Модификация пористых матриц

Бифазные системы с СО₂ под давлением

PH < 3 при высоких давлениях CO₂ (десятки атм) H^{+}_{20} H^{+}_{2} H_{2} CO_{3} H^{+}_{2} H_{2} CO_{3}

Система: H₂O + CO₂ – угольная кислота Система: H₂O₂ + CO₂ – пероксиугольная кислота

Предобработка в пероксиугольной кислоте для формирования якорных групп! Растворение хитозана в угольной кислоте для формирования покрытий Pigaleva *et al. // RSC Adv.* 2015, 5, 103573

Хитозановое покрытие на пористых матрицах Celgard

Zefirov et al. // Polym. Sci. A 2020, 62, 123

Хитозановое покрытие на пористых матрицах Celgard

A C

Μ

Zefirov et al. // Polym. Sci. A 2020, 62, 123

Изменения смачиваемости водой

Матрицы Celgard: a) исходный образец, b) предобработанный пероксиугольной кислотой, c) с нанесенным слоем хитозана. 0, ¹/₄, ¹/₂, ³/₄ τ Zefirov *et al.* // *Polym. Sci. A* **2020**, *6*2, 123

Динамика краевого угла

Zefirov et al. // Polym. Sci. A 2020, 62, 123

Проницаемость по отношению к воде

P = V/(St), где V – объем прошедшей воды, S – эффективная площадь мембраны, t – время протекания воды

матрица	проница- емость, л/(м² ч)			
исходная	142 ± 8			
предобработанная	183 ± 11			
с хитозаном	210 ± 4			

данные, скорректированные на диффузионное сопротивление подложки по модели последовательных сопротивлений

Zefirov et al. // Polym. Sci. A 2020, 62, 123

Модификация матриц Celgard полидопамином

Биомиметический подход: сходный механизм используется рядом моллюсков для прочного закрепления с помощью формируемого слоя ПДА на субстратах произвольной природы, причем в водной среде

Изменения смачиваемости водой

а) исходный образец Celgard 2325, б) образец, предобработанный пероксиугольной кислотой, в) образец без предобработки, но с ПДА, г) образец, с предобработкой и с ПДА.

0, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ t

Динамика краевого угла

Морфология поверхности, СЭМ

Gvozdik et al. // Colloid J. 2018, 80, 761

Морфология поверхности, АСМ

топографияфазатопографияфазаразмер кадра: 8×8 мкм (верхний ряд),2×2 мкм (нижний ряд)Gvozdik et al. // Colloid J. 2018, 80, 761

Транспортные свойства матриц Celgard, модифицированных ПДА

Образец	Ионная проводимость, мСм/см	Проницаемость по V, см²/мин
Мембрана Celgard без предобработки с нанесенным слоем ПДА	5.8	10.7×10 ⁻⁵
Мембрана Celgard, предобработанная в пероксиугольной кислоте, с нанесенным слоем ПДА	6.1	5.9×10 ⁻⁵

в 0.5 М растворе ТБАФ в ацетонитриле

ПЭМ: предобработанные в пероксиугольной кислоте матрицы; импрегнация ТЭОС в СК СО₂; гидролиз / конденсация

Si(OC₂H₅)₄ + 2H₂O \rightarrow SiO₂ + 4 C₂H₅OH (1 и 2 процедуры); ультратонкие срезы, ПЭМ (вверху – 1 процедура (а), внизу – 2 процедуры (b))

Размер частиц SiO₂ (диаметр Ферета) из данных ПЭМ

Размер пор (диметр Ферета) из данных ПЭМ

СЭМ: морфология скола мембраны а) одна процедура синтеза (ТЭОС), b) две процедуры синтеза (ТЭОС), Масштабная линия 1 мкм

Изменения смачиваемости водой

а) исходный образец Celgard 2325, b) образец, предобработанный пероксиугольной кислотой, с) образец с SiO₂ (одна процедура, TOC), d) образец с SiO₂ (две процедуры, ТЭОС). $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}\tau$

0, ½ τ

Динамика краевого угла

Транспортные свойства матриц Celgard, модифицированных SiO₂

Образец	Протонная проводимость, мСм/см	Проницаемость по ванадил-иону, см²/мин
Исходный Celgard	7 × 10 ⁻⁴	не детект. (24 ч)
После H ₂ O ₂ + CO ₂	$(1.8 \pm 0.6) \times 10^{-3}$	не детект. (24 ч)
С SiO ₂ (1 синтез, ТЭОС)	9.6 ± 0.8	$(2.1 \pm 0.2) \times 10^{-6}$
С SiO ₂ (2 синтеза, ТЭОС)	0.5 ± 0.2	$(3.1 \pm 0.4) \times 10^{-7}$
Нафион (для срав.*)	70	3.7 × 10 ⁻⁶
АБПБИ (для срав.*)	7	1.7 × 10 ⁻⁹

* Из работы Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

в водном электролите

Зарядные и разрядные кривые ячеек ВПБ Сеl 1:

Zefirov et al. // J. Supercritical Fluids 2019, 150, 56

ПЭМ: предобработанные в пероксиугольной кислоте матрицы; импрегнация АПТЭС в СК СО₂; гидролиз / конденсация АПТЭС. Разные концентрации АПТЭС в растворе в СК СО₂: 10 мг/мл (а), 30 мг/мл (б)

Elmanovich et al. // Dokl. Phys. Chem. 2019, 485, 53

СЭМ: АПТЭС из раствора в CK CO₂, гидролиз / конденсация, 10 мг/мл (a), 30 мг/мл (б), скол мембра-НЫ

Масштабная линия 1 мкм

Elmanovich et al. // Dokl. Phys. Chem. 2019, 485, 53

Изменения смачиваемости водой

а) исходный образец Celgard 2325, б) образец, предобработанный пероксиугольной кислотой, в) образец с кремнеземом (АПТЭС, 10 мг/мл), г) образец с кремнеземом (АПТЭС, 30 мг/мл). $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}\tau$

Elmanovich et al. // Dokl. Phys. Chem. 2019, 485, 53

Динамика краевого угла

Elmanovich et al. // Dokl. Phys. Chem. 2019, 485, 53

Матрицы Celgard с кремнеземом и хитозаном

СЭМ, нанесение 24 ч.

Сужение пор в композите

Zefirov et al. // J. Appl. Polym. Sci. 2019, 485, 53

Матрицы Celgard с кремнеземом и хитозаном

A C

Μ

Динамика краевого угла

H₂O₂ + CO₂, хитозан (0 ч, 3 ч, 24 ч) H₂O₂ + CO₂, ТЭОС, хитозан (0 ч, 3 ч, 24 ч) H₂O₂ + CO₂, АПТЭС, хитозан (0 ч, 3 ч, 24 ч)

Транспортные свойства

Membrane types (according to chitosan deposition time)

протонная проводимость, проницаемость по Vсодержащим ионам, селективность; $H_2O_2 + CO_2$, ТЭОС/АПТЭС, хитозан (0, 3, 6, 9, 24 ч)

Хитозановое покрытие на ПП нетканом материале

20 мкм

20 мкм

20 мкм

Хитозановое покрытие на ПП нетканом материале

рентгеновская фотоэлектронная спектроскопия

Хитозановое покрытие на ПП нетканом материале

РФЭС	элемент	0		Ν			С			
	СВЯЗИ		O-(C=O)				C-H		CN C=O	C(0)0
		O-C	C-O-C	C-NH ₂	C(O)NH	C-NH ₃ +	C-C	C-(C-O)	C-OH	C(O)N
	ПИК	01	02	N1	N2	N3	C1	C2	C3	C4
исход.	E, eV	532.2	533.6	399.8	401.1	_	284.8	285.2	286.2	289.1
	дол,ат.%	1.8	1.7	0.6	0.1	_	43.9	41.8	8.3	1.6
	сум,ат%	3.5		0.7			95.6			
перокс	E, eV	532.3	533.7	399.7	400.6	401.9	284.8	285.3	286.3	289.4
	дол,ат.%	3.7	3.6	0.4	0.2	0.1	39.7	37.0	13.2	2.0
	сум,ат%	7.3		0.7			91.9			
хитоз.	E, eV	532.4	533	399.8	400.4	401.7	284.7	285.2	286.5	288.2
	дол,ат.%	11.9	9.2	2.9	0.7	0.4	20.7	18.2	24.6	10.5
	сум,ат%	21.1		4.0			74.0			

Изменения смачиваемости водой

Хитозановое покрытие на ПП нетканом материале: а) исходный образец, b) предобработанный пероксиугольной кислотой, c) с нанесенным слоем хитозана. 0, ¹/₄, ¹/₂, ³/₄ τ Zefirov *et al.* // *J. Appl. Polym. Sci.* **2022**, 139, 52111

Zefirov et al. // J. Appl. Polym. Sci. 2022, 139, 52111

Способность ПП матрицы сорбировать ионы меди

Способность ПП матрицы сорбировать ионы меди

30 мкм

Вехи дальнейшего развития методики

Капля воды на ткани, гидрофобизованной С8-ОН со сшивателем Кристаллизация сульфата никеля на кремнийорганическом аэрогеле Создание пористости в полимерных мембранах как резервуара для электролита

Ионный транспорт в пористых мембранах для проточных батарей

Длина траектории для пористой мембраны, І:

$$l = h \times \sqrt[3]{1 + \frac{n^3 a^3}{h^3} - na < h}$$

где *h* – толщина изначально гомогенной мембраны, *a* – характерный латеральный размер пор, *n* – число пор на единицу длины *h*

Gallyamov et al. // Polym. Sci. A 2018, 60, 507

ПБИ мембраны для проточных батарей с водным электролитом

БИ-О-ФТ

- Поликатионы в протонированной форме, низкая проницаемость по катионам ванадия
- Стабильны в водных растворах VO₂⁺ + H₂SO₄
- Существенно дешевле Нафиона
- Основной недостаток низкая протонная проводимость: 10 мСм/см

Получение пористых ПБИ мембран путем индуцированного СК СО₂ фазового разделения

Объемное набухание АБПБИ в ДМА при 80 °С

Морфология, СЭМ

N,N-ди support sup

N,N-диметилацетамид, сколы (жидкий азот), средний размер пор ~ 2,7 мкм

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Ионный транспорт

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Зарядные и разрядные кривые ячеек 1,6 1,4 1,2 Voltage, V scABPBI Nafion 0 1,0 8 ര 0 0,8 O 0 при *j* = 40 мА/см² 0 0,6 20 40 60 80 100 0 Relative capacity, %

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Преднабухание в различных растворителях, замена на СК СО₂

N,N-диметилформамид

N,N-диметилацетамид

N-метил-2-пирролидон

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Протонная проводимость и проницаемость мембран

мембрана	протонная проводимость (2.5 M H ₂ SO ₄), σ _{SA} , мСм/см	протонная проводимость (1 M VOSO ₄ + 2.5 M H ₂ SO ₄), σ_{VS} , мСм/см	проницае- мость, ванадил-ион, Р, см²/мин
АБПБИ- исходный	7	5	1,7 × 10 ⁻⁹
АБПБИ-ДМФА	14	11	1,6 × 10 ⁻⁸
АБПБИ-ДМА	20	15	3,2 × 10 ⁻⁸
АБПБИ-ММП	27	19	4,0 × 10 ⁻⁸
нафион 115	79	63	3,7 × 10 ⁻⁶

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Зарядные и разрядные кривые ячеек

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Ресурсные испытания

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262