually exists can easily be shown using L 1.2.21.21, L 1.2.21.27. In fact, from L 1.2.21.21 we can assume without loss of generality that $A_{B} \subset \operatorname{Int} \angle\left(h, A_{C}\right)$. Now choosing $h^{\prime} \subset \operatorname{Int} \angle\left(h, A_{B}\right)$ (see, for example, C 1.2.31.14 for a much stronger statement concerning the possibility of this choice), we get the required conclusion from L 1.2.21.27.
 ${ }^{31}$ In fact, we know (see above) that either both A, E lie on a on the same side of B (and thus lie on the same side of $a_{B C}$) and D, F lie on b on the same side of C, or A, E lie on a on the opposite sides of B (and thus lie on the opposite sides of $a_{B C}$) and D, F lie on b on the opposite sides of C. Hence from L $1.2 .19 .8, \mathrm{~L} 1.2 .17 .9, \mathrm{~L} 1.2 .17 .10$ we conclude that E, F lie on opposite sides of the line $a_{B C}$.
 ${ }^{32}$ Due to the Arab astronomer and mathematician of the 13th century Nasir al-Din al-Tusi.
 ${ }^{33}$ Note that using A 1.3 .1 we can choose A_{1} so that the interval $A A_{1}$ is congruent to any interval given in advance.
 ${ }^{34}$ Of course, $\left[A A_{1} A_{2}\right]$ is equivalent to $A_{2} \in A_{1 A}$.

[^183]: ${ }^{35}$ Compare with proof of L 1.3.21.11.
 ${ }^{36}$ As is customary, in the more lengthy proofs such as this one we omit some (hopefully!) trivial details of argumentation, leaving it to the pedantic reader to fill the gaps.
 ${ }^{37}$ Of course, we are using the obvious fact that any angle greater than an obtuse angle is also acute.
 ${ }^{38}$ Any acute angle is less than any obtuse angle - see L 1.3.16.19.
 ${ }^{39}$ To show that the rays $A_{i-1} C_{i}, A_{i-1} A_{i}$ lie on the same side of the line $a_{B_{i-1} A_{i-1}}$ one may observe that all points, including C_{i}, of the line $a_{B_{i}} A_{i}$, which is parallel to the line $a_{B_{i-1} A_{i-1}}$, lie on the same side of the line $a_{B_{i-1} A_{i-1}}$.
 ${ }^{40}$ Note that $B_{i} C^{\prime}{ }_{i} \equiv B_{i+1} C^{\prime \prime}{ }_{i+1}$ according to A 1.3.3.
 ${ }^{41}$ In fact, the points $C^{\prime \prime}{ }_{i+1}, A_{i+1}$ and thus the rays $C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}, C^{\prime}{ }_{i} A_{i+1}$ lie on the same side of the line $a_{B_{i}} A_{i}$. Since the acute angle $\angle B_{i} C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}$ (it is acute as being a summit angle of the Saccheri quadrilateral $C^{\prime}{ }_{i} B_{i} B_{i+1} C^{\prime \prime}{ }_{i+1}$) is less than the obtuse angle $\angle B_{i} C^{\prime}{ }_{i} A_{i+1}=\angle A_{i} C^{\prime}{ }_{i} A_{i+1}$ (see L 1.3.16.19), we find that the ray $C^{\prime}{ }_{i C^{\prime \prime}}{ }_{i+1}$ lies inside the angle $\angle B_{i} C^{\prime}{ }_{i} A_{i+1}$. Since the Saccheri quadrilateral $C^{\prime}{ }_{i} B_{i} B_{i+1} C^{\prime \prime}{ }_{i+1}$ is convex, the ray $C^{\prime}{ }_{i}{ }_{B_{i+1}}$ lies inside the angle $\angle B_{i} C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}$ (see L 1.2.62.4). Using L 1.2 .21 .27 we see that the ray $C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}$ lies (completely) inside the angle $\angle B_{i+1} C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}$. By L 1.2.21.6, L 1.2.21.4 there is then a point $C^{\prime \prime \prime}{ }_{i+1} \in C^{\prime}{ }_{i C^{\prime \prime}}{ }_{i+1}$ such that $\left[B_{i+1} C^{\prime \prime \prime}{ }_{i+1} A_{i+1}\right]$. Since the lines $a_{C^{\prime}{ }_{i} C^{\prime \prime}{ }_{i+1}}$ are evidently distinct, we find that $C^{\prime \prime \prime}{ }_{i+1}=C^{\prime \prime}{ }_{i+1}$. Now we can write $\left[B_{i+1} C_{i+1} C^{\prime \prime}{ }_{i+1}\right] \&\left[B_{i+1} C^{\prime \prime}{ }_{i+1} A_{i+1}\right] \stackrel{\mathrm{L} 1.2 .3 .2}{\Longrightarrow}\left[C_{i+1} C^{\prime \prime}{ }_{i+1} A_{i+1}\right]$.

[^184]: ${ }^{42}$ Note that, by construction, both $A^{\prime}{ }_{i-1}, A_{i+1}$ and $A^{\prime \prime}{ }_{i-1}, A_{i+1}$ lie on the opposite sides of A_{i}, whence we conclude using L 1.2.11.10 that the points $A_{i-1}^{\prime}, A^{\prime \prime}{ }_{i-1}$ lie on the same side of A_{i}.
 ${ }^{43}$ In other words, B is the foot of the perpendicular to a drawn through C.
 ${ }^{44}$ This is due to symmetry of congruence relation and to the fact that cyclic rearrangements of sides do not affect in any way the congruence properties of polygons (see P 1.3.1.4).
 ${ }^{45}$ Alternatively, this case can be brought to contradiction using the angle sum argument (see the analysis of the next case later in this proof) and C 1.3.67.15.

[^185]: ${ }^{46}$ Obviously, E exists by definition of "points A, D lie on the opposite sides of $a_{B C}$ "
 ${ }^{48}$ Observe that the quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ enter the conditions of the theorem symmetrically.
 ${ }^{48}$ We could do the rest of the proof in this case without using T 1.3 .15 (which is used in the main body of the text), but this would take much more work and proceed something like as follows: Note that the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of the line $a_{A^{\prime \prime} B^{\prime}}=a_{A^{\prime} B^{\prime}}$ (see L 1.2.11.10). (Otherwise, we would also have $D^{\prime \prime}=D^{\prime}$ and the proof would be complete. In fact, suppose the contrary, i.e. that $A^{\prime \prime}=A^{\prime}$ but $D^{\prime \prime} \neq D^{\prime}$. Then, taking into account that $D^{\prime \prime} \in C^{\prime} D^{\prime}$, in view of L 1.2 .11 .8 we have either $\left[C^{\prime} D^{\prime} D^{\prime \prime}\right]$ or $\left[C^{\prime} D^{\prime \prime} D^{\prime}\right]$. Assuming that $\left[C^{\prime} D^{\prime} D^{\prime \prime}\right]$ (evidently, we can do this without any loss in generality) and using T 1.3 .17 , we find that the angle $\angle C^{\prime} D^{\prime} A^{\prime}$, being the exterior angle of the triangle $\triangle D^{\prime} A^{\prime} D^{\prime \prime}$, is greater that the interior angle $\angle D^{\prime} D^{\prime \prime} A=\angle C^{\prime} D^{\prime \prime} A^{\prime}$ (see L 1.2.11.15). This contradicts the congruence $\angle C^{\prime} D^{\prime} A^{\prime} \equiv \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}$ established above (L 1.3.16.11). The contradiction shows that $A^{\prime \prime}=A^{\prime}$ necessarily implies $D^{\prime \prime}=D^{\prime}$.) Suppose $A^{\prime \prime} \neq A^{\prime}$. As $A^{\prime \prime} \in B^{\prime}{ }_{A^{\prime}}$, in view of L 1.2 .11 .8 we have either $\left[B^{\prime} A^{\prime} A^{\prime \prime}\right]$ or $\left[B^{\prime} A^{\prime \prime} A^{\prime}\right]$. We can assume without any loss in generality that $\left[B^{\prime} A^{\prime} A^{\prime \prime}\right]$. (The other case is then immediately taken care of by the simultaneous substitutions $A^{\prime} \leftrightarrow A^{\prime \prime}, D^{\prime} \leftrightarrow D^{\prime \prime}$.) Since $\left[B^{\prime} A^{\prime} A^{\prime \prime}\right]$, the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of the line $a_{A^{\prime \prime} B^{\prime}}=a_{A^{\prime} B^{\prime}}$, and $D^{\prime} A^{\prime} B^{\prime} \equiv \angle D^{\prime \prime} A^{\prime \prime} B^{\prime}$, the lines $a_{A^{\prime} D^{\prime}}$, $a_{A^{\prime \prime} D^{\prime \prime}}$ are parallel (T 1.3.26). Hence using T 1.2 .44 we find that $\left[F^{\prime} D^{\prime} D^{\prime \prime}\right]$. Thus, not only is the angle $\angle D^{\prime} A^{\prime} A^{\prime \prime}$ adjacent supplementary to the angle $\angle D^{\prime} A^{\prime} B^{\prime}=\angle D^{\prime} A^{\prime} F^{\prime}$, but also the angle $\angle A^{\prime} D^{\prime} D^{\prime \prime}$ is adjacent supplementary to the angle $\angle A^{\prime} D^{\prime} F^{\prime}=\angle A^{\prime} D^{\prime} C^{\prime}$. Since, as we have seen, $\angle B^{\prime} A^{\prime} D^{\prime} \equiv \angle B^{\prime} A^{\prime \prime} D^{\prime \prime}$ and $\angle C^{\prime} D^{\prime} A^{\prime} \equiv \angle C^{\prime} D^{\prime \prime} A^{\prime \prime}$, we find that the angles $\angle D^{\prime} A^{\prime} A^{\prime \prime}, \angle D^{\prime \prime} A^{\prime \prime} A^{\prime}=\angle D^{\prime \prime} A^{\prime \prime} B^{\prime}$ are supplementary, as are the angles $\angle A^{\prime} D^{\prime} D^{\prime \prime}, \angle A^{\prime \prime} D^{\prime \prime} D^{\prime}=\angle A^{\prime \prime} D^{\prime \prime} C^{\prime}$ (note that $\left[C^{\prime} F^{\prime} D^{\prime}\right] \&\left[F^{\prime} D^{\prime} D^{\prime \prime}\right] \xrightarrow{\text { L1.2.3.1 }}\left[C^{\prime} D^{\prime} D^{\prime \prime}\right]$). Hence we find that $\Sigma_{A^{\prime} D^{\prime} D^{\prime \prime} A^{\prime \prime}}^{(a b s}=2 \pi^{(a b s, x t)}$, in contradiction with C 3.1.1.2. This contradiction shows that in reality in the given case we have $A^{\prime}=A^{\prime \prime}$ and, as a consequence, $D^{\prime}=D^{\prime \prime}$.
 ${ }^{49}$ Observe that the following argument is similar to that employed previously in this proof in our treatment of the preceding case.
 ${ }^{50}$ Since the points $A^{\prime \prime}, A^{\prime}, B^{\prime}$ colline even if the points $A^{\prime \prime}, A^{\prime}$ were distinct (which, as we are about to show, they are not), the lines $a_{A^{\prime \prime} B^{\prime}}=a_{A^{\prime} B^{\prime}}$ and $a_{C^{\prime} D^{\prime}}=a_{C^{\prime} D^{\prime \prime}}$ (distinct due to simplicity of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$) can meet in at most one point (see T 1.1.1), which happens

[^186]: to be $F^{\prime \prime}=F^{\prime}$.
 ${ }^{51}$ As both C^{\prime}, D^{\prime} and $C^{\prime}, D^{\prime \prime}$ lie on the opposite sides of $F^{\prime \prime}=F^{\prime}$.
 ${ }^{52}$ We take into account that the points $D^{\prime \prime}, D^{\prime}$ lie on the same side of F^{\prime} as do the points $A^{\prime}, A^{\prime \prime}$.
 ${ }^{53}$ This is easily seen using L 1.2.11.16.
 ${ }^{54}$ We write $\angle D^{\prime} F^{\prime} A^{\prime} \equiv \angle D^{\prime \prime} F^{\prime} A^{\prime \prime} \& \angle F^{\prime} D^{\prime} A^{\prime} \equiv \angle F^{\prime} D^{\prime \prime} A^{\prime \prime} \& \angle D^{\prime} A^{\prime} F^{\prime} \equiv \angle D^{\prime \prime} A^{\prime \prime} F^{\prime \prime} \stackrel{\mathrm{T} 3.1 .15}{ } \triangle F^{\prime} D^{\prime} A^{\prime} \equiv \triangle F^{\prime} D^{\prime \prime} A^{\prime \prime} \Rightarrow F^{\prime} D^{\prime} \equiv$ $F^{\prime} D^{\prime \prime} \& F^{\prime} A^{\prime} \equiv F^{\prime} A^{\prime \prime}$, whence in view of T 1.3 .2 (taking into account that the points $D^{\prime \prime}, D^{\prime}$, as well as the points A^{\prime}, $A^{\prime \prime}$, lie on the same side of F^{\prime}) we are forced to conclude that $D^{\prime}=D^{\prime \prime}$ and $A^{\prime}=A^{\prime \prime}$.
 ${ }^{55}$ This can be seen immediately from symmetry considerations by observing that the properties established up to this point of the points involved are invariant with respect to the simultaneous substitutions $A^{\prime} \leftrightarrow A^{\prime \prime}, D^{\prime} \leftrightarrow D^{\prime \prime}$.
 ${ }^{56}$ This can be done at once by symmetry using the simultaneous substitutions $B^{\prime} \leftrightarrow C^{\prime}, A^{\prime} \leftrightarrow D^{\prime}, A^{\prime \prime} \leftrightarrow D^{\prime \prime}$ (it is easy to see that these substitutions preserve the validity of the facts established so far in this proof) or drawing an easy analogy with our preceding arguments.
 ${ }^{57}$ This is due to symmetry of the conditions of the theorem. Thus, if $C D$ lies in the class $\mu A B$ (of intervals congruent to the interval $C D$) then $A B$ lies in the class $\mu C D$ (of intervals congruent to the interval $A B$.
 ${ }^{58}$ By construction, the rays $l_{\text {lim }}(a, E), k$ lie on the same side of the line. Then either the ray k lies inside the angle $\angle\left(E_{A}, l_{\text {lim }}(a, E)\right)$ or the ray $l_{l i m}(a, E)$ lies inside the angle $\angle\left(E_{A}, k\right)$. But the first option would imply that the ray k meets the line a. On the other hand, since $C D \equiv A E$ and $A B<C D$ we have $[A B E]$. As $a \| b$ (they are directionally parallel) and $b \| \bar{k}$ (they are hyperparallel), the lines a, \bar{k} are parallel in the usual sense, that is, they coplane and do not meet. The contradiction shows that in fact $l_{\text {lim }}(a, E)$ lies inside the angle $\angle\left(E_{A}, k\right)$.

[^187]: ${ }^{59}$ To show this, albeit in a clumsy way, observe that the rays $l^{\prime}, B_{0 O}$ lie on the opposite sides of the line $a_{B_{0} P}$ (because, as we just saw, $B_{0 P} \subset \operatorname{Int} \angle\left(B_{0 O}, l^{\prime}\right)$; see C 1.2 .21 .11) and the rays $B_{0 O}, P_{O}$ lie on the same side of the line \bar{k} (they share the point O). Hence using L 1.2 .18 .5 we see that the rays l^{\prime}, P_{O} lie on the opposite sides of the line $a_{B_{0} P}$ and thus they cannot meet. And, of course, $l^{\prime} \subset \operatorname{Int} \angle\left(B_{0 P}, l_{0}\right)$ implies that $P \notin l^{\prime}$.
 ${ }^{60}$ A workable but certainly not very graceful way to show this is as follows: Since, as we saw above, the angle $\angle O B_{0} P$ is acute, using C 1.3.18.11 we find that $F \in B_{0 O}$. Since, as we just saw $l^{\prime} \subset \operatorname{Int} \angle(h, k)$ and, in particular, $E \in \operatorname{Int} \angle(h, k)$, using L 1.3 .26 .15 we find that $F \in h=O_{B_{0}}$. Thus, we see that $F \in h \cap B_{0 O}=\left(O B_{0}\right)$.

[^188]: ${ }^{61}$ In other words, $\mu \angle(h, k)=\Pi\left(\mu O B_{0}\right)$.

