Современные методы Монте-Карло для моделирования полимеров

Лектор: к.ф.-м.н., доцент Иванов Виктор Александрович (кафедра физики полимеров и кристаллов физического факультета МГУ)

Статус: факультативный Аудитория: специальный курс

Специализация: физика конденси-

рованного состояния вещества; наносистемы и наноматериалы

0.10

Семестр: 9, 10

 Лекций:
 40 часов

 Семинаров:
 28 часов

Отчётность: экзамен, зачет

Аннотация курса

В этом спецкурсе, который является прямым продолжением спецкурсов «Методы компьютерного моделирования в статистической физике» и «Компьютерное моделирование полимерных систем», читающихся в 8 и 9 семестре, основное внимание уделяется современным компьютерным методам исследования полимерных систем и имеющегося для этих целей программного обеспечения. Одна из основных задач данного факультативного годового курса лекций – обозначить при изложении различных методов общие принципы мультимасштабного моделирования, т.е. указать пути "стыковки", сопряжения результатов моделирования, полученных микроскопическими, мезоскопическими и макроскопическими методами, "работающими" на разных пространственных и временных масштабах. К микроскопическим относят методы, в которых система описывается на "языке" атомов и молекул (это методы МК, МД, метод стохастической динамики). К мезоскопическим относятся методы описания системы в терминах коллективных переменных, например, функций распределения потенциальных полей и плотностей (это теоретикополевые методы самосогласованного среднего поля, функционала плотности, нелинейных интегральных уравнений теории жидкостей, метод диссипативной динамики частиц). Наконец, макроскопические методы – это феноменологические методы решения уравнений в сплошных средах (механика сплошных сред, электродинамика, гидродинамика, метод конечных элементов, полуэмпирические методы расчета физических свойств полимеров на основе вкладов отдельных атомов и/или атомных групп и др.).

Основные учебные пособия, обеспечивающие курс

- 1. D.Frenkel, B.Smit, Understanding molecular simulation: from algorithms to applications. Academic Press, 2002.
- 2. Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Ferrario M., Ciccotti G., Binder K. (Eds.). V.1. (Lecture Notes in Physics, v.703). Berlin-Heidelberg: Springer, 2006. 711 p; V.2. (Lecture Notes in Physics, v. 704). Berlin-Heidelberg: Springer, 2006. 598 p.
- 3. Simulation Methods for Polymers, edited by M. Kotelyanskii, D. N. Theodorou, Marcel Decker, Inc., New York, 2004, 602 pages.
- 4. Monte Carlo and Molecular Dynamics of Condensed Matter Systems. Eds. Binder K., Ciccotti G. Conference Proceedings, V.49 (Proceedings of the Euroconference on Computer Simulation in Condensed Matter Physics and Chemistry, 3-28 July 1995, Como, Italy), Italian Physical Society (Societa Italiana di Fisica), Bologna, 1996. 958 p.
- 1. Методы компьютерного моделирования для исследования полимеров и биополимеров / Отв. ред. В. А. Иванов, А. Л. Рабинович, А. Р. Хохлов. М.: Книжный дом «ЛИБРОКОМ», 2009. 688 с., цв. вкл.

Основные учебнометодические работы, обеспечивающие курс

Основные научные статьи, обеспечивающие курс

- 1. Baschnagel J., Binder K., Doruker P., Gusev A.A., Hahn O., Kremer K., Mattice W.L., Mueller-Plathe F., Murat M., Paul W., Santos S., Suter U.W., Tries V. Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives // Adv. Polym. Sci. 2000. V.152. P.41-156.
- 2. Glotzer S.C., Paul W. Molecular and Mesoscale Simulation Methods for Polymer Materials // Annu. Rev. Mater. Res. 2002. V.32. P.401–436.
- 3. de Pablo J.J., Curtin W.A. (Guest Editors). Multiscale Modeling in Advanced Materials Research: Challenges, Novel Methods, and Emerging Applications // Material Research Society (MRS) Bulletin 2007. V.32 No.11. P.905-911.
- 4. Arnold A., Holm C. Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems // In: Advanced Computer Simulation Approaches for Soft Matter Sciences II // Adv. Polym. Sci. 2005. V.185. P.59-109.
- 5. Dünweg B. Advanced Simulations for Hydrodynamic Problems: Lattice Boltzmann and Dissipative Particle Dynamics // In: Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, N. Attig, K. Binder, H. Grubmüller, K. Kremer (Eds.), John von Neumann Institute for Computing, Jülich, NIC Series, 2004. V.23. ISBN 3-00-012641-4. P.61-82.

Структура и содержание спецкурса

Раздел	Неделя
Введение. Пространственные и временные масштабы в полимерных системах. Общий обзор	1
методов моделирования. Общие принципы и подходы для сопряжения методов, пригодных	
для моделирования на разных пространственных и временных масштабах.	2-3
Использование квантово-химических расчетов для полимерных систем	
Атомистическая молекулярная динамика	4
Методы учета дальнодействующих взаимодействий. Суммирование по Эвальду.	5
Пакеты Espresso, DL-POLY, Gromacs	6-7
Моделирование методом Монте-Карло в различных ансамблях	8
Мультиканоническое моделирование.	9
Алгоритмы для расчета функции плотности состояний (алгоритм Ванга-Ландау, алгоритм стохастической аппроксимации).	10-11
Моделирование расширенных ансамблей с помощью метода Монте-Карло.	12
Метод Монте-Карло со смещением по конфигурациям (configurational bias MC).	13
Ансамбль Гиббса	14
Метод "размягчения" потенциала взаимодействия (single and parallel tempering technique)	15
Алгоритмы повышенной размерности (четырехмерный алгоритм для трехмерной цепи)	16
Методы расчета свободной энергии в компьютерном моделировании	17-18
Методы моделирования редких событий	19
Методы нелинейных интегральных уравнений теории жидкостей	20
Гибридные схемы Монте Карло / PRISM и Монте Карло / молекулярная динамика	21
Метод диссипативной динамики частиц	22
Пакет DPDChem	23-24
Методы самосогласованного среднего поля	25
Алгоритм «одной цепи в самосогласованном поле»	26
Метод конечных элементов	27
Полуэмпирические методы расчета физических свойств полимеров на основе вкладов от-	28-29
дельных атомов и/или атомных групп (на примере метода А.А.Аскадского и программы Кас-	
кад)	
Мультимасштабное моделирование полимерных систем на примере растворов сопряженных	30
полимеров	21.22
Пакеты VOTKA, ОСТА	31-32
Пакет Accelrys Materials Studio	33-34