Синтез неорганических аэрогелей

Синтез аэрогелей

1. $Mn_2(CO)_{10}$ помещен в реактор + CO_2 + O_2 ,

- 2. растворение прекурсора,
- 3. зарождение и рост оксидной фазы (золь),
- 4. формирование трехмерной структуры (гель) с последующим удалением CO₂

Синтез аэрогелей

- Simple and efficient one-step process
- Monolithic manganese oxide aerogel is formed
- / Density below 20 mg/cm³
 - SSA up to 170 m²/g

Морфология частиц MnO_x

70 мг / 20 мл

140 мг / 20 мл 280 мг / 20 мл

200 нм 200 нм 200 нм синтез в СК СО₂ + О₂ при 140 °С, 300 атм, СЭМ после синтеза, ПЭМ после отжига: 600 °C ($MnO_2 \rightarrow Mn_2O_3$) Zefirov et al. // J. Sol-Gel Sci. Technol. 2019, 92, 116

Термогравиметрический анализ прекурсоров и продуктов

Elmanovich et al. // J. Nanopart. Res. 2021, 23, 95

Частицы аэрогелей оксидов металлов

Elmanovich et al. // J. Nanopart. Res. 2021, 23, 95

Распределение частиц аэрогелей по размерам

Изотермы адсорбции N₂ для аэрогелей (БЭТ)

Рассчитанные параметры пористой структуры (БЭТ)

	BET		BJH		Total poi volume	re
	S _{sp} , m²/g	S _{mp} , m²/g	S _{meso} , m²/g	V _{meso} , cm ³ /g	V _{0.35} , cm ³ /g	V _{0.98} , cm ³ /g
WO _x	25	30	50	0.09	0.01	0.09
CoO _x	5	11	15	0.02	0.00	0.02
FeO _x	50	70	185	0.40	0.02	0.40
MnO _x	135	130	175	0.34	0.07	0.33

Аэрогели оксидов металлов: вариация прекурсора

Монолитный оксидножелезный (FeO_x) аэрогель, полученный из Fe₃(CO)₁₂

Zefirov et al. // J. Nanopart. Res. 2022, 24, 111

Аэрогели оксидов металлов: вариация прекурсора

Zefirov et al. // J. Nanopart. Res. 2022, 24, 111

Синтез кремнийорганических аэрогелей

Loy et al. // Chem. Mater. 1997, 9, 2264

 $(SiO_2)_n$ + 4n HCOOR

Si(OEt)₃

Муравьиная кислота вместо воды

n (EtO)₃Si

фотография, (1 см \times 3.2 см) кремнеземный аэрогель, из TMOS в СК СО $_2$

SEM: A. TMOS + муравьиная кислота в CK CO_2 , B. TMOS + муравьиная кислота в метаноле с сушкой в CK CO_2 , C. TMOS + муравьиная кислота с сушкой в CK CO_2 , D. BESP + муравьиная кислота в CK CO_2 (phenylene-bridged polysilsesquioxane)

обзор: Pigaleva et al. // Polym. Sci. В 2016, 58, 235

Zou et al. // RSC Adv. 2015, 5, 76346

Синтез аэрогелей

 $m \approx 70$ (SILRES BS 94, Wacker Chemie AG, Germany)

$n \in [8, \, 11, \, 15, \, 35, \, 63]$

FTIR: omcymcmeue Si-H и SiCH=CH₂ групп

Использование катализатора Шпаера: H₂PtCl₆ в изопропаноле

также были успешно протестированы другие катализаторы :

Катализатор Карстеда

H₃C H₃C

(1,5-циклооктадиен)диметилплатина

Внешний вид аэрогелей

фотографии аэрогелей разной морфологии

Морфология аэрогелей

микрогранулы

микропористые

SU8000 2.0kV 8.2mm x4.50k SE(

пористые

СЭМ, запыление Pt/Pd (80/20), 7 нм

SU8000 2.0kV 8.0mm x1.30k SE(UL)

Плотность аэрогелей, разные давления СО₂

Nº	плотность СО ₂ , г/см ³	концен- трация, мг/см ³	плотность, г/см ³	морфо- логия
1	0.93	130	0.12	плотность выше у дна
2	0.96	130	0.15–0.17	микро- пористая
3	0.98	130	0.15	микро- пористая
4	1.0	130	0.18	микро- пористая
5	1.02	130	0.18	плотность выше у крышки

для n = 8 (та же тенденция для других n), T = 40 °C, 4 ч

Плотность аэрогелей, разные давления СО₂

Соотношение между плотностями дисперсионной среды (СК СО₂) и дисперсной фазы (эмульсии или суспензии Elmanovich et al. // частиц) J. Supercrit. Fluids, 2018, 133, 512

CO₂ density

Плотность аэрогелей, разные концентрации прекурсора

N⁰	плотность СО ₂ , г/см ³	концен- трация, мг/см ³	плотность, г/см ³	морфо- логия
1	0.98	60	0.12	микро- гранулы
2	0.98	100	0.15–0.17	пористая
3	0.98	115	0.15	микро- пористая
4	0.98	130	0.15	микро- пористая

для *n* = 8, T = 40 °C, 4 h

дисперсионный механизм полимеризации (Cooper)

Плотность аэрогелей, разные длины дивинила *п*

N≌	n	концен- трация, мг/см ³	плотность, г/см ³	морфо- логия
1	8	130	0.15	микро- пористая
2	11	130	0.16	микро- пористая
3	15	130	0.13	микро- пористая
4	35	130	0.28	пористая
5	63	130	0.75	плотный материал

для T = 40 °C, 4 ч, $\rho(CO_2) = 0.98 \Gamma/CM^3$ Elmanovich *et al.* // *J. Supercrit. Fluids*, **2018**, 133, 512

Эволюция краевого угла

n = 8 *n* = 11 *n* = 15

начальный объем капли 10 мкл

J. Supercrit. Fluids, 2018, 133, 512

J. Supercrit. Fluids, 2018, 133, 512

Механические свойства аэрогелей, разные длины *п*

Nº	n	плотность, г/см ³	модуль Юнга, кПа	порис- тость, об. %
1	8	0.15	62	86
2	11	0.16	36	85
3	15	0.13	20	88
4	35	0.28	69	74

для T = 40 °C, 4 ч, $\rho(CO_2) = 0.98$ г/см³

Способность абсорбировать органические растворители

Nº	n	плот- ность, г/см ³	абсорбция толуола	
1	8	0.15	7.7	
2	11	0.16	7.8	
3	15	0.13	8.4	
4	35	0.28	7.4	
5	63	0.75	7.7	

Экстракция из смесей воды и ТГФ

для T = 40 °C, 4 ч, $\rho(CO_2) = 0.98$ г/см³

Синтез с участием ТАS: продукты

 \sim

TAS + BS-94

TAS + LDV + BS-94

Динамика испарения капель

Elmanovich et al. // J. Supercrit. Fluids, 2019, 149, 120

Изменение краевых углов

Морфология аэрогелей

Материалы мембран топливных элементов и проточных батарей

Общая схема МЭБ топливного элемента

ЭДС элемента определяется изменением свободной энергии в химической реакции окисления водорода 1.23 В при 20° С для H₂/O₂.

Мембраны для проточных ванадиевых батарей

Мембраны для проточных ванадиевых батарей

Получение композитных полимерных мембран

Модифицировать Нафион для более высоких температур работы

NAFION

ТЭОС как прекурсор кременезема

Импрегнация, гидролиз, конденсация

charge carrier

Фиксация гидрофильных каналов сеткой SiO₂

Композиты Нафион : включения

Стабилизация каналов, эффект "мокрого песка"

ТЭОС: Обычный подход

ТЭОС из растворов в полярных водноспиртовых смесях (например, Deng et al. // Chem. Mater. 1995, 7, 2259) Проблема: пути поступления прекурсора и роста фазы SiO₂ пространственно совпадают

Подход с использованием СК СО₂

ТЭОС из растворов в неполярном СК СО₂

Решение: пути поступления прекурсора и роста SiO₂ фазы пространственно разделены

Модификация Нафиона кремнеземом в СК СО₂, необходимость контроля присутствия воды

необходимо оптимизировать и контролировать начальное количество воды в гидрофильных каналах нафиона

потеря воды нафионом с течением времени

протеканием гидролиза и формированием кремнеземной фазы

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Композиты Нафион/кремнезем

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Изображения поверхности скола: (a) СЭМ, (b) EDX-картирование распределения кремния

Композиты Нафион/кремнезем

Транспортные свойства композитов Нафион/кремнезем

Образцы	Протонная проводимость (T=23 °C RH 95%, мСм/см)	Набухание в воде, при 23 °C, %	Проницаемость по метанолу, при 23 °C, × 10 ⁻⁷ см ² /сек
N117 (исходный)	83 ± 3	26.1 ± 0.4	16 ± 2
NC117 (в чистом CO ₂)	86 ± 3	24.2 ± 0.3	11 ± 2
NS117 (сравнения, по литературной методике)	76 ± 3	29.4 ± 0.5	12 ± 2
NCT-30 (композит, 30 мин сушки)	84 ± 3	24.8 ± 0.3	10 ± 2
NCT-20 (композит, 20 мин сушки)	84 ± 3	25.1 ± 0.3	8 ± 2

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Композиты Нафион/кремнезем

Дилатометрия: исходный образец и композит (20 мин сушки) Simonov *et al.* // *J. Membrane* Sci. **2018**, 564, 106

Эффективности проточных батарей

--■-- 2. CE --●-- 2. VE --▲-- 2. EE --●-- 1. CE --●-- 1. VE --▲-- 1. EE

Эффективности: по заряду (кулоновская) (СЕ), по напряжению (VE), и по энергии (ЕЕ) ячейки ВПБ с исходным нафионом N117 (красные линии) и модифицированным композитом NCT-20 (20 мин сушки) (черные линии).

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Модификация нафиона кремнеземом в СК СО₂, заключения

Влияние на функциональные свойства мембраны

- 1) Протонная проводимость не ухудшается;
- 2) Проницаемость по метанолу снижается;
- 3) Стабильность мембраны (реагент Фентона) улучшается;
- 4) Способность удерживать воду улучшается;
- 5) Проницаемость по катионам ванадия снижается;
- Эффективность работы в проточных батареях улучшается.

Количество воды в мембране существенно влияет на процесс формирования кремнеземной сетки. Необходимо контролировать!

Simonov et al. // J. Membrane Sci. 2018, 564, 106

Композиты Нафион с WO_x

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Схема приготовления мембран для тестирования

Композиты Нафион с WO_x

> Результаты ПЭМ и дифракции электронов

> > Sizov et al. // J. Membrane Sci. **2020**, 609, 118244

Композиты Нафион с WO_x

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Содержание W в Нафионе

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Рентгенодифракционный анализ

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Механические свойства композитов WO_x/Nafion

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Проницаемость по V-ионам и протонная проводимость

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Эффективности проточных батарей

Sizov et al. // J. Membrane Sci. 2020, 609, 118244

Ресурсные испытания

Sizov et al. // J. Membrane Sci. 2020, 609, 118244