Использование описанных выше систем для стабилизации металлических наночастиц

 <u>Стабилизация с</u> <u>помощью:</u>

Сополимеров (ПС-блок-П4ВП) ✓ КАТАЛИЗ

 Стабилизация металлических наночастиц с помощью поликатионов в растворах угольной кислоты

Поли-4-винилпиридин: растворимый поликатион в кислых водных средах (растворы угольной кислоты)

ПЛАСТИФИКАЦИЯ!

 Одностадийный подход к созданию мицелл ПС-блок-П4ВП в растворах самонейтрализующейся при декомпрессии среды – раствора угольной кислоты

Формирование мицелл Р4VР в присутствии угольной кислоты и декорирование наночастицами Pd

Pigaleva et al. // ACS Macro Lett. 2015, 4, 661

Самоорганизация сополимера **ПС-***блок***-П4ВП** с поликатионным в присутствии угольной кислоты П4ВП блоком: морфология, наблюдения АСМ

АСМ изображения **мицелл ПС-***блок*-**П4ВП** на поверхности слюды, адсорбированных из раствора **угольной кислоты** ($p(CO_2) = 300$ **атм**, $T = 25 \,^{\circ}$ C, C = 0,1 мг/мл). Образцы различаются по молекулярной массе блоков: а) ПС – 16 кг/моль, П4ВП – 12 кг/моль, б) ПС – 50 кг/моль, П4ВП – 22 кг/моль, в) ПС – 50 кг/моль, П4ВП – 61 кг/моль. Размер кадра 2×2 мкм², шкала высот: 100 нм, масштабная линия: 500 нм

Pigaleva et al. // ACS Macro Lett. 2015, 4, 661

Мицеллы ПС-*блок*-П4ВП, сформированные в присутствии угольной кислоты: морфология, результаты ПЭМ и СЭМ

ПЭМ изображения мицелл ПС-блок-П4ВП на поверхности углеродной пленки-подложки, адсорбированных из раствора в угольной кислоте ($p(CO_2) =$ **300 атм**, $T = 25 \ ^{\circ}C$, C = 0,1мг/мл). Образцы различаются по молекулярной массе блоков: а) ПС – 16 кг/моль, П4ВП – 12 кг/моль, б) ПС – 50 кг/моль, П4ВП – 22 кг/ моль, в) ПС – 50 кг/моль, П4ВП – 61 кг/моль. Масштабная линия 1

СЭМ изображения мицелл ПС-блок-П4ВП на поверхности углеродной подложки, адсорбированных из раствора в угольной кислоте ($p(CO_2) = 300$ атм, T = 25 °C, C = 0,1 мг/мл). Образцы различаются по молекулярной массе блоков: а) ПС – 16 кг/моль, П4ВП – 12 кг/моль, б) ПС – 50 кг/моль, П4ВП – 22 кг/ моль, в) ПС – 50 кг/моль, П4ВП – 61 кг/моль. Масштабная линия 1 мкм

Pigaleva et al. // ACS Macro Lett. 2015, 4, 661

Размеры мицелл, полученные разными экспериментальными методами:

сопоставление и сравнение с теоретическими

Соотношение длин звеньев ПС/П4ВП	АСМ, измерение ширины	АСМ, измерение высоты	ПЭМ	СЭМ	ДРС	Теоретические вычисления*
150/110	41 ± 5 нм	22 ± 2 нм	24 ± 3 нм	28 ± 3 нм	48 ± 5 нм	22 нм
480/210	71 ± 9 нм	30 ± 7 нм	33 ± 5 нм	48 ± 6 нм	88 ± 11 нм	49 нм
510/580	50 ± 8 нм	35 ± 8 нм	32 ± 5 нм	45 ± 7 нм	97 ± 9 нм	51 нм

* рассчитанные радиусы ядра на основе модели из работы [Shusharina et al.// Macromolecules 29 (1996) 3167-3174]

Использование мицелл ПС-*блок*-П4ВП, сформированных в растворах угольной кислоты, в качестве субстрата для наночастиц Pd/Au

Микрофотографии мицелл ПСблок-П4ВП (ПС– 16 кг/моль, П4ВП– 12 кг/моль) с локализированными в короне наночастицами и электронные дифрактограммы с рефлексами, соответствующими металлическому а) Рd и б) Au. Мицеллы адсорбированы на поверхность углеродной плёнкиподложки из растворов в угольной кислоте.

Характерные размеры наночастиц а) палладия, б) золота, локализованных в короне мицелл ПСблок-П4ВП в растворах в угольной кислоте Pigaleva *et al.* // ACS Macro Lett. **2015**, *4*, 661

Vasiliev et al. // J. Appl. Polym. Sci. 2022, 139, e52514

- исходный
- 0.5% H₂O₂ + 30 МПа CO₂, 30 мин
- 3% H₂O₂ + 30 МПа CO₂, 30 мин
- 3% H₂O₂ + 30 МПа CO₂, 3 ч

механизмы реакций

Vasiliev et al. // J. Appl. Polym. Sci. 2022, 139, e52514

масс-спектрометрия, исходный

3% H₂O₂ + 30 МПа CO₂, 3 ч

m/z	Formula	Error ppm	Assignment
196.0809	C6 H14 O6 N	-3.282	[(GlcN) + O + H] ⁺
339.1378	C12 H23 O9 N2	-5.947	[(GlcN) ₂ -2H + H]+
357.1481	C12 H25 O10 N2	-6.472	$[(GlcN)_2 + O + H]^+$
498.1905	C18 H32 O13 N3	-5.027	[(GlcN) ₃ – 4H + H] +
500.2065	C18 H34 O13 N3	-4.207	[(GlcN) ₃ – 2H + H] +
514.1857	C18 H32 O14 N3	-4.16	$[(GlcN)_3 - 4H + O + H]^+$
516.2012	C18 H34 O14 N3	-4.551	$[(GlcN)_3 - 2H + O + H]^+$
518.2168	C18 H36 O14 N3	-4.572	$[(GlcN)_3 + O + H]^+$
560.2275	C20 H38 O15 N3	-3.952	$[(GlcN)_3 + (CH_3CO) + O + H]^+$
659.2590	C24 H43 O17 N4	-4.205	$[(GlcN)_4 - 2H + O + H]^+$
679.2852	C24 H47 O18 N4	-4.161	[(GlcN) ₄ + O + H] ⁺
802.3182	C30 H52 O20 N5	-2.312	[(GlcN) ₅ – 6H – O + H] ⁺
820.3272	C30 H54 O21 N5	-4.096	[(GlcN) ₅ – 4H + H] ⁺

детектированные фрагменты

3% H₂O₂ + 30 МПа CO₂, 3 ч

исходный

0.5% H₂O₂ + 30 МПа CO₂ 30 мин

3% H₂O₂ + 30 МПа CO₂, 3 ч

образец	Ο	С	Ν
исходный хитозан	30.7 ат.%	62.6 ат.%	6.5 ат.%
олигохитозан, (экспозиция в			
0.5% H ₂ O ₂ + 30 МПа CO ₂ 30	32.5 ат.%	61.5 ат.%	5.9 ат.%
МИН)			
олигохитозан (экспозиция в	$25.2 \text{ at } ^{0/2}$	68 / ot %	$4.0 \text{ or } ^{9/}$
3% H ₂ O ₂ + 30 МПа CO ₂ 3 ч)	20.0 dl. 70	00.4 dl. 70	4.9 dl. 70

РФЭС

исходный 0.5% H₂O₂ + 30 МПа CO₂ 30 мин 3% H₂O₂ + 30 МПа CO₂, 3 ч

Образец хитозана	C 1s							
	Group	С-С/С-Н	CH ₃	C-N	С-ОН	0-C-0	C(O)N	C(O)O
	Peak	C1	C2	C3	C4	C5	C6	C7
	BE, [eV]	285.1	285.3	285.8	286.8	288.2	288.9	289.6
исход-	W, [eV]	0.96	1.00	1.06	1.07	0.96	1.2	1.2
ный	I _{abs}	5114	1642	4100	16400	4100	1642	222
	I _{rel}	1.25	0.40	1.00	4.00	1.00	0.40	0.05
0.5% H ₂ O ₂	W, [eV]	1.04	0.91	1.06	1.06	0.96	1.2	1.2
+ 30 МПа	I _{abs}	5403	2525	4021	16084	4021	2525	454
СО ₂ 30 мин	I _{rel}	1.34	0.63	1.00	4.00	1.00	0.63	0.11
	BE, [eV]	285.05	285.3	285.75	286.75	288.24	288.76	289.6
3% H ₂ O ₂	W, [eV]	0.93	1.00	1.06	1.03	0.96	1.1	1.2
+ 30 МПа	I _{abs}	28350	1600	6350	25400	6350	1600	1044
СО ₂ 3 ч	I _{rel}	4.46	0.25	1.00	4.00	1.00	0.25	0.16

исходный

0.5% H₂O₂ + 30 МПа CO₂ 30 мин 3% H₂O₂ + 30 МПа CO₂, 3 ч

образец хитозана			N 1s			O1s				
	Group	C-NH ₂	C(O)N	NH ₃ +	NO ₃ , ONO ₂	H₂O, ph	C(O)N/ C(O*)O/ C(O)	C-O-C	С-ОН	H₂O, ch
	Peak	N1	N2	N3	N4	01	02	03	04	O 5
	BE, [eV]	399.5	400.5	402.2			531.5	532.8	533.5	534.7
ИОХОП	W, [eV]	1.12	1.12	1.12			1.03	1.15	1.15	1.15
исход-	I _{abs}	8781	1726	280			4948	34000	34000	3566
пыи	l _{rel}	0.81	0.16	0.03			0.06	0.44	0.44	0.05
0.5%	W, [eV]	1.20	1.20	1.20	1.26	1.22	1.03	1.15	1.15	1.15
$H_2O_2 +$	I _{abs}	9600	2241	1634	395	1341	9823	34100	34100	2916
30 МПа CO ₂ 30 мин	I _{rel}	0.69	0.16	0.12	0.03	0.02	0.12	0.41	0.41	0.04
3% H ₂ O ₂	W, [eV]	1.12	1.12	1.12		1.15	1.08	1.15	1.15	1.15
+ 30	I _{abs}	8682	1941	296		2156	14017	34000	34000	1337
МПа СО₂ 3 ч	I _{rel}	0.80	0.18	0.03		0.03	0.16	0.40	0.40	0.02

исходный 0.5% H₂O₂ + 30 МПа CO₂ 30 мин 3% H₂O₂ + 30 МПа CO₂, 3 ч

СЭМ

Vasiliev et al. // J. Appl. Polym. Sci. 2022, 139, e52514

Pigaleva et al. // J. Supercritical Fluids 2019, 147, 59

АСМ: бактерии-продуценты

Pigaleva et al. // J. Supercritical Fluids 2019, 147, 59

СЭМ: бактерии-продуценты

Gromovykh et al. // Carbohydrate Polym. 2020, 237, 116140

отмывка SDS,

обработка в СК СО₂,

обработка в присутствии пероксиугольной кислоты

Pigaleva et al. // J. Supercritical Fluids 2019, 147, 59

Pigaleva et al. // J. Supercritical Fluids 2019, 147, 59

исходная ткань (а),

после обработки в присутствии угольной (б) и пероксиугольной (в) кислот

Bulat et al. // Doklady Phys. Chem. 2019, 485, 58

Bulat et al. // Doklady Phys. Chem. 2019, 485, 58

Bulat et al. // Doklady Phys. Chem. 2019, 485, 58

исходная ткань (а),

СЭМ+ЭДРС

экстракт после обработки в присутствии угольной (б) и пероксиугольной (в) кислот

Bulat et al. // Doklady Phys. Chem. 2019, 485, 58

РФЭС

образец	пара-			C 1s			N 1s		O 1s
	метр	С-С/ С-Н	C-N	С-ОН	0-C-0	C(O)N, C(O)O	NH ₂	NH ₃ +	
	Content (at. %)	33.8					7.6		58.6
хитозан	E _{binding} (eV)	285.0	285.7	286.7	288.2	289.0	399.7	401.9	
	Width W (eV)	0.91	1.04	1.03	0.96	1.2	1.27	1.64	
	I _{rel}	0.20	0.12	0.49	0.12	0.05	0.62	0.20	
	Content (at. %)	31.5					7.7		61.1
хитозан на	E _{binding} (eV)	285.0	285.7	286.7	288.2	289.0	399.7	402.0	
целлю- лозе	Width W (eV)	0.89	1.04	1.02	0.96	1.2	1.28	1.60	
	I _{rel}	0.21	0.13	0.50	0.13	0.03	0.63	0.21	

Novikov et al. // Carbohydrate Polym. 2021, 258, 117614

Peak number	Wavenumber, cm ⁻¹	Line description				
	Pure chitosan film po	ured from the solution in carbonic acid				
1	3334 cm ⁻¹	-OH stretching from the carbohydrate ring				
2	3292 cm ⁻¹	N-H stretching				
3	2968 cm ⁻¹	-CH ₂ stretching				
4	2868 cm ⁻¹	C-H stretching				
5	1726 cm ⁻¹	C=O stretching				
	1647 cm ⁻¹	Amide I				
6	1543 cm ⁻¹	Amide II; N-H bending				
7	1451 cm ⁻¹	-CH ₂ bending; -OH of the primary alcohol group				
8	1372 cm ⁻¹	-CH ₃ symmetrical deformation				
9	1314 cm ⁻¹	C-N stretching				
	1100 cm ⁻¹ to 1000 cm ⁻¹	C-O-C pyranose ring skeletal vibrations				
		Pure BC film				
1	2896 cm ⁻¹	C-H stretching				
2	1647 cm ⁻¹	H-O-H bending of the adsorbed water				
3	1428 cm ⁻¹	Symmetrical bending of -CH ₂				
	1100 cm ⁻¹ to 1000 cm ⁻¹	C-O-C pyranose ring skeletal vibrations				
К		Novikov et al. // Carbohydrate Polym. 2021, 258, 1176				

Novikov et al. // Carbohydrate Polym. 2021, 258, 117614

Novikov et al. // Carbohydrate Polym. 2021, 258, 117614

