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Concentrated Polymer Solutions.
Up to now (except for the chapter on the viscosity of entangled 
polymer systems) we discussed mainly the dilute polymer 
solutions, where single chains do not interact with each other.
Now we consider more systematically the equilibrium properties 
of concentrated polymer solutions of overlapping coils.

The overlap concentration of monomer units is
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Semidilute Polymer Solutions.
Since           , the overlap of the coils occurs already at a very low 
polymer concentration. Therefore, there is a wide concentration 
region where (i) coils are overlapping and strongly entangled; 
and (ii)           . Such solutions are called semidilute.
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The semidilute regime existls only in polymer solutions, it is 
a specific polymer feature. The crossover volume fraction 
between the dilute and semidilute regimes is

* 1/ 2Nφ −
 for Θ-solvents (ideal coils),

* 1/ 2 4 /5N Nφ α − −
  for good solvents (swollen coils).



Screening of the Excluded 
Volume Interactions.

Consider a square lattice, whose sites are filled with a melt
of dimers (each molecule occupying two sites) with a small 
number of monomers dispersed in this melt.

A qualitative explanation of this phenomenon is as follows. 

Screening  means an appearance of some additional attraction 
which neutralizes the repulsion. 

Consider a chain swelling in a good solvent because of the 
excluded volume. If the concentration is above the overlap 
concentration     an important phenomenon called the screening 
of excluded volume interactions takes places (Flory, Edwards):
as the chain concentration increases in the region          , coils 
swelling gradually diminishes and finally it vanishes in the melt 
(i.e., in the melt the coils are ideal - the Flory theorem).
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Screening of the Excluded 
Volume Interactions.

Two sites with excluded volume repel 
each other.

In the liquid of dimers two sites normally 
exclude 8 possible dimers positions.

If these sites are nearest neighbors, they 
exclude only 7 dimer positions thus 
leading to additional attraction.

In the liquid of polymers (multimers) this effect becomes even 
larger and leads to the complete screening of excluded volume.



An Example of Scaling Arguments:
Chain Size in a Semidilute Solution.
Thus, in the solution of flexible polymer chains far above the
Θ-point                  at               and                  at           .3/5R aN

*φ φ< 1/ 2R aN 1φ =
To determine the value of R in the intermediate region                
(i.e, in the semidilute polymer solution) we use the so-called 
scaling method.

* 1φ φ 

Scaling considerations are widely used in polymer science. We
use this particular problem - that of concentration dependence 
of R in the semidilute polymer solutions - as an example to 
illustrate how these considerations generally work. They 
usually include the following three steps.
Step 1. We assume that       is the only characteristic polymer 
volume fraction in the range               . Thus, the desired R should
be a function of the form

*φ
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( )3/5 *R aN f φ φ=
where f(x) is some unknown function of a single argument.



An Example of Scaling Arguments:
Chain Size in a Semidilute Solution.
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Step 2. Since for dilute solutions                 the asymptotic form 
of f(x) at low x is

3/5R aN

For large x we assume
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i.e., a power law with some yet undefined exponent n. Thus, since
                  in a good solvent, one has for *φ φ

* 4/5Nφ −

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Step 3. The exponent n is chosen from some additional physical 
considerations. In this particular case we know that at               
                 (Flory theorem). Thus,
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An Example of Scaling Arguments:
Chain Size in a Semidilute Solution.
We get, thus, the final result: in semidilute solutions (i.e. in the 
for                    ) the following relation holds* 1φ φ 

( ) ( )1/8 1/83/5 * 3/5 4 /5 1/ 2 1/8R aN aN N aNφ φ φ φ
− − −

  

I.e., the size of polymer coil drops with the increase of  φ  in 
the semidilute solution range; at  φ ~ 1 all the swelling vanishes.

The scaling arguments of this type has been successfully used 
for a number of polymer problems. The scaling approach allows 
to obtain answers which are correct up to some numerical 
constants, while avoiding complicated calculations. Note, 
however, that to give correct scaling predictions one should 
have beforehand a rather deep physical insight into the problem 
under consideration (see the assumption of “one characteristic 
volume fraction” in this particular case).



Polymer Solutions in Poor Solvents.

In a poor solvent (i.e., below the Θ-point) the attraction between 
the monomer units prevails. Single chains (or chains in the dilute 
enough solutions) collapse and form a globule. However, in 
concentrated solutions the macroscopic phase separation takes 
place as well. One can consider it as a kind of intermolecular 
collapse.

Supernatant
phase

Precipitant
phase

To find the conditions for macroscopic phase separation it is 
necessary to write down the free energy of a polymer solution. 
It was first proposed independently by Flory and Huggins in
1941-42 within a lattice model of polymer solutions.



The Flory-Huggins Model.

Polymer chains are represented by non-self-intersecting random 
walks on a lattice and energy -ε is assigned to each close contact 
of two monomer units which are not neighbors along the chain. 
In the Flory-Huggins theory the number of conformations is 
counted and the entropy is derived as a logarithm of this number. 
The energy is calculated from the average  number of close 
contacting monomer units, which is assumed to be proportional to
Nnφ, where n is the total number of chains and N is the number of 
units in each chain.



The Flory-Huggins Model. 
The Entropy of Mixing.
Consider first the entropy S due to the allocation of the polymer
chains onto the lattice. As usual, we have 
( ) ( ), , ln , ,S n N k W n NΩ = Ω

where k is the Boltzmann constant, and W is the number of possible 
ways to allocate all n polymers chains, each of them consisting of 
N units, while               is the total number of lattice sites.NnΩ ≥
To calculate W let us put the chains on the lattice one by one. 
The number of possible ways to put the first chain on the lattice
equals

where z is the lattice coordination number. Indeed, there are Ω
ways to put the first link, then z ways to put the second one on an 
adjacent site, and (z-1) ways to put each of the rest N-2 links.
The factor 1/2 allows for the symmetry of the chain.
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Note: we neglected the intrapolymer excluded volume interactions,
a reasonable approximation in semidilute and concentrated regimes.



The Flory-Huggins Model. 
The Entropy of Mixing.
Now, the number of possible ways to pu the i-th chain on the 
lattice can be estimated as follows
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where the expression in brackets is a probability to find any
particular latice site to be already occupied by the previously 
allocated chains.
The total desired number of possible allocations W then equals
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where the factor           allows for the indistinguishability of the 
chains. Putting it in other words
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where the Stirling formula is used:
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The Flory-Huggins Model. 
The Entropy of Mixing.
We get thus
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where to calculate the sum we approximated it with an integral and 
used the formula
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We introduce now a new variable                 , the volume fraction 
of the polymer, and rewrite the entropy per unit volume as follows:
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The Flory-Huggins Model. 
The Entropy of Mixing.
The result for the entropy of allocation we have obtained can be 
rewritten as follows:
( ) ( ) ( ), , ln 1 ln 1 some terms linear in S n N k

N
φ

φ φ φ φΩ Ω = + − − +

and it turns out that the linear terms are, to the big extent, irrelevant.

( ) ( ) ( ), , ln 1 ln 1mixS n N k
N
φ

φ φ φΩ Ω = + − −

is called the entropy of mixing since it corresponds to the entropy
change between the homogeneous state with volume fraction φ and
the reference state in which polymer and solvent (represented by
the empty sites) are fully separated.

Indeed, these terms are proportional to the total number of particles 
in the system (              ) and thus they do not change in any process
that does not change the number of particles. They are in fact 
indistinguishable from any possible contribution into the entropy
due to the internal degrees of freedom the monomers units may have
and lead just to a shift in the chemical potential of the monomers.
The expression 

nNφΩ =



The Flory-Huggins Model. 
The Free Energy.
In turn, the energy E due to the attraction between the monomer 
units of the polymer can be estimated as follows

Indeed, each of Nn monomers has, on average (z-2)φ neighbors, 
apart from those two which are adjacent along the chain, and 
each contact gives the contribution to the energy equal to -ε; the
factor one half allows for the fact that we have took each contact 
into account twice.
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We have now all ingredients needed to constract the free energy 
F = E - TS. One has

( ) ( ) 2ln 1 ln 1F kT
N
φ

φ φ φ χφΩ = + − − −

where we have introduced the so-called Flory-Huggins parameter:
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The Flory-Huggins Model.
The Free Energy.

ln
N
φ

φ

( ) ( )1 ln 1φ φ− −

2χφ−

This term describes the translational entropy of 
the coils (the free energy of an ideal gas of coils) 

This term, the “translational entropy” of the 
empty cites, effectively accounts for the 
excluded volume interactions: it provides the 
increase in the compressibility coefficient when 
φ approaches unity.

This term is responsible for the attraction of 
the monomer units.

( ) ( ) 2ln 1 ln 1F
kT N

φ
φ φ φ χφ= + − − −

Ω

The physical meaning of the terms in the Flory-Huggins free 
energy is as follows:



The Flory-Huggins Model.

With the increase of χ the quality of the solvent becomes poorer. 
Which value of χ corresponds to the Θ-point? To answer this 
question expand F in the powers of φ:

( ) 2 31 1ln 1 2 ...
2 6

F
kT N

φ
φ χ φ φ= + − + +

Ω
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ln
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φ

φ is the ideal gas term

( ) 21 1 2
2

χ φ− is the term describing the binary interactions 
(second virial coefficient B)

31
6
φ corresponds to the ternary interactions and

the third virial coefficient C
At T = Θ  B = 0. Thus, the Θ-point corresponds to χ = 1/2:

1/ 2χ < corresponds to good solvent
1/ 2χ > corresponds to poor solvent



Macroscopic Phase Separation.
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Is the homogeneous solution with a given volume fraction φ 
stable with respect to a decomposition into two different 
macroscopic phases? To answer this question, we proceed as
follows.

-

2 2,φΩ

1 1,φΩ
,φΩ -
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Assume the new phases to have volume 
fractions     and     , and volumes       and
     , respectively. Then the following 
relationships hold
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Solving this set of equations with resect to the phase volumes we 
get - -



Macroscopic Phase Separation.

Now, the total free energy of the decomposed state        equalsdecF

If the free energy of the decomposed state is less then the free 
energy of the initial homogeneous one:
then it is advantegeous for the system to separate into phases.

( ) ( )1 2, ,decf fφ φ φ φ<
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where f (φ) is the free energy per unit volume. Therefore,
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Macroscopic Phase Separation.

It turns out that this formula has a very instructive geometrical 
meaning.

( ) ( ) ( )2 1
1 2 1 2

2 1 2 1
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Indeed, if one plots the free energy as a
function of φ, then        is just the ordinate 
of the intersection of a secant line 
connecting the points of the plot with 
volume fractions     and     , and the line
          .φ φ=

decf

1φ 2φ

We see thus that for the phase separation to be possible the free 
energy as a function of φ should have a concave part. If the free 
energy is convex for all               , the homogeneous state is 
always stable.

0 1φ< <



Macroscopic Phase Separation.

The typical dependence of the Flory-Huggins free energy on the 
polymer volume fraction φ in  poor solvents is as follows.

F
φ

Binodal
points

Spinodal
points

2φ1φ 1

This dependence contains both convex and concave parts. Thus,
the macroscopic phase separation is possible in this case. It indeed
occurs in the region of volume fractions between the two so-called
binodal points. 



Macroscopic Phase Separation.

The region corresponding to the macroscopic phase separation 
is bound by the common tangent straight line giving rise to the 
so-called binodal curve. The condition of the absolute instability 
of the homogeneous phase at a given concentration is determined 
from the positions of inflexion points (                     ) which gives 
rise to the so-called spinodal curve.

2 2 0F φ∂ ∂ =

The spinodal condition reads
1 1 2 0
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This dependence together with the binodal is shown in the figure:
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Macroscopic Phase Separation.
The spinodal decomposition.
Let us now adress the question of how the phase separation 
actually occurs. Consider a homogeneous system out of its region 
of stability (prepared, for example by rapid cooling of a stable 
system as shown by the green arrow on the figure), and consider

φcφ

χ

cχ
21

an infinitesimal concentration fluctuation 
in this homogeneous system. According to
the general formula derived above, the 
change of the free energy per unit volume 
due to such a fluctuation equals

δφ

( ) ( ) ( )1
2

F F F Fδ φ δφ φ δφ φ = + + − − = 
( )2 2

22
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φ
∂
∂

Thus, the homogeneous system beyond the spinodal curve, i.e., 
one with                      , is unstable with respect to any infinitesimal 
concentration fluctuation, and any such fluctuation grows with time 
leading to the process of the so-called spinodal decomposition.

2 2 0F φ∂ ∂ <



Macroscopic Phase Separation.
The spinodal decomposition.
One can imagine the process of the spinodal decomposition as 
follows. In any thermodynamic system there is always a pattern
of concentrational fluctuations, usually each of them decays 
rapidly with time: if there happens to be a region reach in some 
component, the component diffuses out of this region returning the 
system back to the homogeneous state. In the spinodal decomposi-
tion just the opposite process takes place. If there happens to be a 
region rich in polymer, the polymer starts diffusing into this region, 
thus increasing the fluctuation until the equilibrium volume fraction 
of a new phase is reached. 

Thus, there rapidly arises a pattern of interpenetrating domains 
with concentrations       and      , known as Cahn-Hilliard 
concentration waves. Then the wavelength of these waves (i.e., the
typical domain size) starts growing with time, finally leading to
a macroscopically separated state.

1φ 2φ



Macroscopic Phase Separation.
Nucleation and Growth.

χ

φcφ

cχ
21

In this case the small concentration fluctuations 
are still suppressed similary to the stable case. 
To initiate the phase separation a fluctuation 
exceeding some critical size (both in terms of the 
concentration difference and in terms of the spa-
tial extent) is needed (Lifshitz, Slezov, Wagner). 

These extremely large fluctuations act as nuclei for the new phase
which starts to grow around them.
Note that this process is much slower then the spinodal decomposition, 
since large fluctuations are extremely rear. The presense of some 
external nucleation centers in the system (like dust or irregularities on 
the surface of the reaction vessel) can speed up the process. However,
the homogeneous state is said to be metastable in this case.

Consider now the case when the homogeneous phase is unstable but
                      . This indeed happens if the state in question lies 
between the binodal and spinodal curves (see figure).

2 2 0F φ∂ ∂ >



Macroscopic Phase Separation.
Conclusions.
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Phase diagram with both the binodal and the spinodal:

1. Macroscopic phase separation takes place at the quality of 
the solvent only slightly poorer than the Θ-solvent:

1 1
2c N

χ = +

2. The critical point for macroscopic phase separation corresponds 
to the dilute enough solution: 1

c N
φ =



Macroscopic Phase Separation.
Conclusions.
3. The region of isolated globules in solution corresponds to 
very low polymer concentrations, especially at the values of χ
significantly larger than 1/2.

4. The precipitant phase close enough to the Θ-point is very 
diluted.
5. For different values of N the binodal curves (boundaries of the 
phase separation region) have the form: 

Ф

χ

cχ
21

1N
2N
3N

1N 2N 3N> >

Ф

χ

cχ
21

1N
2N
3N

1N 2N 3N> >
1N 2N 3N> >

With the increase of N the critical 
temperature becomes closer to 
the Θ-point, and the critical 
concentration becomes lower.



Method of Fractional Precipitation.

Method of fractional precipitation for the polydisperse polymer 
solutions: when the quality of solvent is becoming poorer or 
polymer concentration increases in the dilute enough range at 
first the most high-molecular fraction precipitates, then the next 
fraction, etc., ...; polymers with lower molecular weights require 
more significant increase in χ and φ to precipitate. In this way 
polymer fractionation is achieved.

Reverse method is called the method of fractional dissolution: 
when one moves from the region of insolubility to the region of 
partial solubility at first the fractions with the lowest values of 
M are dissolved.



Temperature dependence of χ.

T

cΘ

What is the connection between the Flory-Huggins parameter χ 
and the temperature T ? Within the framework of the lattice model
          , and in the experimental variables T, c the phase 
diagram has the form shown in the figure, i.e. the poor solvent 
region corresponds to T < Θ

kTχ ε∼

Such situation is called upper 
critical solution temperature 
(UCST) - critical point is 
“on the top” of the phase 
separation region.

Examples: poly(styrene) in cyclohexane (around 35 C), 
poly(isobutylene) in benzene, acetylcellulose in chlorophorm.

o



Temperature dependence of χ.
However, due to the complicated renormalization of polymer-
polymer interactions due to the solvent, sometimes effective χ
increases with the increase of T. Then the T, c phase diagram 
has the form shown in the figure below, i.e. the poor solvent 
region corresponds to T > Θ.

T

c

Θ

This situation is called lower critical 
solution temperature (LCST) - critical 
point is “on the bottom” of the phase 
separation region.

Examples: poly(oxyethylene) in water, methylcellulose in water, 
in general - most of the water-based solutions. 

The reason: increase of the so-called hydrophobic interactions 
with the temperature (organic polymers contaminate the network 
of hydrogen bonds in water reducing the network entropy).


